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2. VYVOJ OBORU AUTOMATICKEHO RiZENI - FEEDBACK CONTROL:
THE ORIGINS, THE MILESTONES, AND THE TRENDS

Vladimir Kucera

Stav dynamického systému je disledkem minulosti, a totézZ plati o stavu
oboru automatického fizeni. Jednd se o technicky obor, a proto jeho vyvoj
je silné ovliviiovdn vnéjsimi ekonomickymi a spoleCenskymi faktory.
Z téchto predpoklad( vychdzi uvaha o soucasnych trendech rozvoje oboru
a jeho budoucnosti.

This plenary reviews the major trends in Feedback Control, identifies emerging
challenges for control theory, and forecasts future technological developments
in the field.

Realizing that the best way to understand an area is to examine its evolution
and the reasons for its existence, a brief history of feedback control is provided
first. Ingenious feedback devices can be traced back to the ancient Alexandria.
The milestones of this evolution were the flying ball governor of James Watt
and its stability analysis by Maxwell, the stability theory of Lyapunov, the
conception of three-term or PID controllers, the invention of negative feedback
amplifiers, the introduction of Nyquist and Bode charts, and Wiener’s
cybernetics.

The post war developments included optimal control and filtering, adaptive
control, robust control, and hybrid control systems. The computer technology
in particular has had a tremendous impact on control theory and its
application.

Today, as a result of this evolution, it is possible to implement advanced control
methodologies. We have smart sensors and smart actuators. The most
dramatic impact of electronic processing occurs in controllers. In times past,
computational demands of adaptive, optimal and robust control techniques
could not be easily performed. With modern electronics, such operations are
possible. Modern electronic implementations are also more immune to aging
effects, system noise and disturbances.



The forecast of future technological developments is based on the methods
and technologies that emerge in computers, communications, networking,
manufacturing, nanoscale science, medicine, and biology. Control theory, on
the other hand, is looking for new solutions. There is a strong influence of
computer science and engineering. Feedback will be used mostly to stabilize
the process and to counteract uncertainties, with other functions achieved by a
feedforward.The truly exciting developments in any field will occur where there
is a confluence of application drivers and disciplinary development of the
subject. Automatic control is no exception. Much attention will have to be paid
to education and training. The education must be multidisciplinary, with a
focus on teaching general methods rather than vocational skills.



3. METODA POLYNOMIALNICH ROVNIC V TEORII AUTOMATICKEHO
RIiZENI - POLYNOMIAL CONTROL: PAST, PRESENT, AND FUTURE

Vladimir Kucera

Metoda polynomidlnich rovnic tvori ceskou védeckou skolu, kterd je
uzndvdna po celém svété. Metoda vychdzi z raciondlnich pfenost pro
linedrni systémy, chdpe je jako podil dvou polynomi a ndvrh reguldtoru
redukuje na reseni linedrnich rovnic pro polynomy. Poskytuje jednoduché
vypocetni algoritmy jako alternativu stavovych metod ndvrhu.

3.1. Summary

Polynomial techniques have made important contributions to systems and
control theory. Engineers in industry often find polynomial and frequency
domain methods easier to use than state equation based techniques. Control
theorists show that results obtained in isolation using either approach are in
fact closely related.

Polynomial system description provides input-output models for linear systems
with rational transfer functions. These models display two important system
properties, namely poles and zeros, in a transparent manner. A performance
specification in terms of polynomials is natural in many situations; see pole
allocation techniques.

A specific control system design technique, called polynomial equation
approach, was developed in the 1960s and 1970s. The distinguishing feature of
this technique is a reduction of controller synthesis to a solution of linear
polynomial equations of specific (Diophantine or Bézout) type.

In most cases, control systems are designed to be stable and to meet additional
specifications, such as optimality and robustness. It is therefore natural to
design the systems step by step: stabilization first, then the additional
specifications each at a time. For this it is obviously necessary to have any and
all solutions of the current step available before proceeding any further.



This motivates the need for a parametrization of all controllers that stabilize a
given plant. In fact this result has become a key tool for the sequential design
paradigm. The additional specifications are met by selecting an appropriate
parameter. This is simple, systematic, and transparent. However, the strategy
suffers from an excessive grow of the controller order.

This article is a guided tour through the polynomial control system design. The
origins of the parametrization of stabilizing controllers, called Youla-Kucera
parametrization, are explained. Standard results on reference tracking,
disturbance elimination, pole placement, deadbeat control, H, control, ¢
control and robust stabilization are summarized. New and exciting applications
of the Youla-Kucera parametrization are then discussed: stabilization subject to
input constraints, output overshoot reduction, and fixed-order stabilizing
controller design.

3.2. Introduction

The majority of control problems can be formulated using the diagram shown
in Figure 3.1. Given a plant S, determine a controller R such that the feedback
control system is (asymptotically) stable and satisfies some additional
performance specifications such as reference tracking, disturbance
attenuation, optimality or robustness.

Figure 3.1 Feedback control system

It is natural to separate this task into two steps: (1) stabilization and (2)
achievement of additional performance specifications. To do this, all solutions
of the first step, i.e. all controllers that stabilize the given plant, must be found.



How can one characterize such controllers? Denote H_. . the reference-to-error

sens

transfer function (sometimes called the sensitivity function) and H the

comp
disturbance-to-control transfer function (the so called complementary
sensitivity function) in the closed-loop control system, namely

1 SR

Hsens_il Hcompzi' (31)
1+ SR 1+ SR

Now suppose that S can be expressed as the ratio of two coprime polynomials,
S =b/a, and that the controller has a like form, R=q/p. Then the two closed-

loop transfer functions can be written as

—a P —aX, Hyg,=b 9 =by. (3.2)
ap +bq ap-+hbg

sens

Hew=a P =aX, Hygm,=b 0 =bY.
ap +bqg ap +bqg

Consequently, if R stabilizes S then the rational functions X and Y are bound
to be stable. These functions cannot be arbitrary, however, since
H_.+H__ =1.Astability equation follows [34]

sens comp

ax +by =1. (3.3)

Any stabilizing controller can be expressed as R=Y /X, where X and Y is a
stable rational solution pair of the stability equation [21]. This solution can be
expressed in parametric form,

X=x+bW, Y=y-aw, (3.4)
furnishing in turn an explicit parametrization [38] of all stabilizing controllers

R = y—-aWw
X+ bW

(3.5)

Here x and y are any polynomials satisfying the equation ax+by =1 while W is a

free parameter ranging over the set of stable rational functions.



3.3. Stabilizing Controllers

The intuitive reasoning presented in the introduction will now be made
rigorous. Suppose that the plant and the controller are linear time-invariant
single-input single-output continuous-time systems with real rational transfer
functions S and R, respectively. Generalizations will be treated at the end of
the article. Further suppose that the state space realizations of S and R are
stabilizable and detectable; in case S and R are not proper, the corresponding
descriptor realizations are assumed to be also impulse controllable and impulse
observable.

3.3.1. Parametrization of Stabilizing Controllers

The key result is stated in the form of a theorem; the proof is believed to be the
simplest and most comprehensive one available on the subject.

Theorem 3.1

Let S:Z, where a and b are coprime polynomials. Let x and y be two

polynomials that satisfy the Bézout equation
ax+by=1. (3.6)

Then the set of all controllers that (asymptotically) stabilize the control system
shown in Figure 3.1 is given by
y—-aWw

= 3-7
x+bW’ (3.7)

where W is a parameter ranging over the set of stable (i.e., analytic in Res>0)
real rational functions such that x+bW is not identically zero.

Proof consists of three steps.

1) Fist we shall show that if S=9 and R=Jare two coprime polynomial

a p
fractions, and if c is defined by c¢c=ap+bqg, then the control system is stable if

and only if 1/cis a stable rational function.



Indeed, in view of the assumptions on S and R, the control system is stable if
and only if the four transfer functions

v_11Rd_}apaqd (3.8)
y| 1+SR|S SR|/r| c|bp bqllr
are all stable. The sufficiency part of the claim is evident: the transfer functions
are all seen to be stable. The necessity part is not evident: the denominator ¢
can have zeros in Res >0 which, conceivably, might cancel in all four numerator

polynomials ap, aq, bp and bg. However, this is impossible as the pairs a, b
and p, g are both coprime.

2) Further we shall show that a controller R stabilizes the plant S=b/a if and
only if it can be expressed in the form R =Y /X for some stable rational solution
pair X, Y of the equation aX +by =1.

Indeed, let X and Y be two stable rational functions that satisfy aX +bY =1.
Write X and Y as polynomial fractions, namely X =p/c and Y =q/c. Then
ap+bg=cand 1/c is a stable rational function. Thus R=Y/X=q/p is a
stabilizing controller for S. Conversely, suppose that R=q/p stabilizes S and
define stable rational functions X and Y by X =p/c and Y =q/c, where
c=ap+bg. Then aX +bY =1.

3) Finally we shall prove that all stable rational solution pairs of the equation
aX +bY =1 are given by

X =X+bW, Y =y-aW (3.9)

where x, y is a particular polynomial solution pair of this equation and W is a
parameter that ranges over the set of stable rational functions.

Indeed, X and Y satisfy the specified equation:
a(x+bW)+b(y-aW) = ax+by =1 (3.10)

It remains to show that every stable rational solution pair of the equation has
the form shown above for some stable rational function W . We have

a(X =x)=b(y-Y) (3.11)
Since a and b are coprime, the zeros of a are absorbed in those of y-Y while

the zeros of b are absorbed in those of X —x. Put W=(y-Y)/a, which is a

stable rational function. Then X —x=bW, and the claim has been proved.

9



The set of stabilizing controllers for a given plant contains controllers of
arbitrarily high order. The set may also contain controllers whose transfer
function is not proper (i.e., analytic at s=w) or is not stable. This is illustrated
by the following example.

Example 3.1

Consider an integrator plant S(s)=1/s. The Bézout equation admits a solution
x=0, y=1 so that the set of all stabilizing controllers for S is given by

1-sW

R(s) = W

for any stable real rational W #0.

The parameter

1
W(s)=—-
(5) s+1

yields R =1, a proportional gain controller. The parameter

S

W(S)=52+s+1

results in a proportional-integral controller
R(s) :1+1.
S

Taking W =1 leads to the stabilizing controller R(s)=1-s. The resulting
feedback system is asymptotically stable but it has poles at s =o. On the other
hand, taking

s+1

WE)=————
(s) s®+s+1

yields the stabilizing controller

1
R(s)=—
(5) s+1

which itself is stable.

10



3.3.2. Discrete-Time Systems

Theorem 3.1 can be applied to both continuous-time and discrete-time
systems. Accordingly, a rational function is defined to be stable if it is analytic
eitherin Res>0 orin |z/>1.

Continuous-time systems can give rise to transfer functions that are not proper.
In the case of discrete-time systems, however, additional constraints have to
be imposed: the transfer functions S and R are proper (so that the plant and
the controller are causal systems) and one of them is strictly proper (so that the
closed loop system is causal). The chronology of samples in the control system
is usually taken in such a way that S is to be strictly proper.

Proper rational controllers can be obtained by a degree control in the general
formula. A better way, however, is to express S as a ratio of two polynomials

1

in z* and look for polynomials x and y in z*'

, solutions of the Bézout
equation, such that x(0) #0. Then proper rational controllers R correspond to

proper stable rational parameters W .
Example 3.2

Consider
1
S(z)=—,
(2) 1

a sampled version of the integrator plant. Write

Z—l

,l'

S(z):l

Then the Bézout equation
A-zYYx+z'y=1

admits a solution x=1, y=1. The set of all (proper rational) stabilizing

controllers is given by

1-(1-z Y)W

R(2)= 1+z27'W

for any proper stable rational W .

11



3.3.3. Historical Notes

The use of polynomials, in one way or another, in feedback control systems
design can be traced back to the 1950s [30], [18]. The authors noted that for a
closed-loop system to be stable, Hcomp must absorb the plant unstable zeros.
The plant was assumed to be stable; if this assumption were dropped, H

sens

would have been found to absorb the plant unstable poles. These conditions
are equivalent to polynomial divisibility conditions and hence to the stability
equation, which appears in [34].

The first attempt to use polynomials in an explicit manner is due to Volgin [37],
a student of Tsypkin. He obtained a solution of the pole placement problem
through the solution of a polynomial equation, known as the pole placement
equation. In the early 1970s, Astrém [3] published a polynomial equation
solution to the minimum variance control problem. The solution was limited to
minimum phase plants; a general solution was subsequently obtained by
Peterka [31]. The ultimate book that presents the polynomial equation
approach to multi-input multi-output control system design is [23].

The underlying problem in any control system design is that of stability. It is
logical to design the control system step by step: stabilization first, then the
additional performance specifications. To do this, we need to know any and all
stabilizing controllers for the given plant.

This problem was first addressed and solved by Kucera [21] in single-input
single-output discrete-time systems. A generalization of this result to multi-
input multi-output systems was published in [22], [23]. At the same time, and
entirely independently, an explicit parametrization of all stabilizing controllers
for continuous-time plants was obtained by Youla et al. [38], [39] in the process
of ensuring stability for linear-quadratic control systems.

It took decades to appreciate the importance of the result and come up with
applications. The milestones were the observations by Desoer et al. [6] and
Vidyasagar [36] that the polynomial fraction approach can be extended to
linear systems with non-rational transfer functions, as well as the result by
Hammer [10] showing that the approach is applicable to a broad class of non-
linear plants. The parametrization was labeled in [1] as the Youla-Kucera

12



parametrization. This result launched an entirely new area of research and has
ultimately become a new paradigm for control system design.

3.4. Additional Performance Specifications

Theorem 3.1 shows that there is a simple formula that generates all the
stabilizing controllers for a given plant. Using this formula, we can obtain a
parametrization of all stable closed-loop transfer functions that can be
obtained by stabilizing a given plant. The bonus is that the parametrization is
affine in the free parameter W. In contrast, the controller R appears in a
nonlinear fashion:

[v}_l {1 R}{d}_{a(x+bW) a(y—aW)Hd} (3.12)
y| 1+SR|S SR|r| [b(x+bW) b(y—aw)| r|

As R and W are in a one-to-one correspondence, it is convenient to use W in
lieu of R in the design process and calculate R subsequently. Thus the
parametrization of all stabilizing controllers makes it possible to separate the
design process into two steps: the determination of all stabilizing controllers

and the selection of the parameter that achieves the remaining design
specifications. The extra benefit is that both tasks are linear.

3.4.1. Asymptotic Properties

Asymptotic properties of control systems can easily be accommodated in the
sequential design procedure. These include the elimination of an offset due to
step references, the ability of system output to follow a class of reference
signals, or the asymptotic elimination of specific disturbances [7].

In Figure 3.1, asymptotic reference tracking means that the output y follows
the reference r as time approaches infinity, which is to say that the error e
approaches zero for large times. On the other hand, we speak of asymptotic
disturbance elimination if the effect of the disturbance d decreases at the

output y for increasing time. In terms of Laplace transforms, e=H_ r and

y=SH

sens

d are to be stable rational functions.

sens

Example 3.3

13



Consider the plant S(s)=1/(s +1). The Bézout equation admits a solution x=0,

y =1. The set of all stabilizing controllers for S is

_1-(s+1W

R(s) W

for any stable real rational W #0. The achievable sensitivity transfer functions

are H_ . =(s+1)W.

sens

To track a step reference, r=1/s, we must take W =sw, for any stable rational
W, 0. To eliminate a sinusoidal disturbance, d =s/(s*+®”), we constrain the
parameter as W = (s’ +®°)W, for any stable rational W,=0. To meet both
requirements, we simply take W = (s* + *)W, for any stable rational W, =0, say
W =s(s® +0®) (s +1)*.

The resulting controller is

3 +(6-0’)s’ +(4-w?)s+1

R(s) = s(s? +w?)

The controller obtained in Example 3.3 demonstrates the internal model
principle: the unstable modes to be followed or eliminated must be generated
by the controller unless they are present in the plant.

3.4.2. Pole Placement

The requirement of stability places all closed-loop system poles within the left
half-plane Res<0. Very often, however, we wish to allocate the poles to a
specific region of the half-plane or to achieve specific pole positions. Given a

y—aw
X+
x, y are polynomials such that ax+by=1and W is a free stable rational

plant S=Db/a, the set of all the stabilizing controllers for S is R= where

dy-aw._ 4 ang

parameter. Let W =w/d for a stable polynomial d. Then R= :
dx+bw p

the closed-loop system poles (assuming that S and R are both controllable
and observable) are given by ap+bg=d(ax+by)=d. Thus W parametrizes all
stabilizing controllers for S, the denominator polynomial d of W specifies the
positions of the control system poles, and the numerator polynomial w od W

14



represents the remaining degrees of freedom, i.e., parametrizes all stabilizing
controllers that assign the specified poles.

Example 3.4

Consider the plant S(s) =1/(s—1) and the set of stabilizing controllers for S:

Let the desired pole locations be given by the polynomial d =s* + 6,5+ 5,. This is

achieved by putting W =w/d for an arbitrary numerator polynomial w=0.

It is to be noted that d specifies the poles at finite positions only. Poles at s =
will occur whenever the control system has order higher than 2. The order of
the plant is one, so only the controllers of order one will not generate infinite
poles. These controllers correspond to the choice w=s+ @, for any real o,.

3.4.3. Deadbeat Control

Deadbeat control is a typical discrete-time control strategy. Given a plant with
transfer function S, written in the form of a coprime fraction of two
polynomials in z', S=b/a. The task is to determine a controller R that
stabilizes the control system of Figure 3.1 and endows its four transfer

SH_. and H S™H with the finite impulse response

comp / comp

functions H

sens /7 sens

property, that is to say, the corresponding impulse responses vanish in a finite
time [27].

In a stabilized control system, the achievable sensitivity and complementary
sensitivity functions can be parametrized as follows:

Hsens =a(X+bW), Hcomp :b(y—aW). (3'13)
Similarly,
SH s =b(X+bW), S7'H =a(y—aw) (3.14)

To have the finite impulse response property, the four transfer functions must
be polynomials in z7'. Since a and b are coprime, this is the case if and only if
W is a polynomial in z™*.

15



Consequently, deadbeat controller assigns the pole polynomial d=1in the
indeterminate z7, i.e., all closed-loop system poles are located at the point
z=0.

For the impulse responses to be finite and as short as possible, we simply select

W so as to minimize the degrees of H__. and H This corresponds to taking

sens comp *

the least degree solution pair x, y of the Bézout equation ax+by =1and setting
W=0.

Example 3.5

Consider S(z2)=z"/(1-z™"), a sampled version of the integrator plant. Then the

least degree solution of the Bézout equation
1-zHx+z7'y=1

is x=1, y=1 and the set of all stabilizing controllers was found in Example 3.2
to be

1-(1-z Y)W

R(2)= 1+z27'W

for any proper stable rational W .

The resulting sensitivity and complementary sensitivity functions are
parametrized as

H,.(2)=1-z"'+z7'(1-z"W
1 1 1
Heomp(2)=2"-2"(1-27)W

and similarly

SH,. (2)=z"+27W
S™H_ (2)=1-z"-(1-z")°W.

comp

These functions are seen to be polynomials in z* if and only if W is so. The
=1-z"', SH_.=z" and

sens sens

shortest impulse responses are achieved for W =0 H
H =z% S'H

comp —

=1-1z"'. The resulting deadbeat controlleris R=1.

comp

16



3.4.4. H, Optimal Control

The sequential design procedure will be further illustrated on the design of
linear-quadratic optimal controllers. Given a plant with transfer function
S=Db/a, the task is to find a controller that stabilizes the control system of
Figure 3.1 while minimizing the H, norm of some closed-loop transfer function,

say of the complementary sensitivity function H which is defined [7], [40]

by

comp /

1
2

Hal| g Moo 315

comp

The set of sensitivity functions that can be achieved in the stabilized control
system is

H  —b(y—aw) (3.16)
comp

where W is a free stable rational parameter. The parameter will be selected so
as to minimize the norm of H

comp *

Let af be a polynomial defined by keeping the stable (in Res<0) zeros of ab
while replacing the unstable (in Res>0) ones with their negative values. Then
ab/apis inner (or all-pass) and

_op _| P
H comp H2 - EHcomp , - ?—OK\Nﬂ 2'. (317)
Consider the decomposition
wp_ .9 (3.18)
a a
with p polynomial and q/a strictly proper. With this decomposition,
2 | q ? 2
Moo, = |+ P-aWB]; (3.19)
2 a )

because gq/a and p-aWp are orthogonal and thus the cross-terms contribute

nothing to the norm. The last expression is a complete square whose first part
is independent of W. Hence the minimizing parameter is W = p/af and if it is

17



indeed stable and admissible, it defines the unique optimal controller.
Otherwise, no optimal controller exists.

The consequent minimum norm equals

min,,| A, (3.20)

o =

q
a

2

It is easy to see that the (finite) pole positions of the H, optimal control system
are given by the pole polynomial d =af.

Example 3.6

To illustrate, consider the plant S(s)=1/(s—-1). The class of all stabilizing
controllers for S was found in Example 3.4, namely

1-(s—DW

R(s) = W

for a free stable rational parameter W #0. The complementary sensitivity
transfer function is

Heomp (8) =1-(s-)W .

Now « =s+1, =1 and the polynomial part of

ayﬂ:s+1:1+ 2

a s-1 s-1
is p=1.Thus H_, attains minimum H, norm for
w= 1
s+1

and the corresponding optimal controller is R(s) = 2.

The optimal complementary sensitivity function is

and HHsenSHZ =+2.

18



3.4.5. ¢, Optimal Control

The H, norm minimization is appropriate for systems excited by finite energy
signals. When the exogenous signals persist, a more relevant norm to measure
system performance is the L; norm (for continuous-time systems) or the ¢

norm (for discrete-time systems). The discrete-time case is much easier.

The problem is posed as follows. Given a discrete-time plant S=b/a, find a
controller R that stabilizes the control system shown in Figure 3.1 while giving

rise to some closed-loop transfer function, say H whose impulse response

sens /

h.... is of minimal ¢ norm.

sens

The ¢; norm of the sequence h,, = (h,,h,h,,--) is defined [7] as

H hsenSHgl = ZZO h;. . (3.21)

Since H, (z)=h, +hz*+h,z? +-.., the ¢, norm of sequences implies a 1-norm of

sens

the corresponding z-transforms, namely

| Hanl, =/ h (3.22)

sens H sens Hfll

The set of sensitivity functions that can be achieved in the stabilized control
system of Figure 3.1 is

H.,. =ax+abW, (3.23)
where W is a free stable rational parameter. The task is to select W so as to

minimize the 1-norm of H__ . This minimization problem is solvable if and only

if a and b have no zeros on the unit circle [5]. The optimal sensitivity function

H_ . is not unique but has a finite impulse response property [17].

sens

In view of this property, we express all transfer functions as ratios of
polynomials in z*. Perform the stable-unstable factorizations a=a‘a” and
b=b*b~, where a~ and b~ absorb all the zeros of a and b, respectively, in the

open unit disc ‘271‘ <1. Then H_ . is a polynomial in z* if and only if W has the

sens

form
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W

a’b’ .
where w is a free polynomial in z*. Indeed,
Hpe =aXx+a b w, (3.25)

and the 1-norm minimization of H___ is equivalent to a finite linear program for

sens

the coefficients of w.

The pole positions of the ¢ optimal control system are given by the pole
polynomial d =a*b* in the indeterminate z™*, duly completed by poles at z=0.

Example 3.7

Consider a plant with the transfer function

_1-152 _ . z'-15
(z-2)* (1-2z1%

The Bézout equation ax+by =1 admits a solution x=1-0.5z", y=-3+2z" and

the set of stabilizing controllers is given by the formula

_ =3+277-(1-227Y)°W
1-05z"+z ' (z " -1.5W

for any stable rational W .

The set of achievable sensitivity functions is
H,.=00-22"%1-05z")+z"(1-2z")*(z" -1.5W

and those which are polynomials in z* are
H.=00-22"*1-05z2")+z"(1-2z7")w,

where w is the numerator polynomial in z* of

W
7115

W =

An upper bound for the degree of w, as follows from a result obtained in [5], is
2. The linear program:

20



minimize t=r+r, +r+r,+r,

subjectto -r <h <r and r >0, i=12,---5

where
'h,] [-45] [1 0 0]
h, 6 -4 1 0 |[w,
hy|=| =2 |[+| 4 -4 1w
h, 0 0 4 —4fw,
lh] L 0 | |0 0 4]

then returns
w,=15 w, =0, w,=0
so that

15
z1-15

The optimal controller is

34zt
A+z")(zt-15)

the corresponding optimal sensitivity function is

H. =1-3z'+4z273,

sens

and | h

sens

H€l=8.

It is to be noted that R is not a deadbeat controller because SH__ is not a

sens

polynomial. Indeed, only polynomial parameters W result in deadbeat
controllers

3.4.6. Robust Stabilization

The notion of robust stability addresses stabilization of plants subject to
modeling errors, when the actual plant may differ from the nominal model,
using a fixed controller. The ultimate goal is to stabilize the actual plant. The
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actual plant is unknown, however, so the best one can do is to stabilize a large
enough set of plants.

Thus the basis technique to model plant uncertainty is to model the plant as
belonging to a set. Such a set can be either structured — for example, there is a
finite number of uncertain parameters — or unstructured — the frequency
response lies in a set in the complex plane for every frequency. The
unstructured uncertainty model is more important for several reasons. On the
one hand, it is well suited to represent high-frequency modeling errors, which
are generically present and caused by such effects as infinite-dimensional
electromechanical resonance, transport delays, and diffusion processes. On the
other hand, the unstructured model of uncertainty leads to a simple and useful
design theory.

The unstructured set of plants is usually constructed as a neighborhood of the
nominal plant, with the uncertainty represented by additive or multiplicative
perturbations [5], [40]. The size of the neighborhood is measured by a suitable
norm, most common being the H, norm that is defined for any rational
function G analytic on the imaginary axis as

G, =sup, G(jo) (3.26)
This section will illustrate the design for robust stability under unstructured

norm-bounded multiplicative perturbations. Consider a nominal plant with
transfer function S and its neighborhood S, defined by

S, =(+FA)S (3.27)

where F is a fixed stable rational function and A is a variable stable rational
function such that |A| <1. The idea behind this uncertainty model is that FA is

the normalized plant perturbation away from 1:

SSA—1=VA (3.28)

Hence if || <1, then for all frequencies o
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S(j) :

A1 < | F(jo) (3.29)
S(jo) | |

so that|F(jw) provides the uncertainty profile while A accounts for phase

uncertainty.

Now suppose that R is a controller that stabilizes the nominal plant S.
Consequently, R will stabilize the entire family of plants S, if and only if [5],
[40]

H FHw <1 (3.30)

comp

This is a necessary and sufficient condition for robust stabilization of the
nominal plant S.

The set of all stabilizing controllers for S =b/a is described by the formula

y—aW

R= (3.31)
X +bW ,

where ax+by=1 and W is a free stable rational parameter. The robust stability
condition then reads

[b(y-aw)F| <1 (3.32)

Any stable rational W that satisfies this inequality then defines a robustly
stabilizing controller R for S. In case W actually minimizes the norm one
obtains the best robustly stabilizing controller.

Example 3.8
Consider a plant with the transfer function [26]

S+1 —7S
S,(s)=——-e
(0=
where the time delay t is known only to the extent that it lies in the interval
0<7r<0.2. The task is to find a controller that stabilizes the uncertain plant S .
The time-delay factor e ** can be treated as a multiplicative perturbation of the

nominal plant
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by embedding S, in the family
S, =(1+FA)S,

where A ranges over the set of stable rational functions such that [A| <1. To

do this, F should be chosen so that the normalized perturbation satisfies

S2000) 4 _le-i"_1 < |F(jo)

S(jo)

for all ® and 7. A little time with the Bode magnitude plot [5] shows that a
suitable uncertainty profile is

3s+1
s+9

F(s)=

Figure 3.2 is the Bode magnitude plot of this F and e"*-1 for r =0.2, the worst
value.

Bode Plots

20
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Figure 3.2 Bode plots of F (dotted) and e~%25—1 (solid)
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The task of stabilizing the uncertain plant S_ is thus replaced by that of
stabilizing every element in the set S,, that is to say, by robustly stabilizing the

nominal plant S with respect to the multiplicative perturbations defined by F .
The set of all stabilizing controllers for S is found to be

1-(s-1W

R(s)= - I+ (s+1W

where W =2(s+1) is any stable rational parameter. The robust stability
condition reads

|P-Qw| <1

where

P(s) = L (s+1) 2" Q(s) = (s—1)(s+1) L
2 s+9 s+9

Since Q has one unstable zero at s=1, it follows from the maximum modulus

theorem [5] that the minimum of the H, norm taken over all stable rational
functions W is P(1)=2/5 and this minimum is achieved for
P(s)-P(1) 1 15s+31

W(s) = = .
Q(s) 10 (s+1)(3s+1)

Thus the robust stability condition is satisfied and the corresponding best
robustly stabilizing controller is

_ 2549

R(§)=———.
(s) 13s+1

3.5. Advanced Applications

The step-by-step design paradigm has found numerous applications in the
literature. Although the idea is 30 years old, it is still a subject of current
interest. This will be demonstrated by presenting several advanced applications
that address control problems difficult to solve otherwise, or provide
alternative solutions with attractive features.
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3.5.1. Stabilization Subject to Input Constraints

Most plants have inputs that are subject to hard limits on the range of
variations that can be achieved. The effects of actuator saturation on a control
system are poor performance and/or instability. Stabilization subject to input
constraints can be formulated either as a local stabilization, when saturation is
avoided for a set of initial states and the control system behaves as a linear
one, or as a global stabilization, when saturation is allowed to occur and the
control system is nonlinear.

Consider the saturation avoidance approach [15]. Given a discrete-time plant

y=Su+Tx, (3.33)

with x0 the initial state and with the input u=u, +u,z" +u,z +...subject to the
constraints—u™ <u, <u’, k=012,..

where u” and u~ are positive constants. The task is to find a controller of the
form (zero initial state w, assumed)

u=-Ry+Qw, (3.34)

such that the control system shown in Figure 3.3 is locally asymptotically stable
for any initial state x, of the plant within a given polyhedron P. ={x:Fx< f},

where F is a matrix and f is a vector.

QWO TXO

Figure 3.3 Control system with initial states

Denote S=b/a and T=c/a the polynomial fraction representation of the
plant. The control sequences in a stabilized closed-loop system are
parametrized as
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u=-c(y—-aw)x,.
Taking W in the form of a power series around the point z=w
W =p,+ Pzt +p,27%+... (3.35)

shows that the control sequence is an affine function of the parameters p,, p,,

p,, ... of the form
U, =G, (Py, Ppse) X, k=0,12,... (3.36)

and satisfies the given constraint if x, belongs to the polyhedron

P, ={x:G(p,, p,.-) X < g} generated by

[ Go(Po: Py |
_Go(pm pl"")
G(po' pl"") = Gl(pO’ pl!'")
_Gl(por pl!"')
i : |

* (3.37)

o
I

Now x, is in P. , so that P. must be contained in P,. Applying the Farkas

lemma [15], one concludes that the stabilization problem has a solution if and
only if there exists a matrix P with non-negative entries and real numbers p, ,

p,, P,, - such that
PF =G(p,, p,,-), Pf<g (3.38)

This is a linear program for P and p,, p,, p,, .. .- The stabilizing controller is

then obtained by putting
W=p,+pz '+p,z *+.. (3.39)

If the power series W is approximated by a polynomial in z*, then the program
has a finite dimension.

Example 3.9

Consider the plant described by the input-output and state-output transfer
functions
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7t 2

S(z) = , T(2)=
(2) 1-277 (2) 1-2771

The plant input is constrained as

~1<u, <1, k=012,..

and the initial state x, belongs to the polyhedron

1 1
P. :{ J X, s[f} (or [x,|<1/3).
- 3

The set of stabilizing controllers is found to be

2-(1-2zHW

R(z) =
@) 1+z27'W

for a free, proper stable rational parameter W. The corresponding control
sequence is

u(z) =[-4+2(1-2z" " )W]x,.

Now start with W =0 and check whether the resulting linear program for P is
feasible:

1] [-4 9N
Pl |= . P3|
~1| | 4 1
It is not, hence no controller of order O stabilizes the plant.

Proceed by choosing W = p, and check whether the resulting linear program for
p, and P is feasible:

-44+2p,

1
— 1
of L]_| 4-2p bl Y
-1 _4p0 % 1

4p, 1

It is, and the solution
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0 8
2 118 0

==, pP==
IO°3 3]0 8
8 0

furnishes the stabilizing controller

444770

R(z)=———.
(@) 3+2z7°

The actual polyhedron of stabilizable initial states is
1
1

P,: > X, < . (or | xo] <3/8)
1

and it includes P. as a proper subset.

Note that the closed-loop control system features the finite impulse response
property. Selecting a polynomial parameter W implies that the closed-loop
poles are all at the origin.

3.5.2. Input and Output Shaping

In addition to actuator amplitude or rate limits, control system design often has
to take into account output signal overshoot or undershoot, trajectory planning
constraints and other time-domain specifications.

As seen in the preceding section, such constraints are easy to handle in
discrete-time systems. The z-transform provides a simple direct relationship
between the signals and their transforms:

(U, Uy, Uy, o) < Ug+Uz7 U272+ (3.40)

However, this is not true for the Laplace transform applied in continuous-time
systems. The best parallel we can make [16] is to assign distinct negative real
poles (rather than placing them all in the origin) and express signals as
polynomials in the corresponding exponential modes.

29



Given a plant S=b/a, we are seeking in Figure 3.1 a stabilizing controller
R=q/p such that the output y asymptotically follows a reference r while the

time-domain constraints

umin < U(t) < umax ’ ymin = y(t) = ymax (341)

are satisfied for all t>0, where u_, , u and y . are given real numbers.

min ? max ymin

We assume that S is strictly proper and that R is proper so as to avoid
impulsive modes.

Assign distinct negative integer poles s,

ap+bg=d :=TI(s-s) (3.42)
Then signals in the closed-loop system are sums of the corresponding decaying
exponential modes,

ut)=x,ue, y() :Ziyie‘sit_ (3.43)
Let g be the greatest common divisor of the poles s,, so that s, =k,g for some

integers k,. The signals can now be expressed as polynomials in the

indeterminate 1 =e™*, namely

u(t) =Zu A", yt)=%,y,2 (3.44)
When time t increases from 0 to o, indeterminate 4 decreases from 1 to 0 and
the time constraints become the polynomial bound constraints

umin < U(l) < umax’ ymin < y(l) < ymax (345)

or, equivalently, the polynomial non-negativity constraints

U(ﬂ)—u ZO, _u(ﬂ“)+umax ZO’ (346)

y(ﬂ“) = Ymin 2 0’ - y(ﬁ“) + ymax > O'

min

along the interval 1<[0]].
A polynomial non-negativity constraint

p(A) =20, pA 20, Vie[d,, Al (3.47)
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is equivalent [13] to the existence of real symmetric matrices P

min 2

P of size n

+ 1 satisfying the linear matrix inequality constraints

p, = trace[P,,, (H,, — A,;,H,)]+ trace[P,.. (4

Pon 20, Prp 20

max —

in maxHi_Hi_l)]a 1=0,1,..,n

(3.48)

’

where H, is the basis Hankel matrix with ones along the (i +1) th anti-diagonal

and zeros elsewhere.

Now all proper rational controllers R that assign the pole polynomial
d=[I;(s—s;) are parametrized by a polynomial w of appropriate degree, see
Section 3.2. The coefficients of w are our design parameters and they appear in
the coefficients u,, y, of the closed-loop signals in an affine manner. Therefore

the linear matrix inequalities are convex in the design parameters.
Example 3.10
Given the plant [16]

_ s+05
s(s—2)’

the stabilizing controller

| 3845+240
s® +17s? +119s5+79

assigns the closed-loop system poles at — 1, — 2, — 3, — 4, — 5 while ensuring
asymptotic step reference tracking. Despite the poles being negative real, the
step response features an unacceptable overshoot of 140 % due to system
zeros, see Figure 3.4.
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Figure 3.4 Step response with unacceptable overshoot
The set of all proper rational controllers that assign the above poles is given by

384s +240—-s(s—2)w

R(s)= 3 2
§°+175°+1195s+ 79+ (s+0.5)w

where w=w,+ws is a free polynomial of degree at most 1. The closed-loop

responses to a step input are affine in w,

_ 384s” +4325+120-s(s* —1.5s —-w
s(s+1)(s+2)(s+3)(s+4)(s+5)

y(s)

and correspond to a sum of decaying exponential modes in the time domain,
y) =27, y,e "

or to a polynomial
y(A) =2, VA

in the indeterminate A=e™'. The coefficients y, are affine functions of w, and

W .

Suppose the desired maximum overshoot is 20 %. This specification translates
as y(t)<1.2y, and is equivalent to the polynomial non-negativity constraint

P(A) =0.2y, — YA — Y, A =y, 22—y, A" =y 2° 20
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along the interval 2€[01]. This is in turn equivalent to the linear matrix

inequality problem for w, and w,. A standard solver returns
w(s) = -100.36 —12.27s

and the closed-loop response shown in Figure 3.5.

Quipud respansae io A relerence clep

08

Amplituda

0.6

04

a0zl

Time (sec)

Figure 3.5 Step response with reduced overshoot

Our design conditions are necessary and sufficient as soon as we fix the poles
to be assigned. So it may happen that the constraints are not satisfied with a
given choice of poles, whereas they could be satisfied with another choice.

3.5.3. Fixed-Order Stabilizing Controllers

A weakness of the sequential design based on the Youla-Kucera
parametrization is that each performance specification beyond stability may
increase the order of the controller.

The degree control in the stable rational parameter W =w/d is difficult. If d is
fixed, all closed-loop transfer functions are affine in w but the order of w
increases with each additional performance specification. If d is not fixed, we
have a greater flexibility but we run into difficulties as the set of stable
polynomials is not convex in the space of coefficients.

The difficulty was resolved in [12] by providing a convex inner approximation of
the non-convex stability domain [14] in the space of polynomial coefficients.
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This approximation is parametrized by a given stable polynomial, referred to as
the central polynomial, as explained below.

|II

Given a fixed stable “central” polynomial c(s) of degree n, polynomial d(s) of
degree n is stable if there exists a real symmetric matrix Q of size n solving the

linear matrix inequality

H.(d,Q)=c'd +d'c—e&cc+I1]QIT, +I1,QI1,>0 (3.49)
where
1 0 01
I, = . H, M, =]
10 0 1

are projection matrices, ¢ and d are the coefficient vectors of the polynomials
c(s) and d(s), and ¢ is an arbitrarily small positive scalar.

The interpretation of this result is as follows: as soon as polynomial ¢ is fixed,
we obtain a sufficient linear matrix inequality condition for stability of
polynomial d . Therefore,

H,={d:3Q:H(d,Q)=0} (3.50)

is a convex inner approximation of the (generally non-convex) stability domain
in the space of polynomial coefficients.

Let us now show how to design stabilizing controllers of a fixed (presumably
low) order. Suppose a plant S=b/a is given and suppose that we have a
stabilizing controller R =q/ p. We seek to find a stabilizing controller R=y/x of

a given order m, if such a controller exists.

The two stabilizing controllers are related as p=x+bW, g=y-aW, where
W =w/d . Then

=0. (3.51)

34



Let

X X
Yi Y,
d, d,
W W,

be a minimal polynomial basis of A. Then all the stabilizing controllers for S
are generated by the formula

R:ﬂﬂhj”%zh (3.52)
ﬂ'lxl +2’2X2

where 4, and A, are polynomials such that Ad, +4,d, is a stable polynomial. A

stabilizing controller of order m exists if

deg{xl XZMA}:m (3.53)
i Yol A _

Using the convex inner approximation of the set of stable polynomials, we can
optimize over polynomials 4, and A, to enforce low degrees of x and y (linear
algebraic constraint) as well as stability of d (linear matrix inequality
constraint).

The catch is that this parametrization is based on a sufficient, hence potentially
conservative, stability condition and that the conservativeness depends on the
choice of the central polynomial.

Example 3.11
Consider the plant

1

3(9)= s(s® +s+10)

of order 3. A stabilizing controller of order 2 can be found by placing the
closed-loop poles at arbitrary locations. For example, the controller

— 2652 +45s5+1

R(s) =
®) s’ +4s—4

places all five closed-loop poles at — 1.
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Our aim is to find a stabilizing controller of a lower order. A minimal polynomial
basis for the polynomial matrix A is given by

0 1

-1 - 26

-1 s*+5°+10s—26
s’ +4s—4 149s -103

All the stabilizing controllers can be recovered from the polynomials 4 and £,
such that the pole polynomial d =-4, + 4,(s* +s* +10s - 26) is stable.

From the first two rows of the basis a controller of order 0 can be obtained by
restricting the parameters 4 and A, to be constant. Hurwitz stability criterion
then reveals that d is stable if and only if 4 €(-36,-26) and A, =1. For example,
with 2, =-30 we obtain the controller R(s)=4 and the closed-loop pole

polynomial d =s*+s*+10s+4.
In this simple example, we were able to obtain an exact solution. In general,

the linear matrix inequality has to be used.

3.6. Concluding Remarks

The parametrization of all stabilizing controllers can easily be extended to
multi-input multi-output plants. Rational matrices are represented as
»,pPolynomial matrix fractions”, that is to say, as the left and right factorizations

S=B;A;'=A'B, (3.54)

of two polynomial matrices, where A, and B, are right coprime while A and

B, are left coprime. The set of all stabilizing controllers for S is given by

R= (g ~ AW)(X g, +BW)™ 1= (x| +wB 7Y, ~wa (3.55)

L L,

where the polynomial matrices X ,Y, and X, Y, satisfy the Bézout identity
A -B || X B
{ L }{ : }' (3.56)
YL XL _YR AR ’
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and where W is a stable real rational matrix parameter such that X, -wB, and
X, +BW are nonsingular matrices [22], [23], [36], [39].

It is interesting to note that the set of stabilizing controllers can be
parametrized also for plants with irrational transfer functions. This is possible
whenever such a transfer function is expressed in the form of a fraction of two
coprime stable functions. This property is by no means evident [36] and it
holds, for instance, for transfer functions having a finite number of singularities
in Res >0, each of which is a pole.

Even more striking is the observation that stabilizing controllers can be
parametrized for nonlinear plants, where transfer functions no longer exist. The
key condition is again the possibility of factorizing the nonlinear mapping that
defines the plant into two ,,coprime” mappings, one of them representing a
stable system while the other one representing the inverse of a stable system
[6]. Technical assumptions may prevent one from parametrizing the entire set
of internally stabilizing controllers; still, the subset may be large enough for
practical purposes.

The parametrization of all stabilizing controllers is a result that launched an
entire new area of research and that has ultimately become a new paradigm
for the design of linear control systems. Being of algebraic nature [6], [25], it is
a result of high generality and elegance. The stabilizing controllers are obtained
by solving a linear equation. This is not because the plant to be stabilized is
linear but because it is expressed as an element of the ring of fractions defined
over the ring of stable plants [36]. The requirement of stability is thus
expressed as one of divisibility in a ring.

The ring of stable plants depends of course on the notion of stability that is
applied. Asymptotically stable systems give rise to transfer functions that are
analytic in Res>0, whereas bounded-input bounded-output systems have
transfer functions that are analytic in Res>0as well as at s=o0. That is why we
could work with polynomial fractions in this paper; had we required the control
system to be bounded-input bounded-output stable, proper stable fractions
would be appropriate. The Bézout equation, though solved in a different ring in
each case, stands as the fundamental linear design equation.
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There is a dual result: the parametrization of all plants that can be stabilized by
a fixed controller. This result is useful in system identification. In fact, the
(difficult) problem of closed-loop identification of the plant becomes a (simple)
problem of open-loop identification of the parameter, as discussed in [1].
Consequently, the parametrization may facilitate the study of dual control.
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4. PARAMETRIZACE VSECH STABILIZUJICICH REGULATORU - STATE SPACE
REPRESENTATION OF ALL STABILIZING CONTROLLERS

Vladimir Kucera

Stabilita je zakladnim poZadavkem pri ndvrhu regulacnich systémdu. Proto
je ddleZité zndt vsechny reguldtory, které stabilizuji danou soustavu.
Takovych reguldtort je nekonecné mnoho a parametrizace je vhodnym
zpusobem jejich vyjadreni. SpInéni dalsich poZadavk( na regulacni systém
pak Ize zajistit vhodnym vybérem parametru.

Most control systems are designed to be stable and to meet additional
specifications, such as optimality and robustness. It is therefore natural to
design the systems step by step: stabilization first, then the additional
specifications each at a time. For this it is obviously necessary to have any and
all solutions of the current step available before proceeding any further.

This motivates the need for all controllers that stabilize a given system. In fact,
this is an infinite family and we find it convenient to describe it in a parametric
form, known as the Youla-Kucera parameterization. The additional
specifications are then met by selecting an appropriate parameter. Such a
procedure is simple, systematic, and transparent.

The lecture will start with a transfer function approach to the parameterization
of all stabilizing controllers and proceed with a state space approach. It will be
shown how doubly coprime fractional representations of a system can be
obtained by applying to it a stabilizing state feedback and a stabilizing output
injection. Consequently, all controllers that stabilize a given system are built
around an observer-based central stabilizing controller.

The lecture has a significant pedagogic value. State space and transfer function
techniques are presented as connected approaches, rather than isolated
alternatives.
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5. KVADRATICKY OPTIMALNI SYSTEMY S PREDEPSANYMI POLY -
OPTIMAL CONTROL SYSTEMS WITH PRESCRIBED EIGENVALUES

Jiri Cigler

Poly linedrniho systému lze umistit do poZadované polohy bud’ pfimo,
metodou pfifazeni pdlli, nebo neprimo, napriklad pomoci kvadratické
optimalizace. Optimdlini Fizeni vyusti v urcité rozloZzeni pdli podle
zadaného kritéria kvality regulace. UkdZzeme, jak kvadratickym kritériem
dosdhnout predepsaného rozlozeni pdld.

5.1. Introduction

The optimal linear-quadratic design has several nice features. In particular, the
closed-loop system enjoys certain robustness properties. The transient
behavior of the closed-loop system, however, is difficult to determine in
advance since there is no simple relation between the weighting matrices that
specify the performance index and the closed-loop eigenvalues. To get a good
transient response, the weights are often determined iteratively through trial
and error.

The eigenvalue assignment (or pole placement) methods address the transient
phenomena directly by specifying a set of desired closed-loop eigenvalues.
However, different feedback gains can lead to the same pole pattern when the
system has several inputs and these gains can produce different transients.

Attempts to combine the two methods are of an early date. Results exist on
optimal control with eigenvalues restricted to a specified region of the complex
plane, namely a semi-plane [2], a disk [9], a sector [11], or a hyperbolic region
[19]. Optimal control with exactly prescribed eigenvalues is more difficult to
achieve. Various results reflect various approaches to seeking a relationship
between the weighting matrices and eigenvalue locations [33], [35], [8], [20],
[4].

This paper is a streamlined presentation of paper [4], with some
generalizations. The weighting matrices of the optimal control problem are

constructed so as to relocate a single eigenvalue (or a pair of complex
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conjugate eigenvalues) to a prescribed position while leaving the remaining
eigenvalues at their original positions. The region of the complex plane into
which each eigenvalue can be located is described. The process of relocation
can be repeated as long as a desired eigenvalue pattern is achieved.

5.2. Preliminaries

We consider a continuous-time linear system

X(t) = Ax(t) + Bu(t), t>0 (5.1)
and seek a control law

u(t) = Fx(t)
that minimizes a quadratic cost of the form

j:(xTQx+uTRu)dt (5.2)

for every initial state x(0). The matrices Q and R are symmetric with
Q=C'C>0and R>0.

We suppose that the pair (A, B) is stabilizable and the pair (A,C) is detectable.
Then

F=-R'B"P, (5.3)
where P is a uniqgue symmetric solution of the algebraic Riccati equation

PA+ATP-PBRB"P+Q =0 (5.4)
such that P > 0. The optimal closed-loop system

x(t) = (A+ BF)x(t) (5.5)
is asymptotically stable.

Consider the Hamiltonian matrix

y :[ A —BRiBT} (5.6)
-Q —A
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The eigenvalues of H are symmetrically distributed with respect to the
imaginary axis. One half of the eigenvalues have negative real parts; they are
the eigenvalues of the optimal closed-loop system (5.5).

5.3. Single Eigenvalue Relocation

The linear-quadratic control imposes the eigenvalues of the closed-loop
system. Given A and B, the choice of Q and R achieves a certain pattern of

the eigenvalues of H, which in turn define the closed-loop system eigenvalues.

In order to achieve an optimal system with prescribed eigenvalues, we shall
investigate the possibility of selecting Q and R so as to relocate (or shift) a
single eigenvalue at a time, leaving the remaining eigenvalues at their original
positions. For the sake of exposition, we shall consider the two cases as follows.

5.3.1. The Case of a Real Simple Eigenvalue

Let T be a similarity transformation that brings A to its Jordan form,
A=T'AT, B=T'B (5.7)
and suppose that Ais diagonal.

Choose one controllable eigenvalue, say 4,, of A to be re-located and exhibit it

in the Jordan form as follows

/X:Fg ﬂ B‘{ﬂ (5.8)

where b is the first row of matrix B and xindicates the remaining entries.

Take the weighting matrix Q as

Q=(H'QT™ (5.9)
where

~ |9, O

Q —{0 0} (5.10)
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with g, >0 a real parameter, and select the weighting matrix R so that
b/ R™b, =1.

Let 1, be the desired position to which the eigenvalue A, is to be relocated. We
shall first analyze which positions for . are admissible and which matrices Q
will realize the shift.

Consider the Hamiltonian matrix (5.6),

I*_[T 0 } A -BR'BT|T? 0
o @) -@  -AT o 1)

and calculate

X Bp-l@T
det(sl —H)=det| ¥ _* BRE
Q sl +A
s-4 0 1 x
0 sl-J, x x
=det
q, 0 S+ 4 0
0 0 0 s+J7
=det (sl —J,) det (sl +J; ) det(sl —H,),
where
-1
e
-0 _Z‘l

and where xindicates the remaining entries. It follows that all the eigenvalues
of A but A remain unchanged and the re-location of 4, to 4, requires that

det(sl —H,)=(s—u)(s+ n),
that is,
det(sl —H,)=s’ - (A7+q,) =s"— 1.

We conclude that |u|>|4| since g,>0. The eigenvalue can only be relocated

further from the origin. In particular, if 4, is to be stable, it can only be shifted
to the left.
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Having chosen Q and R, the optimal control law (5.3) that achieves the desired

shift is given by solving the Riccati equation (5.4). Make an inspired guess that
the optimal solution matrix P is

P=T)"PT (5.11)
where
5 {%1 8} (5.12)

for some real constant p, >0. Substituting (5.7), (5.9) and (5.11) into (5.4) gives
(T)"(PA+ATP—PBR'B"P+Q)T " =0.

Using (5.8), (5.10) and (5.12), the Riccati equation is reduced to a scalar
equation for p,, namely

p; —2/,p, — 0, =0,
which can readily be solved. In particular, p, =4, — 4.

The process can be repeated for each eigenvalue ad libitum until the desired
pattern of eigenvalues is achieved.

5.3.2. The Case of a Real Multiple Eigenvalue

Now suppose that the controllable eigenvalue of A to be relocated, call it again
2., is real but it generates a Jordan block of size k.

We claim that the result obtained in Subsection A holds in this case also.
Indeed, the choice of Q as described above results in a shift of 1,to a new
position 1. The remaining eigenvalues of A keep their original positions. In
particular, 4, remains an eigenvalue of A but it generates a Jordan block of size
k—1.

Therefore, the effect of the optimal control law (5.3) on sys-tem (5.1) is to split
the Jordan block of 4 into a single eigenvalue x,and a smaller block of 4,. This
process can be continued, resulting in a spectrum of k eigenvalues u,, u,,..., 1,

positioned outward of 4, .
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5.4. Relocation of a Complex Conjugate Pair of Eigenvalues

Suppose that A has a pair of simple, complex conjugate eigenvalues, say 1, =4
and 4, =21, which are controllable and are to be relocated simultaneously to
obtain a new complex conjugate pair of eigenvalues x4, =x and g, =z. In this

case we have, using an appropriate similarity transformation T,

.
A‘:[AZ O] B‘{BZ} (5.13)
0 J, X
where
A2=F 0} (5.14)
0 4

and where B, denotes the first two rows of Bandxindicates the remaining

entries.

Take the weighting matrix Q as

Q=(T")'QT™, (5.15)
where

~ Q, O

o[ 516

and Q, >0is a Hermitian 2x2 matrix parameter. As the first two columns of T
are complex conjugate of each other, Q, will have equal diagonal entries,

Qz{q qu} (5.17)
G 9

for a real q and a complex g,, that satisfyq>|q,,|. Select the weighting matrix

R so that
Tp-lg 1 o
BJR'B, = =Q, (5.18)
o 1

for a complex @ such that |o|<1.
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For a single eigenvalue, only an outward shift is possible. The situation is more
involved in the case of shifting a pair of eigenvalues. The relevant quantities are
related by the 4 x4 Hamiltonian matrix

H =|: Az _Qz}

’ _Qz _KZ
whose eigenvalues are to equal u, z and —u,—m. Substituting from (5.14),
(5.17) and (5.18), we obtain

s—A 0 1 )
0 s-A1 1
det(sl — H,) = det v
q q, S+4 0
O, q 0 S+ A

=s*—2(Re /> +q+Rewq,,)s’ +
"1‘4 + Z‘A‘Zq + 2Re/12a)q12 + (1_‘0)‘2)((12 _‘ q12‘2)'

The intended relocation calls for
det(sl —H,) =s* - 2Re u’s? +\,u\4

and the admissible region into which A, 2 can be relocated is determined by
the equalities
Reu’ =Re > +q+Rewq, (5.19)
M“ :\/1\4 +2\/1\2q+2Re/12a)q12
+(1-|0[)(@* —|ay,|) -

(5.20)

The shape of the admissible region for u, z depends on Zand . To visualize

the region, we denote x=Reu, y= Imu so as to have
Re,uz _x2_ yz’ M4 _ (X2 " yz)z

and we proceed by fixing the values of @ as follows.
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5.4.1. The Case of |w|=1

In this case Q is a rank-one singular matrix, which happens for single-input
systems. Equations (5.19) and (5.20) read

x* —y? =Re X’ +(q+Rewq, (5.21)
(2 +y%)? =[4* +24°q +2Re 2wy, (5.22)

We observe that these equations are linear in q and are to be solved for some
real q>/q, .

Figure 5.1 Stable admissible region for A = -1 + 2j and for |w]| = 1.

Therefore suppose thatq>|q,,|. Then
Rewqy,|<|ot, <|dy|<q
and
Re L 0q,, <P og, < |2, <|2|q.
In view of that,
q+Reaq,, >0, 24°q +2Re wq,, >0
and (5.21), (5.22) yield the inequalities

x> —y?>ReA? (5.23)
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X +y? 2\/1\2. (5.24)
Observe that (5.23) represents either the interior of the equi-lateral hyperbola
x> —y*>Re X,
or the exterior of the conjugated hyperbola
y>—x*<—ReA,
or the sector delineated by their asymptotes
y=X y=-X

depending on the sign ofReA*. The real and imaginary axes of the above
hyperbolas equal the square root of | Re/’ .

Inequality (5.24) represents the exterior of a circle with radius |1/, centered at

the origin.

Figure 5.1 and Figure 5.2 visualize as shaded areas the stable admissible regions
into which the eigenvalues 2=-1+2j, 1=3+2]j can be relocated when o/ =1.

5.4.2. The Case of = 0
In this case Q is the identity matrix. Equations (5.19) and (5.20) read

x*—y>=Rel +q (5.25)
(0 +y?)? =14 + 24 g+ o* | a|". (5.26)

We observe that these equations are quadratic in q and are to be solved for

some real q and a complex q,, such that gq>|q,,|. It follows from (5.25) that q is

real as long as (5.26) is satisfied for some q,,.

Write (5.26) in the form
Ayl = (a+2) = (¢ +y?)*,

In view of |q,|>0 this equation implies the inequality

48



x* +y? Sq+\/1\2.

\Ims ’

Figure 5.2 Stable admissible region for A = 3 + 2j and for |w| = 1.

Substituting for g from (5.25), one obtains

2y? <[A]"~ReA?
or equivalently

y? <Im?A (5.27)
On the other hand, the condition g>|q,, turns(5.26) into the inequality
(x2+y?)? > [A* +2\/1\2 +q°.
Substituting for q from (5.25), one obtains

(2 +y2)2 =22 (- y?) + 2" > 42 Im?2 (5.28)

Observe that equation (5.27) defines a strip of width 2/ImJ| along the real axis

while equation (5.28) represents the exterior of a Cassini oval with foci at the

points (x,y)=(4,0) and (x,y) =(—4/,0). The shape of the Cassini oval depends

on the value of4(|m2/1)/\/1\2. Thus the real part of the eigenvalues 1,1 can only

be relocated outside the oval while the imaginary part is not increased.
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Figure 5.3 Stable admissible regionforA=-1+2jandforw =0

Figure 5.3 and Figure 5.4 visualize the stable admissible regions — the shaded
areas — into which the eigenvalues A1 =-1+2j, 1=3+2j can be relocated when
®=0. The ovals are shown in blue whereas the strip boundaries are shown in

red.

Figure 5.4 Stable admissible region for A = 3 + 2j and for w = 0.

5.4.3. The Case of 0<|o|<1

In this case Q is a general rank-two matrix. The shape of the admissible region
can be investigated using (5.19) and (5.20) while considering the conditions for
areal g and a complex g, to exist such that q>|q,|.

Equations (5.19) and (5.20) read
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x* —y? =Re X’ +q+Rewq, (5.29)

(2 +y?)? =[4* + 24" q + 2Re 2wa,,

2 2 (5.30)
+(1_‘a)‘ )(q2 _‘ qlz‘ ).

It follows from (5.29) that q is real as long as (5.30) is satisfied for some q,.
The condition q=|q,| turns (5.30) into the in-equality

(2 +y2)? 24" + 24" g+ 2Re wq,,. (5.31)

Now (5.29) and (5.31) jointly define regions bounded by a family of octic curves
parameterized by w. The curves are shown for the eigenvalue 1=-1+2j in
Figure 5.5 and Figure 5.6 in blue, each figure corresponding to a particular
value of w

On the other hand, the upper bound for the imaginary part y of , is evaluated
from (5.29) and (5.30) for each x. The result is a family of curves parameterized
by @. The curves are shown for the eigenvalue 2=-1+2j in Figure 5.5 and
Figure 5.6 in red, each figure corresponding to a particular value of w.

The shaded areas that are shown in Figure 5.5 and Figure 5.6 por-tray the
regions into which x4, z can be relocated. Thus the real part of the eigenvalues

can be shifted outward while the imaginary part is bounded from above.

Note that when o — 0, the attainable regions shown in Figure 5.5 and Figure
5.6 approach the region shown in Figure 5.3. On the other hand, when |w| -1,
we recover the singular case, see Figure 4.1. It is of interest to note that the
maximal assignable imaginary part in Figure 5.5 and Figure 5.6 grows
progressively with @. The growth is slow for <05 and is fast only when
w>09.

The target eigenvalues can in particular be taken real, resulting in a double real
eigenvalue 4. This case is addressed by setting y=Imu=0 in the expressions

above.

Having chosen Q and R, the optimal control law (5.3) that achieves the desired
shift is obtained by solving the Riccati equation (5.4). Make an inspired guess
that the optimal solution matrix P is
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P=(T Y PTY, (5.32)

Vép

>

Figure 5.5 Stable admissible region for A =—1 + 2j and for |w/ = 0.5.

where

_ [P, 0
p{o 0} (5.33)

for some 2x 2 Hermitian matrixP, >0 having equal diagonal entries. Substituting
(5.7), (5.15) and (5.32) into (5.4) yields

—~ -

T (PA+ATP-PBR'B'P+Q)T " =0.

"‘Ims

VS&U

>

Figure 5.6 Stable admissible region for A =—1 + 2j and for Jw/[ = 0.95.

Using (5.13), (5.16), (5.18) and (5.33), the Riccati equation reduces to
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P,A,+A}P,-PQ,P,+Q, =0,

to be solved for P,.

The process can be repeated for each pair of complex conjugate eigenvalues ad
libitum until the desired eigenvalue pattern is achieved.

5.5. Conclusion

A design of linear-quadratic optimal systems with prescribed eigenvalues has
been presented. The method is well suited to modify a given linear-quadratic
design so as to improve the transient response of the closed-loop system. Slow
eigenvalues can be made faster and oscillatory eigenvalues can be dampened.
The didactic value of the results can be seen in providing an explicit
relationship between the weighting matrices and the closed-loop eigenvalue
positions. The method is so simple that it can eventually make its way to
control textbooks.
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6. JE KONECNY POCET KROKU REGULACE KVADRATICKY
OPTIMALNI? - DEADBEAT RESPONSE IS L, OPTIMAL

Vladimir Kucera

Konecny pocet kroku regulace je specifickym poZadavkem pfi ndvrhu
diskrétné pracujicich regulacnich obvodi. Naproti tomu kvadratické
kritérium je uzndvanou metodou ndvrhu stabilnich a optimdlnich
systémdi. Je prekvapujici, Ze systémy zarucujici konecny pocet kroki
requlace jsou kvadraticky optimdini.

6.1. Deadbeat Regulator

We consider a linear system (A, B) described by the state equation
X, =Ax +Bu, k=0,1,.. (6.1)

where u, eIR™and x, €IR". The objective of deadbeat regulation is to

determine a linear state feedback of the form
u, =-Lx, (6.2)
that drives each initial state x, to the origin in a least number of steps.

We define the reachability subspaces of system (6.1) by

R, =0,
R, =range[B AB .. A“'B], k=12,...

Hence R, is the set of states of (6.1) that can be reached from the origin in k
steps by applying an input sequence u,,u,,---,u, ,. WhenR =R", the system
(A, B) of (6.1) is said to be reachable.

Define the integers

g, =dimension R, —dimension R, ,

and for k=12,---,m let
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r. =cardinality {q, :q, > i}.
The integers r,>r, >--->r_ are the reachability indices of system (6.1).

We further define the controllability subspaces for (6.1) by

C, =0,
C, ={xeR":F‘xeR} k=12,..

Thus C, is the set of all states of (6.1) that can be steered to the origin in k
steps by an appropriate control sequence u,,u,---,u,,. When C =R", the
system (A,B) of (6.1) is said to be controllable. It follows from the definitions

that reachability implies controllability and the converse is true whenever A is
nonsingular.

The existence and construction of deadbeat control laws is described below.
For each k=12,--- let S,S,,---,S, be a sequence of mxq,, mxq,,...,mxq, matrices
such that

range[BS, ABS, .. A“'BS,]=rangeR,.
Therefore S,,S,,---,S, serve to select a basis for R, .

Theorem 6.1

[29] There exists a deadbeat control law (6.2) if and only if the system (A, B) of
(6.1) is controllable. Let

L, =0,

k (6.3)
L =L, +L/(A-BL_)*, k=12

where L, satisfies
L,[BS, ABS, ... A“'BS,]1=[0 ... 0 S,].
Then L=L, is a deadbeat regulator gain.

The theorem identifies all deadbeat control laws via the recursive procedure
(6.3). Actually the procedure can be terminated in q steps, where
g=min{k:C,,, =C,}. The resulting closed-loop system matrix is nilpotent with

index g,
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(A—BL)" =0. (6.4)

If A is nonsingular, the recursive procedure (6.3) can be shortcut by setting
L,, =0. Then, the Jordan structure of A—BL comprises m nilpotent blocks [28]

of sizes r,r,,---,r. and the index of nilpotency equals q=r,. In fact, this is the

m

least size of Jordan blocks that can be achieved [24] in a reachable system (6.1)
by applying state feedback (6.2).

6.2. Linear Quadratic Regulator

We consider a linear system described by the state equation (6.1),

X = AX, +Bu,, k=0,1,..

where u, e IR"and x, € IR". The objective of LQ regulation is to find a linear

state feedback of the form (6.2),
u, =-Lx,

that stabilizes the closed-loop system
X, = (A—BL)x,

and, for every initial state x,, minimizes the /, norm

=2 v

of a specified output y, « R? of the form
y, =Cx, +Du,. (6.5)

The existence and construction of an LQ control law is described below. We say
that the system (A B) of (6.1) is stabilizable if the system matrices can be

transformed to the following form using an appropriate basis:

S

0 A, 0
where the subsystem defined by the pair of matrices (A;,,B,) is reachable and
A, is a stable matrix. We say that the system (A,B,C,D) defined by the state
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equation (6.1) and the output equation (6.5) is left invertible if its transfer
function C(zl, —A)"B+D has full column normal rank. We further define the

system matrix as the polynomial matrix

S(Z):[ C D

2 —-A - B}
and say that a complex number & is an invariant zero of the system (A B,C,D)
if the rank of S(¢&) is strictly less than the normal rank of S(z).

Theorem 6.2

[32] Suppose that the system (A B) of (6.1) is stabilizable. Suppose that the
system (A B,C,D) defined by (6.1) and (6.5) is left invertible and also has no

invariant zeros on the unit circle |z/=1. Then, there exists a unique LQ regulator

gain given by
L=(D'D+B"XB)*(B"XA+D'C), (6.6)

where X is the largest symmetric nonnegative definite solution of the algebraic
Riccati equation

X =A"XA+C'C

6.7
—(B"XA+D'C)"(D"D+B"XB)}(B"XA+D'C). (6.7)

The assumption of left invertibility for (A,B,C,D) is required in order for the
matrix D'D+B"XB to be nonsingular while the remaining assumptions are
required for the existence of the requisite solution X of the algebraic Riccati
equation.

6.3. The Deadbeat Regulator As an LQ Regulator

The aim of this section is to show that deadbeat control laws in reachable
systems are LQ optimal. This will be done by constructing an output (6.5) of the
system (6.1) so that the resulting LQ regulator gain is a deadbeat gain.

Let the system (A B) of (6.1) be reachable with reachability indices r,r,,---,r, .

Then there exists a similarity transformation T that brings the matrices A and
B to the standard reachability form [28],
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A'=TAT™, B'=TB (6.8)

where A’ is a top-companion matrix with nonzero entries inrows r,, i=12,...,m
and B’ has nonzero entries only in rows r, and columns j>i, i=12,...,m.
Theorem 6.3

Suppose that the system (A, B) of (6.1) is reachable, with reachability indices
rL>r,>--->r. and with the matrix B having rank m. Let T be a similarity

transformation that brings A and B to the standard reachability form. Then,
the feedback gain L that is LQ optimal with respectto C=T and D=0 in (6.5)
is a deadbeat gain.

Proof. Consider the transfer function of system (6.1) in polynomial matrix
fraction form

(zI, —A)'B=Q(2)P(2) (6.9)

where P and Q are right coprime polynomial matrices in z of respective size
mxm and nxm, with P column reduced and column-degree ordered with
column degrees r,>r,>--->r . These integers are the reachability indices of

(6.1).

The system (6.1) being reachable, the matrices zI, - A and B are left coprime.
It follows from (6.9) that the denominator matrices zI,— A and P(z) have the

same determinant (in fact, the same invariant polynomials).

For any feedback (6.2) applied to system (6.1), one obtains

[z — A —B][_I'L IO}:[ZIH—(A—BL) ~B]

m

and

l, 0 |[Q(2)] Q(2)
L 1 ||P@)| |P@)+LQ>2)|
Then (6.9) implies that

[z, - (A-BL)]'B=Q(2)[P(2) + LQ(2)] ™" (6.10)
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Thus the closed-loop system transfer function matrices zI, —(A-BL) and B are
left coprime while P(z)+LQ(z) and Q(z) are right coprime. It follows from
(6.10) that the polynomial matrices zI,—(A-BL) and P(z)+LQ(z) have the

same determinant (in fact, the same invariant polynomials).

Now we show that an LQ regulator gain exists that is optimal with respect to
C=T and D=0. Indeed, the pair (A B) is reachable, hence stabilizable. The
quadruple (A B,T,0) corresponds to the transfer function T(zl,—A)™"B whose

column normal rank is m, hence the system is left invertible. The system matrix

S(Z):[ T 0

2 —-A - B}

has rank n+m for all complex numbers z, which implies that (A B,T,0) has no
invariant zeros at all. Consequently, the assumptions of Theorem 6.2 are all
satisfied, which shows the existence of an LQ optimal regulator gain (6.6).

Consider the associated algebraic Riccati equation (6.7). Add
27 (XA-=XA)+(XA-XA)"z to the right-hand side of the equation in order to
introduce polynomial matrix factorizations, then use (6.6) and (6.9) to get the
following identity [28]

[P(z™)+LQ(z™)]' (D'D+BXB)[P(z) + LQ(2)]

) . (6.11)
=[CQ(z7)+DP(z )] [CQ(2) + DP(2)]

Define a polynomial mxm matrix F, which is column reduced and column-
degree ordered with column degrees r, >r, >--->r,_, by the equation

F'(zY)F(2) =[CQ(z™")+DP(z)]'[CQ(z) + DP(2)] (6.12)

in such a way that its inverse F™ is analytic in the domain |z[>1. This matrix is
referred to as the spectral factor and it is determined uniquely by (6.12) up to
multiplication on the left by a constant orthogonal matrix.

The pair (A,B) being reachable, the matrices A and B can be brought to the
reachability standard form (6.8) using the similarity transformation matrix T.
The corresponding right coprime polynomial fraction matrices are related by

P(2)=P(2). Q'(2)=TQ(2)
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and Q' has the block-diagonal form

1 1 1

Q'(2) =block-diagf| © |,| || T |1

n-1 r,-1

z z

The spectral factorization (6.12) reads

F'(z")F(z)=Q"(z")T'TQ(2)
=Q"(z7)Q'(2) =diag[r,, 1y, ..., ;)]

so that

F(z) = diag [\/Flzrl,\/EZrZ,...,\/azrm].

It follows from (6.11) that the LQ regulator that is optimal with respectto C=T
and D=0 induces the closed-loop right denominator matrix P(z)+LQ(z) with
invariant factors z%,z%,...,,z™. The same factors are shared by the closed-loop
left denominator matrix zl,—(A-BL). Therefore, A-BL is nilpotent with
Jordan structure comprising m nilpotent blocks of sizes r,r,,...r,. The

nilpotency index of A-BL is r,, the largest reachability index. Q.E.D.

The restriction of Theorem 6.3 to reachable systems, while technically
important, is actually a mild restriction as it covers the case of main practical
interest. Controllable systems (6.1) that are not reachable possess a singular
matrix A with nilpotent dynamics. Such systems are inherently discrete. In
particular, the periodically sampled continuous time systems, considered in the
discrete instants of time, have a nonsingular matrix A.

The other restriction applied in Theorem 6.3, namely B having full column rank
m, is needed to guarantee the solvability of the LQ regulator. It represents no
practical constraint, either. Indeed, if the rank of B is less than m, then the
components of the control vector u are linearly dependent.

6.4. Example

To illustrate, let us consider a system (6.1) described by the matrices
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010 0
A=|1 1 0|, B= 0].
0 01 1
Since
1 0 1 0/{0 O
R,=0, R, =image|0 0|, R,=R,=image|0 0 1 0|=IR®
01 0 1/0 1

the system is reachable with reachability indices r; = 2, r, = 1. Since

-1 0 1 00
C,=0, C,=image| 1 0|, C,=C,=image|0 1 0|=IR®
0 1 0 01

the system is controllable and q=2.

Deadbeat gains can be calculated using Theorem 6.1. One can take

SHESs

thus obtaining, recursively,

Ll{ﬂ 1+ o}’ L2=L3=[1 2 o}

a o 1 a o 1

for any real numbers a and B. Any and all deadbeat gains are given as

[1 2 o}
L= )
a o 1

The closed-loop system (6.1), (6.2) is described by

-1 -1 0
A-BL=| 1 1 0],
-a —-a 0

which is a nilpotent matrix with index g=2. Any initial state is driven to the
controllability subspace C1 in one step and then to the origin in the second

step.
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Let us now transform (6.1) to the reachability standard form. An appropriate
similarity transformation T is found to be

_|

Il
o o
o b
P O o

It allows calculating a deadbeat gain as the LQ regulator gain that is optimal
with respectto C=T and D=0.

Since rank B =2, the conditions of Theorem 6.2 are all satisfied. The algebraic
Riccati equation (6.7) has a unique symmetric non-negative definite solution

>

Il
o NN
o w N
= O O

The resulting LQ regulator gain (6.6),

1 20
L= :
oo
is indeed a deadbeat gain, corresponding to a =0. The other deadbeat gains,
however, cannot be obtained using this approach.

6.5. Conclusion

Deadbeat control and LQ regulation in discrete-time systems, two control
strategies that are so different in nature, are in fact related. It has been shown
that a deadbeat control law can be obtained by solving a particular LQ
regulator problem, at least for reachable systems. This demonstrates the
flexibility offered by the LQ regulator design.

The LQ optimal regulator gain is unique, whereas the deadbeat feedback gains
are not. Only one deadbeat gain is LQ optimal. An alternative construction of
such a gain, based on solving an algebraic Riccati equation, is thus available.
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8. PRILOHY

8.1. Priklady k ucebnim textiim

1. Urcete vSechny zpétnovazebni regulatory s ryzim racionalnim prenosem
R(s), které asymptoticky stabilizuji minimalni realizaci pfenosu
S(s) _s+1
S

Je mezi nimi proporcionalni reguldtor R(s) =17

2. Urcete vSechny zpétnovazebni regulatory s ryzim raciondlnim prenosem
R(s), které asymptoticky stabilizuji minimalni realizaci prenosu

S

S(S):s+1'

Je mezi nimi regulator R(s)=07?

3. Urcete vSechny zpétnovazebni regulatory s ryzim racionalnim prenosem
R(s), které asymptoticky stabilizuji minimalni realizaci pfenosu

S(s):%.

4. Urcete stavovou reprezentaci(A, B,C,0) rfadu 1 vsech striktné ryzich
regulatorq, které asymptoticky stabilizuji systém x=x+u,y=x+u.
5. Dan diskrétni systém s prenosem
1
S(2)=——.
(2) (-1
UrCete prenos regulatoru, ktery zajisti nejkratSi odezvy y a e na

jednotkovy impuls, privedeny na vstupy r a d.

6. Dan systém, ktery je minimalni realizaci pfenosu

1

S(Z) :S_—z.

Uréete prenos regulatoru, ktery zpétnovazebni systém stabilizuje a
minimalizuje normu H, jeho prenosu Hc mezi vstupem r a vystupem vy.

7. Dan diskrétni systém, ktery je minimalni realizaci pfenosu
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S(Z):leg'

Uréete prenos regulatoru, ktery zpétnovazebni systém stabilizuje a
minimalizuje normu /; jeho prenosu Hs mezi vstupem r a odchylkou e.

8. Dan systém x, , = Ax, +Bu, s maticemi

010 00
A=/1 0 0|, B=|1 1].
010 01

Urcete vSechna zesileni L zpétnovazebniho zdkona fizeni u, =-Lx, x, tak,
aby vysledny systém preved| libovolny stav x, do nulového stavu x, =0 za

nejmensi pocet krokd K. Kolik je K?
9. Dan systém x, , = Ax, +Bu, s maticemi
01 1
A= , B=
1 0 0
a kvadratické kritérium
J =|Cx, +Du,,
s maticemi
c=[ 0], D=0

Urcete zpétnovazebni zakon fizeni u, =-Lx , ktery minimalizuje J pro

kazdy pocatecni stav x,.
10.Dan systém x,,, = Ax, +Bu,s maticemi
01 1
A= , B=| _|.
10 0

Urcete zakon fizeni u, =-Lx,, ktery prfevede libovolny pocatecni stav do
nuly za nejkratsi pocet krokl (a) pfimym vypoétem a (b) minimalizaci
kvadratického kritéria.
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