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Chapter 1

Introduction

What is the code used by neurons in conveying information belongs to one of
the most frequently asked questions among the contemporary science. Beside
an experimental approach to this problem, there have been many attempts to
solve this task by using theoretical - biophysical and mathematical - methods
(Perkel and Bullock, 1968; Rieke et al., 1997; Theunissen and Miller, 1995).
The mathematical methods are often based on stochastic principles, which
reflect apparent randomness in behavior of the nervous system. Therefore,
the stochastic models of neurons are constructed, analyzed and verified. The
aim of this text is to review this effort.
A mathematical model is always an attempt for approximation of some real,
usually dynamical, system using one or more equations which represent be-
havior of the system. To which extent the properties of reality are neglected
determines compatibility between the model and the real object. The obvious
value of the models is based on their analytical power permitting to test the
scientific hypotheses. Variable assumptions about the system are reflected
by different versions of the model and can be exploited when verifying and
interpreting the experimental results. Less obvious, but not less important,
role of the models is based on their indirect contribution to organizing and
integration of existing knowledge about the nature. By constructing the mod-
els we realize the missing parts of our knowledge and the new experimental
questions are proposed.
These facts, so well known in physics and engineering, have been recently
taken into account in biology as well. The fast growth of biomathematics
and theoretical biology, currently more frequently labeled as computational
biology, confirms this trend. These general notes hold in neuroscience even
more obviously due to the long tradition of mathematization of this branch
of science. The seminal paper (Lapicque, 1907) was published more than
hundred years ago and republished a century later in English version (Brunel
and van Rossum, 2007). Probably the first great mathematician who got
interested in formal description of the brain functions was Norbert Wiener.
However, undoubtedly the most significant stimulus for formalization of the
neuroscience research was the fact that the neuronal model of Hodgkin and



Huxley, published in 1952 (Hodgkin and Huxley, 1952) was a part of the No-
bel prize in Physiology and Medicine by which these scientists were awarded
in 1963. This event probably caused an increased interest of the mathe-
maticians, who usually had made their most important achievements in pure
mathematics, in this type of applications. Many examples can be found, but
in relation to this short text we can point out the names like - S.I. Amari,
S.E. Fienberg, G. Kallianpur and B. Mandelbrot (Amari et al., 1977; Fien-
berg, 1974; Gerstein and Mandelbrot, 1964; Kallianpur and Wolpert, 1985).
Despite the choice cannot be representative and can be found biased, these
are always applications of mathematics in single neuron description. Due to
the transdisciplinarity of this research, the results are scattered in a wide
range of journals. Equally broad is the range of the books published on this
topic. On one side there are theoretically oriented monographs (for exam-
ple, Tuckwell, 1988; Gerstner and Kistler, 2002), on the other one, there are
many books towards biophysical foundations of the field or on the theory of
artificial neural networks.

Enormous progress of computational power enables to perform extensive nu-
merical experiments on the mathematical models, either varying their pa-
rameters or using the Monte-Carlo methods. The numerical experiments
are incomparably cheaper than those realized in the laboratories and de-
spite that the theoretical conclusions cannot replace experimental evidence,
they can substantially extend their conclusions. In this way the economical
requirements of the research can be much better controlled. This fact sub-
stantially underlines the importance of the applications of mathematics in
biological sciences. Simultaneously, we must not accept the superficial point
of view that the super-computers can replace analytical methods of math-
ematics and real experimental data. It would be a fundamental error and
the only correct approach is that containing all four components of modern
applied mathematics - reality observation, model formulation, its analytical
and computerized treatment and finally statistical comparison with the real
data. Only this complete sequence can result in generation of new ideas and
new experiments to open a new cycle at a higher level.

The topic of the seminar has been from mathematical point of view already
shortly mentioned. It is characterized by the term “stochastic process”, ei-
ther one- or multidimensional, such that its dynamics characterize neuronal
behavior in time and in dependency on its inputs. Such a stochastic process
is usually in continuous time, but its values change either continuously or
with discrete jumps. The basic problem is how close one to the other are
these two variants, thus we study the problem of “diffusion approximation”.

4



The next connecting feature is the “first-passage-time problem”. It is a ques-
tion about the properties of the time interval during which a deterministic
threshold is reached by a stochastic process. Thus, instead of a trajectory of
a random process we have at disposal this random variable only. Importance
of this task follows from the fact that the basic principle of neuronal trans-
mission is transformation of an analog signal, for example of the membrane
potential, into a sequence of discrete neuronal pulses, so called action poten-
tials, which appear randomly in time and this phenomenon is modeled as the
first-passage time. Then, the basic question is to deduce statistical proper-
ties of the first-passage time from the properties of the input signal. There
is also an inverse problem to characterize properties of the signal knowing
only the first-passage time distribution or its properties. The last common
term is “parametric inference” for the considered stochastic models which are
observed either continuously or in discrete time instants or, and it the most
important, which are observed only via the mentioned first-passage times.
The crucial question of all verification procedures for model construction is
the identification and estimation of the parameters. Despite that any stochas-
tic model is just an approximation of reality, it is important to underline its
probabilistic form and thus the fact that it covers all possible situations and
we have to judge the probability distribution of these situations. To de-
termine the parameters as precisely as possible is an unavoidable condition
for that purpose, and in addition we need to quantify the precision. The
developed models are not only descriptive but their parameters have biolog-
ical interpretation. For that reason qualitative comparison is important but
quantitative values of the parameters play their indisputable role. The model
construction permits to use statistical methods for testing the significance of
the parameters as well as their mutual differences. We have to remind that
the estimation of the statistical parameters can also be seen as identification
of the incoming signal (Jolivet et al., 2008; Greenwood and Lansky, 2005).

From a biophysical point of view, the models of a single neuron reflect the
electrical properties of its membrane via electric circuit description contain-
ing energy storage elements. Such circuit models can be written in terms
of differential equations for the membrane voltage. Reducing these models,
we can end up with an integrate-and-fire type of the models (Kistler et al.,
1997) and they will be discussed here. These models are sometimes criticized
for their too drastic simplification of reality, however, after reduction of the
Hodgkin-Huxley four dimensional model, Kistler et al. (1997) claim that the
integrate-and-fire model with a properly selected threshold predicts 90 per-
cent of the spikes correctly. Of course, this type of simplification implies that
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spike duration and its shape are neglected and all neuronal activity is repre-
sented by uniform events appearing in time; a point process (Johnson, 1996).
Thus, the models aim only to describe the dynamics of interspike intervals
and they are based on a one-dimensional representation of the time evolution
of the neuronal membrane potential. The trigger zone serves as a reference
point and all the other properties of the neuron have to be integrated into it.
This one-point representation induces several strong restrictions which will
be mentioned later and which cannot be removed unless the spatial properties
of neurons are taken into account.

1.1 Deterministic Approach

It is hardly possible to speak about stochastic modeling without mention-
ing the deterministic approach and in such a way to point out to what is
gained (and lost) by using the stochastic approach. The simplest realistic
model which has been used for description of stimulus intensity coding is the
deterministic leaky-integrator model,

dx(t)

dt
= −x(t)

τ
+ µ (t) ,x(0) = x0 , (1)

wherex(t) represents the cell membrane voltage, x0 is the initial voltage after
spike generation, µ(t) being an input signal, and τ > 0 is a time constant
governing the spontaneous decay of the voltage back to a resting level, which
for the notational simplicity is set to zero. The initial depolarization is usu-
ally, but not always, put to be equal to the resting potential, x(0) = 0.
The model can be derived from the basic biophysical model of the neuronal
membrane which assumes that its depolarization is described by a circuit
with a generator, a resistor and a capacitor in parallel. This model is usually
called RC circuit, Lapicque model or a deterministic leaky integrator, e.g.,
(Knight, 1972; Scharstein, 1979, for a review see Tuckwell, 1988), and in this
interpretation for τ in (1) holds, τ = RC, where R denotes the resistance
and C the capacitance of the circuit. We should keep in mind that µ(t) ap-
pearing in (1) is already a representation of an external signal (light, sound,
odorant, or a sequence of incoming action potentials) transformed into an
internal generator potential, a quantity having a dimension of voltage by it-
self. Following the circuit representation, then µ(t) = I(t)/C. It has to be
stressed that while the electrical representation is related to a small isopoten-
tial patch of neuronal membrane, the variable x(t) in (1) reflects an abstract
representation of a complete neuron.
Due to the simplicity of (1), the action potential generation is not an inherent
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part of the model like in more complex models and the firing threshold S,
such that S > x0, has to be imposed here. The model neuron fires whenever
the threshold is reached and then the voltage x(t) is reset to its initial value.
This means that in the electrical circuit representation a switch is added to
the circuit. The reset following the threshold crossing introduces a strong
nonlinearity into the model. For a constant µ = µ(t), such that µ > S/τ, the
firing intervals tS for model (1) are

tS(µ) = −τ ln

(

µτ − S

µτ − x0

)

(2)

and for µ ≤ S/τ, the model neuron remains silent - never reaching the thresh-
old S. These two regimes are usually called sub and supra-threshold stim-
ulations and play equally important role in the stochastic models. We can
see from (2), that the firing frequency as a function of the stimulus intensity
increases to infinity with increasing µ and this drawback can be removed
by imposing an absolute refractory period tref on the interspike interval
length. Then the relation between the intensity of stimulation and frequency
follows from (2),

fS(µ) =
1

tref − τ ln
(

µτ−S
µτ−x0

) (3)

assuring the saturation frequency fsat = t−1

ref . Note a discontinuity of fS(µ)
derivative at point S/τ , which is removed if the model with noise is consid-
ered.
We have seen that the simplest way how to model the absolute refractory pe-
riod was by adding tref to each interspike interval. Time dependent thresh-
olds in neural modeling may aim to simulate various aspects of the time
varying behavior of the neuron, but they are used mainly to mimic the rel-
ative refractory period. These thresholds need to have a high initial value
(or infinity) and to decay with time to the constant value S. An example of
such a threshold is

S(t) = S + S1exp(−t/γ) (4)

where S1 > 0 and γ is a positive constant characterizes how fast the constant
threshold is established. Various forms for time-dependent thresholds can be
found in (Tuckwell, 1988).
Model (1) has been often used for description of sensory neurons under exter-
nal periodic stimulation by applying a periodic signal µ(t). Then the model
takes the form,

dx(t)

dt
= −x(t)

τ
+ µ + µ0sin(ωt+ θ) ,x(tk) = x0 , (5)

7



where µ0 is the amplitude of the variable component, ω and θ are constants
characterizing the period and phase of the driving force and tk is the time
instant of the last crossing of the firing threshold. We are interested in a
distribution of time points t1 < t2 < · · · < tk < · · · , such that at each
of these instants the threshold is reached for the first time, x(t−k ) = S, the
function x(t) is reset to its initial value, x(t+k ) = x0, and for t > tk the
function x(t) is defined by (5). Interspike intervals can be calculated as
tk+1 − tk and they can be histogramed. This makes the difference between
(1) and (5) apparent being that for (1) only a constant interspike interval
can be produced. The main characteristic of (5) is that it is able to produce
a phase locking effect; a special type of input-output synchronization. In
other words, the crossings of x(t) through the threshold S may get phase
locked with a period of stimulus. Thus, the most intuitive form of the results
for (5) is a cycle histogram presenting the spike appearance with respect to
the phase of the driving force. Using this method, the interspike intervals
are converted mod 2π/ω so they fell within the interval of one period of
stimulation. In such a way, a synchronization of the spikes with stimulus
intensity is reflected. This is still an example of the rate coding, just copying
the stimulus variation. Another feature of real neurons successfully modeled
by (1) is the effect of self-inhibition. This can be easily achieved by changing
µ(t) in accordance with the previous activity of the model neuron. For other
results on deterministic leaky integrate-and-fire model from computational
point of view, see (Bugmann, 1991; Tal and Schwartz, 1997).
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Chapter 2

Stochastic Models

2.1 General Considerations

Many different experimental results suggest a presence of stochastic variables
in neuronal activity. We may assume that there is a random component, gen-
erally denoted as noise, contained in the incoming signal. The other source of
noise can be the neuron itself where a random component is added to the sig-
nal. Unfortunately, there is an unclear distinction between noise contained
in the signal and the system noise, again due to the one-point approach.
The term noise usually denotes something negative and blurring the signal
processing. However, in this case it could be a message by itself or a highly
desirable part of the message important for its processing, as we will see later.
From a mathematical point of view an introduction of stochasticity into the
description of the neuron represents some type of complexity increase. On
the other hand, from a point of view of biophysical reality it simplifies the
task substantially as all the features considered at a current stage as marginal
can be declared as a system noise.
The simplest stochastic model of a neuron, and thus rather unrealistic, would
assume that any incoming pulse, or any incoming quanta of external stimula-
tion is reflected by generation of an output spike. If the incoming stimulation
has many independent sources, then the output of such a pooling device is
described by a Poisson process with intensity which is proportional to the
intensity of stimulation. In this case the neuron serves only as a superposing
device, however, we will see that there are other mechanisms leading to the
Poisson model of a neuron. In any case, the Poisson model is a representa-
tion of pure randomness without any memory as the probability of firing is
constant and independent of the past at any time instant. The consequence
of the model assumptions is linearity of the input-output curve, similar to (3)
for large τ , and neglected refractoriness. This linearity of the input-output
curve handicaps the Poisson process in being a real neuron model. On the
contrary, we may easily consider the input to a neuron as Poissonian. This
character appears to be an appropriate imitation mainly for spontaneous ac-
tivity or for evoked activity due to a constant stimulus of a long duration if



the input to the neuron is composed from activities of many relatively inde-
pendent sources. Even for a dynamically stimulated system this assumption
is well established, though only the constant intensity has to be replaced by
a function of time properly mimicking the time evolution of the stimulation
and consequently the input becomes a time-nonhomogeneous Poisson process
(Johnson, 1996).
A phenomenological way how to introduce stochasticity into the deterministic
leaky-integrator model is simply by assuming an additional noise term in (1),

dX(t)

dt
= −X(t)

τ
+ µ (t) + F (t) ,X(0) = x0 , (6)

where F (t) represents Gaussian and δ correlated noise with zero mean and
strength 2σ (the capital X is used in (6) and further to distinguish formally
between deterministic and stochastic models) and we will mention later why
the white noise F (t) or a stream of Poissonian pulses are the only suitable
ones for this purpose. Model (6) is well known in physical literature as an
Ornstein-Uhlenbeck model (Abbott, 1994).
In integrate-and-fire stochastic models, not only in (6), the membrane po-
tential X(t) makes random excursions to the firing threshold S, which is
commonly taken to be a deterministic function of time similar to (4), but
most often a constant. As soon as the threshold is reached, a firing event
occurs and the membrane potential is reset deterministically to its starting
point X(0). The interspike intervals are identified with the first passage time
of X across S,

TS = inf
{

t ≥ 0, X(t) > S | X(0) = x0 < S
}

. (7)

The properties of the random variable TS are studied and compared with
properties of interspike intervals. In general, we investigate the distribution
of TS represented for example by the probability density function gS(t | x0).
When the distribution gS(t | x0) is too difficult to obtain, the analysis is
usually restricted to its moments, mn(S | x0), primarily the mean

m1(S | x0) = E(TS | x0) (8)

and the variance

V ar(TS | x0) = m2(S | x0) − m2
1(S | x0) . (9)

The reciprocal relationship between the instantaneous frequency on one
hand and the interspike interval on the other leads to the plotting of recip-
rocal value of m1(S | x0) versus the intensity of stimulation as a stochas-
tic counterpart of relation (3). The terminology is ambiguous here: the
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reciprocal to the mean interspike interval, 1/m1(S | x0), can be confused
with the mean of the reciprocal value of TS (mean of instantaneous fre-
quency). If x1, x2, . . . , xn are n observed interspike intervals, then the first
corresponds to [(x1 + x2 + · · · + xn)/n]

−1,while the latter is estimated by
(x−1

1 + x−1
2 + · · ·+ x−1

n )/n. For a different view on firing frequency represen-
tation see (Kohn, 1989).
Irrespectively of the selected model X in (7), for a constant input the neu-
ronal output is a renewal process (intervals between threshold crossing are
independent and identically distributed). This is caused by unidimensional-
ity of the description in conjecture with input constancy. There can be only
two kinds of information prevailing the spike generation. First, that which is
accumulated in the neuron, but under this scenario it is deleted by the reset
after spike generation because only single-variable function X is available for
its recording. Second, the information which is contained in an incoming
signal, but which is against the assumption of the constant (time unstruc-
tured) input, in other words, the input noise can be only the white noise or
Poissonian. To obtain non-renewal output from a single-point model can be
achieved only by a more or less apparent introduction of the variable (time
structured) input or by considering spatial properties of the model neuron
(Lansky and Rospars, 1995). Another way how to reach non-renewal output,
we can assume that the initial value of the membrane potential is a random
variable X0 taking its values in the state space of X. If the density w(x0) of
X0 exists, we may write the density of interspike intervals, gS(t), in the form
of a randomized distribution with respect to the parameter x0, (Lansky, et
al., 1992),

gS(t) =

∫ S

r

gS(t | x0)w(x0)dx0, (10)

where r is a lower depolarization boundary. Assuming that X0 takes value
depending on one or several previous interspike intervals, a kind of memory
is introduced into interspike interval generation. Biological interpretation in
terms of facilitation or hyperpolarization was mentioned in connection with
random reset after spike generation (Lansky, et al., 1992; Lansky and Smith,
1989). Probably the most striking effect of the random reset is that the
coefficient of variation, is greater than one for the reset concentrated above
the resting level which reflects highly erratic (bursting) activity (Lansky, et
al., 1992; Lansky and Smith, 1989; Bugmann et al., 1997).
The simplest, biologically acceptable and most common way how to derive
model (6) is to start from Stein’s model of the membrane potential fluctuation
(Stein, 1965). Stein’s model is characterized as a one-dimensional stochastic
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process, which can be expressed in the form

dX(t) = −X(t)

τ
+ adP+(t) + idP−(t) ; X(0) = x0 , (11)

where τ > 0 plays the same role as in (1), i < 0 < a are constants;
P+(t), P−(t) are two independent homogeneous Poisson processes with in-
tensities λ and β, respectively. Following model (11), the values a and i rep-
resent the amplitudes of excitatory and inhibitory postsynaptic potentials as
they contribute to the membrane potential at the trigger zone. Properties of
model (11) are as follows: synaptic activation of a neuron leads to a postsy-
naptic potential which is characterized by a short rise time. Therefore, the
corresponding membrane potential change is modeled by a step discontinu-
ity. This simple assumption can be based on Lapicque model response to a
current pulse or on a kinetic model with proper time constants (Desthexe et
al., 1994).
The first and second infinitesimal moments of X defined by (11) are

M1(x) = lim
∆→0

E
[

∆X(t)|X(t) = x
]

∆
= −x

τ
+ λa+ βi , (12)

M2(x) = lim
∆→0

E
[

(∆X(t))2 |X(t) = x
]

∆
= λa2 + βi2 , (13)

where ∆X(t) = X(t + ∆) − X(t). In diffusion models, the membrane po-

tential is described by a scalar diffusion process X(t) given by the It
^
o-type

stochastic differential equation

dX(t) = ν(X(t))dt+ σ(X(t))dW (t) ; X(0) = x0 , (14)

where ν and σ are real-valued functions (called a drift and an infinitesimal
variance) of their arguments satisfying certain regularity conditions and W(t)
is a standard Wiener process (Brownian motion). The drift coefficient reflects
the local average rate of displacement and local variability is represented by
the infinitesimal variance. The first two infinitesimal moments of the process
(14) are M1(x) = ν(x) and M2(x) = σ2(x) and let us only remind how (6)
can be obtained from (13); detailed description can be found in (Lansky,
1984). In general, a sequence of models Xn given by (13) characterized by
a quadruplet

{

λn, βn, an, in
}

is needed such that with λn → +∞, βn →
+∞, an → 0+, in → 0− the quantities (14) and (13) converge to the drift
and infinitesimal variance of the Ornstein-Uhlenbeck process (6) whereas the
higher infinitesimal moments tend to zero. Comparing (6) and (14), we can
see that the stochastic leaky-integrator is a diffusion model and that the

12



white noise is a formal derivative of the Wiener process with respect to time,
or in other words Wiener process is an integral of the white noise.
The description of the process via (14) is apparently an intuitive extension
of the deterministic approach. Its advantage is in giving a method for a
computer simulation of the process sample trajectories whenever there is a
lack of analytical results (Kloeden and Platten, 1992). The simplest discrete
time approximation of (14) is a stochastic analogue of the Euler scheme for
ordinary differential equations,

Xi+1 = Xi + ν(Xi)h+ σ(Xi)∆Wi ; X0 = x0, (15)

where h denotes the time step of simulation, Xi (i = 1, 2, ...) are the sim-
ulated values of the process and ∆Wi are independent and normally dis-
tributed random variables, ∆Wi ∼ N(0, h). The increments ∆Wi in (15)
can be replaced by ±

√
h selecting these values with equal probability 1/2,

which substantially decreases the simulation time (Tuckwell and Lansky,
1997). An alternative way for description of the process (14) is oriented
on distributional properties of the model (Abbott, 1994; Ricciardi, 1977).
This latter description, while being analytically very powerful is formal and
does not contain a self-explanatory part as (14) or (15). As pointed above,
the spiking of a model neuron is mathematically represented by the first-
passage-time problem (7). In the distributional approach many analytical
results have been derived (see the above cited monographs) and numerical
techniques had been proposed. On the other hand, with a few exceptions,
for the simulation techniques the precision of the first-passage-time problem
has not been studied in detail (Lansky and Lanska, 1994).

2.2 Wiener Process

In the previous section stochastic leaky-integrator (diffusion) has been in-
troduced. However, there is still a simpler model available. The simplest
diffusion neuronal model is the Wiener process. The increments of a stan-
dard Wiener process were mentioned in relation with the definition of a diffu-
sion process (14) and its general version is defined by (14) with the constant
infinitesimal moments

ν(x) = µ > 0 , σ(x) = σ > 0 (16)

where positivity of the drift is a substantial requirement. The model can
be considered as a limiting case of (6) for τ very large and means, in inter-
pretation of (15), that the spontaneous decay of the membrane potential is
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negligible within an interspike interval. The density function of TS for model
(16) is

gS(t | x0) =
S − x0

σ
√
2πt3

exp

{

−(S − x0 − µt)2

2σ2t

}

(17)

which is known as the inverse Gaussian distribution. The mean and variance
for the distribution (17) are

E(TS | x0) =
S − x0

µ
, (18)

V ar(TS | x0) =
S − x0

µ

σ2

µ2
. (19)

The assumption made in (16) that µ is a positive constant ensures that the
mean interspike interval is finite. The square of the coefficient of variation is

CV 2 =
σ2

µ(S − x0)
=

α

β
, (20)

which shows that as x0 → S, µ → 0, or σ → ∞ (fixing the other parameters),
CV is not only greater than one but it increases without limit. The position
and width of interspike interval distribution is reflected by its mean and
variance. The distribution (15) is positively skewed, β1 > 0, and it is also
indicated by the position of its mode,

tmode =

√

E2(TS | x0) +
9σ4

4µ4
− 3σ2

2µ2
< E(TS | x0) . (21)

There have been several reports on preserving the shapes of histograms when
the adjacent interspike intervals are summed, e.g., (Gerstein and Mandelbrot,
1964) and this is an interesting property of distribution (15) for µ = 0, how-
ever, it induces E(TS | x0) = µ. There are two main reasons for considering
a time-varying threshold in the Wiener process neuronal model. One is, as
mentioned before, a direct modeling of relative refractory period. The sec-
ond reason arises when there is a constant threshold potential assumed, but
the membrane potential is described by some more complex diffusion process.
By transforming that process into the Wiener process, the constant threshold
becomes time dependent. Methods for the solution of the first-passage-time
problem for the Wiener process in the presence of a time-varying threshold
have been extensively studied.
Several generalizations of the Wiener process as a neuronal model have been
made. Nevertheless, as stressed at the beginning of this section, the lack
of leakage is a strong objection against the use of the Wiener process for
modeling neuronal depolarization. Further, the model does not reflect other

14



physiological properties of neurons such as the state space is not restricted
from below, or the membrane potential changes are not state-dependent.
From a formal point of view, the distribution (15) is not a proper one
(Prob(TS = ∞) > 0) when µ < 0. If we consider an interpretation via Stein‘s
model, then µ < 0 means prevailing inhibition over excitation; a situation
which may arise quite naturally. Finally, using (17) to create input-output
curve, we see that it is a linear function of µ independent of the noise and
other characteristics of the model, so analogous to the Poisson description of
the neuron. Non-restricted state space for hyperpolarization can be removed
by imposing a reflecting boundary at some r < x0. The models created by
removing the other objections against the Wiener model are discussed in the
following sections.

2.3 Ornstein-Uhlenbeck process

The most common diffusion model proposed for nerve membrane behavior is
the Ornstein-Uhlenbeck process (6) which is a direct consequence of a general
acceptance of model (1). Model (6) can be defined by (14) with infinitesimal
moments

ν(x) = −x

τ
+ µ , σ(x) = σ > 0 . (22)

As for the Wiener process, the state space of the Ornstein-Uhlenbeck pro-
cess is not restricted from below. However, unlike for the Wiener process
model here the threshold crossing is a certain event, Prob(TS < ∞) = 1,
independent of the value of µ. Further, again unlike the Wiener process,
the objection against the fact that the state space is unrestricted from below
and consequently that any value for hyperpolarization can be achieved with
a positive probability is only formal for the Ornstein-Uhlenbeck model. Here
the parameters (σ, τ and µ) control whether this situation may arise with
probability which should be considered and in this way these parameters are
responsible for the reality of the model. For a fixed time t, X(t) given by
(22) is a Gaussian random variable with mean

E(X(t)) = x0exp(−t/τ) + µτ(1− exp(−t/τ)) , (23)

which is the solution of the deterministic model (1) for a constant input µ.
The variance of X is

V ar(X(t)) =
σ2τ

2
(1− exp(−t/τ)) , (24)

which gives a preliminary indication of the variability of TS.
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Despite enormous efforts an analytical solution for the first-passage-time den-
sity has not been found with the exception of the case S = µτ (see e.g., Ric-
ciardi, 1977), which is, as follows from (23), the asymptotic value of E(X(t)).
The general expression for the Laplace transform of the gS(t | x0

) is available
from which the moments of TS can be computed.

2.4 Models with state-dependent variance

It is a well know fact, also reflected in the Hodgkin-Huxley model, that
the change of the membrane depolarization by a synaptic input depends
on its actual value. Basically, the depolarization of the membrane caused
by an excitatory postsynaptic potential decreases with decreasing distance
of the membrane potential from the excitatory reversal potential, VE . In
the same manner, the hyperpolarization caused by inhibitory postsynaptic
potential is smaller if the membrane potential is closer to the inhibitory
reversal potential, VI . Stein’s model with reversal potentials is given by the
stochastic differential equation

dX = −X

τ
+ a(VE −X)dP+ + i(X − VI)dP

− ; X(0) = x0 (25)

where the notation follows (15). However, constants −1 < i < 0 < a < 1
have a different interpretation now as they reflect the fractional change of
the membrane potential in a response to the input pulse. In model (27) the
jumps caused by the input are state-dependent in such a way that their mag-
nitudes decrease linearly as X approaches the boundaries VI or VE. Hence
the process remains confined within these boundaries. This is the main qual-
itative advantage of model (25) over the Stein’s model. Due to the trans-
formation of the resting level to zero, we have VI < 0 < S < V . For
the basic model, as well as for its modification with the reversal potentials,
the analysis is complicated and thus the diffusion variants have been exam-
ined (Hanson and Tuckwell, 1983; Kalianpur and Wolpert, 1985; Lansky and
Lanska, 1987; Lanska et al., 1994). While Stein’s model has been always sub-
stituted by the Ornstein-Uhlenbeck process, there is a whole class of diffusion
processes which can be substituted for its versions with reversal potentials.
Two of these substitutes have been studied in detail. The first one takes into
account both reversal potentials

dX =

(

−X

τ
+µ1(VE−X)+µ2(X−VI)

)

dt+σ
√

(VE −X)(X − VI) dW (t)

(26)
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while the second one stresses the importance of the inhibitory reversal po-
tential

dX =

(

−X

τ
+ µ1(VE −X) + µ2(X − VI)

)

dt+ σ
√

X − VI dW (t) (27)

where notation follows (14) and interpretation of parameters is the same as
in (25), µ1 > 0, µ2 < 0 are constants. The results for model (27) were estab-
lished by (Lanska et al., 1994) and there are also given the first two moments
of X. Model (29) has been studied more often but mainly in a different con-
text. It is known as the Feller process and a detailed numerical study of the
differences between the Ornstein-Uhlenbeck model and (29) was performed
by Lansky et al. (1995). Model (27) has also been applied in mathematical fi-
nance (Cox et al., 1985). The effect of the inclusion of reversal potentials into
the diffusion models is apparent when comparing (26) or (27) with (6). From
a qualitative point of view it means that the infinitesimal variance becomes
state-dependent variable while the drift preserves its linearity. However, the
parameters in the drift term are entirely different. There is constant “leakage
term” τ−1 in (6) while for the models with reversal potentials the leakage is
input dependent (τ−1 + µ1 − µ2). Further, the absolute term of the drift is
multiplied by the reversal potentials in the models (26) and (27). We should
stress that the diffusion approximations of the model which takes into ac-
count the existence of the reversal potentials lead always to the models with
multiplicative noise (Lansky and Lanska, 1987). We can note, an additive
noise is generated by events outside the transmitted message and the multi-
plicative noise accompanies the passage of the message either from point to
point in the network or is generated inside the processing unit - inside the
system.
For models (26) and (27), similarly to the Ornstein-Uhlenbeck model, the
Laplace transform of the gS(t | x0

) is available and the moments of TS can be
calculated. Having the mean interspike interval permits us to construct the
input-output curves for both these models. The asymptotic exponentiality
for low level of excitation defined by µα ≪S exists for both models as for the
Ornstein-Uhlenbeck process.
Hanson and Tuckwell (1983) considered two other diffusion models with re-
versal potential; the first is given by equation

dX =

(

−X

τ
+ µ1(VE −X)

)

dt+ σ(VE −X) dW (t) . (28)

Model (28) is studied in the cited paper either without any additional bound-
ary or being restricted from below by the reflecting boundary imposed at the
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resting potential. The second model proposed and analyzed by these authors
had the same drift term ν(x) as (26) or (27) but was characterized by an
infinitesimal variance

σ(x) =

√

σ2
1(VE −X)2+σ2

2(X − VI)
2 . (29)

For both models (28) and (29) the first two moments of X were derived in
the absence of the threshold S and the first two moments of the first-passage
time through the boundary S were computed.
From the modeling point of view, the variety of forms for the infinitesimal
variance and the linear form of the infinitesimal mean are not unexpected.
These models are trying to reflect by an “equivalent” noisy ordinary differ-
ential equation, the properties at a single location, of a spatially distributed
neuron with noisy inputs, i.e., a stochastic partial differential equation. The
linear mean term describes the passive electrical circuit properties of the
membrane at the trigger zone and the mean effect of the noisy input. The
infinitesimal variance, on the other hand, must not only take into account
the diversity of spatial configurations for different neurons, but the location
and type of synaptic input on that neuron as well. Hence, a variety of forms
for this term in the diffusion equation are appropriate.
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Chapter 3

Complex Stochastic Models

3.1 Parameters of the models

Following from the structure of the above discussed models, it is clear that
they contain parameters of two kinds: the parameters characterizing the
neuron by itself, so-called intrinsic parameters, and the parameters charac-
terizing the input (Tuckwell and Richter, 1978). This distinction can be
well illustrated on the Ornstein-Uhlenbeck model (6). There are three in-
trinsic parameters, the firing threshold S,the initial depolarization x0 and
the membrane time constant τ . We may assume that these parameters are
not varying in time, or at least not varying within the time for which the
model is compared with the data; that these parameters are independent of
the activity of the neuron, and finally, that the values of these parameters
can be deduced by some direct methods, rather than on the basis of the
observation of interspike intervals. In other words, the intrinsic parameters
play the role of constants given prior the verification of the model. On the
other hand, the input parameters are related to the signal which is coded
by the neuron. For model (6) it is µ(t) and σ, if we assume the signal has
a random component as it follows for example from diffusion approximation
of Stein‘s model. One can also assume that F (t) in (6) is an intrinsic noise
characterizing the neuron in itself. In this case information about the mem-
brane potential fluctuation would be a source for σ identification. An obvious
conclusion follows from this deduction. If F (t) is not an intrinsic noise but a
parameter related to the input, then the neuron, by using rate coding serves
as a variability encoder. Estimating the input parameters thus has a twofold
role; to quantify the input and to prepare the model verification.
Wiener process. There are three parameters in distribution (15), the dis-
tance between the initial depolarization x0 and the threshold S,(the model
is space homogenous and only the distance is relevant), µ and σ. We may
assume that S − x0 is known, approximately 10-20 [mV] and only µ and σ

should be estimated. Using the method of moments, µ can be estimated
comparing (18) with the mean interspike interval and σ by using (19) and
sample variance of interspike intervals. Of course, another method for the
estimation of µ and σ, as for example the maximum-likelihood, are available.



Usually, the density (17) is reparametrized because in reality there are only
two independent parameters in (17). Then these two new parameters are
estimated either by the method of moments or by the maximum-likelihood
method and the fit of the data to the model can be tested. This approach
implicitly reveals that the model is not interpretable in biophysical terms
as such an attempt would, due to model oversimplification, lead to wrong
conclusions. In general, a simple fit of the data to the model may lead to
a misleading interpretation of the parameters and thus must be done with
utmost care. It is an everlasting question whether the Wiener process can be
considered as a neuronal model or if its first-passage-time distribution is only
an unspecified kind of statistical distribution suitable for experimental data
description like lognormal or gamma distribution. On one hand, using the
term “model” should induce a possible biophysical reinterpretation of the es-
timated parameters. On the other hand, the statistical “model” characterizes
the activity and reflects a change following from variation of experimental
conditions. Despite the fact that the Wiener model is not realistic and there
are objections against its use, in contrast to other model it may serve as a
reference point since the analytical results are available. It is especially true
when the network properties are studied.

The Wiener model is the only diffusion neuronal model which has been rel-
atively often compared with experimental data. This fit helps to achieve a
better insight into the data character and it may prove to be useful especially
when data recorded under different conditions are compared. Of course, sim-
ilar advantages and disadvantages have a comparison with any other type
of distributions. Among many successful fittings of the Wiener model to
the data we can mention, e.g., (Gerstein and Mandelbrot, 1964; Berger and
Pribram, 1992).

Ornstein-Uhlenbeck model. Introduction of the leakage into the model has
a striking effect and (6) for constant µ has been in the neuronal modeling
context studied very deeply and for more than three decades. However, in all
this period there had been only one attempt to fit it to the experimental data
(Inoue et al., 1995). Two unknown input parameters µ and σ were estimated
in this paper. The estimation method was based on the experimentally ob-
served mean and variance of interspike intervals. A comparison was made
between the estimates for the Wiener model and for the Ornstein-Uhlenbeck
one. Rather extensive tables are included in the paper permitting anyone
who has sufficiently large samples of firing data to perform his own, at least
preliminary, estimation of the parameters.

It is apparent from numerical studies on the models that whatever shape of
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the first-passage-time density for the Ornstein-Uhlenbeck process is selected,
there is an inverse Gaussian distribution whose shape would be similar and
hardly distinguishable on the basis of sample sizes usually used in spiking
activity recordings (we have to keep in mind, that all this is conditioned
by stationarity and lack of stationarity may appear with increasing record
length). Therefore, the result of fitting will not be a strikingly better (the
fit is already good for the Wiener process) but a possibility to interpret the
parameters and check the model plausibility is a great achievement of the
Ornstein-Uhlenbeck model application.
Models with variable infinitesimal variance. In addition to the parameters of
the Ornstein-Uhlenbeck model, these models have two more intrinsic param-
eters, VE and VI .

Up to now we have summarized the procedure for fitting the data to model
when only interspike intervals are available. Despite we have assumed that
the intrinsic parameters are a priori known - to estimate the input parameters
is a difficult task. An entirely different situation arises when intracellular
recording is available. In that case we record the values of the membrane
voltage (the process X) in-between the spikes and available information is
much higher than in the situation when only intervals are studied. The
results can available in this case can be found in (Lansky, 1983; Lansky et
al., 2006; Lansky and Ditlevsen, 2008; Bibbona et al., 2008).

3.2 Spatial properties

In the above text, we purposefully left out several extensions of stochastic
diffusion models which play a very important role, but which are outside
the topic of this review. Nevertheless, to complete the picture and for a
better orientation general features of these models have to be mentioned.
As stressed several times, all our previous models were single-point models
totally neglecting all the neuronal morphology. This is a very strong abstrac-
tion and for any detailed model this has to be removed. The simplest way
how to overcome this lack is to characterize the neuronal depolarization not
in one but two abstract points (Rospars and Lansky, 1995). This approach
implies that the model describing the voltage at the trigger zone has a dif-
ferent kind of noise from those employed before. So, instead of Poissonian or
white noise we may achieve a colored noise (the Ornstein-Uhlenbeck process)
at the input to the trigger zone. Of course, this generalization introduces a
correlation structure into the interspike interval generation even without a
feedback, so for time-unstructured input. From this simple generalization we
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can realize that the correlation patterns of spiking activity can be either of
an internal nature (due to the neuronal morphology) or already contained in
the incoming signal. Introduction of a larger number of discrete points where
the membrane potential is described leads to mathematically very complex
problems. Finally, a classical approach, under the deterministic scenario, of
how to introduce spatial properties of a neuron is an application of the cable
theory (Tuckwell, 1988).

3.3 Time-dependent input

Up to recently the models met in applications of diffusion processes in the-
oretical neuroscience have been predominantly time homogeneous, which is
reflected by the fact that the functions ν and σ appearing in (14) do not de-
pend on t. There are only few examples where the models were mentioned in
connection with a periodic input, which is substantially different from numer-
ous studies on the deterministic model (5). Several authors used numerical
methods and computer simulations for the Ornstein-Uhlenbeck process with
time dependent infinitesimal moments to describe the stimulated activity of
a neuron. They assumed a non-homogeneous periodic input for the model
in order to produce a multimodal probability density of the first-passage
time, some historical notes on time-nonhomogenous models can be found in
(Lansky, 1984). Only very recently an interest in stochastic resonance (a
cooperative effect that arises out of the coupling between deterministic and
random dynamics in a nonlinear system) revived an interest in diffusion with
time dependent parameters. The stochastic resonance effect consists of a
noise-induced enhancement in the signal-to-noise ratio. The integrate-and-
fire models operate in two distinct regimes coinciding with deterministic and
Poissonian regimes mentioned previously for the Ornstein-Uhlenbeck model.
In the first one the signal (µ term) is large enough so the firing events occur
even in the absence of noise. The noise activated regime corresponds to the
situation when the drift term alone is not sufficient to cause a firing and it is
the noise which activates the firing. The “positive“ role of noise in information
transfer and processing within the nervous system, and especially in sensory
neurons, has been noted for decades. The methods of stochastic resonance
extend this view mainly in the situation when the coded signal is periodic
(Longtin et al., 1994; Bulsara et al., 1994, Bulsara et al., 1996; Chapeau-
Blondeau et al., 1996). However, recently also the non-periodic signal were
studied in the framework of the stochastic resonance.
A stochastic counterpart of model (5) can be also derived via diffusion ap-

22



proximation of (15). This can be done from a biological point of view in two
different manners; assuming either an endogenous periodicity or a period-
icity of input intensities. The latter is obviously more natural and serving
to our purpose of describing a reaction of the system to a periodical signal.
The exogenous periodicity was even mentioned in the original Stein’s paper
(Stein, 1965) as a tool for simulation of multipeaked histograms of interspike
intervals. Both these modifications result in the model of the membrane
potential,

dX(t) = −
(

X(t)

τ
+ µ + µ0cos(ωt+ θ)

)

dt+ σdW (t) , x(t+k ) = x0 ,

where the notation follows from (5) and (14). However, for exogenous peri-
odicity the phase of the signal continues after a spike while in the endogenous
case it is always reset which simplifies the calculations (for details see Lansky,
1997).
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