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2. VÝVOJ OBORU AUTOMATICKÉHO ŘÍZENÍ - FEEDBACK CONTROL: 
THE ORIGINS, THE MILESTONES, AND THE TRENDS 

Vladimír Kučera 

Stav dynamického systému je důsledkem minulosti, a totéž platí o stavu 
oboru automatického řízení. Jedná se o technický obor, a proto jeho vývoj 
je silně ovlivňován vnějšími ekonomickými a společenskými faktory.  
Z těchto předpokladů vychází úvaha o současných trendech rozvoje oboru 
a jeho budoucnosti. 

 

This plenary reviews the major trends in Feedback Control, identifies emerging 
challenges for control theory, and forecasts future technological developments 
in the field. 

Realizing that the best way to understand an area is to examine its evolution 
and the reasons for its existence, a brief history of feedback control is provided 
first. Ingenious feedback devices can be traced back to the ancient Alexandria. 
The milestones of this evolution were the flying ball governor of James Watt 
and its stability analysis by Maxwell, the stability theory of Lyapunov, the 
conception of three-term or PID controllers, the invention of negative feedback 
amplifiers, the introduction of Nyquist and Bode charts, and Wiener’s 
cybernetics.  

The post war developments included optimal control and filtering, adaptive 
control, robust control, and hybrid control systems. The computer technology 
in particular has had a tremendous impact on control theory and its 
application. 

Today, as a result of this evolution, it is possible to implement advanced control 
methodologies. We have smart sensors and smart actuators. The most 
dramatic impact of electronic processing occurs in controllers. In times past, 
computational demands of adaptive, optimal and robust control techniques 
could not be easily performed. With modern electronics, such operations are 
possible. Modern electronic implementations are also more immune to aging 
effects, system noise and disturbances.  



 

4 
  

The forecast of future technological developments is based on the methods 
and technologies that emerge in computers, communications, networking, 
manufacturing, nanoscale science, medicine, and biology. Control theory, on 
the other hand, is looking for new solutions. There is a strong influence of 
computer science and engineering. Feedback will be used mostly to stabilize 
the process and to counteract uncertainties, with other functions achieved by a 
feedforward.The truly exciting developments in any field will occur where there 
is a confluence of application drivers and disciplinary development of the 
subject. Automatic control is no exception. Much attention will have to be paid 
to education and training. The education must be multidisciplinary, with a 
focus on teaching general methods rather than vocational skills. 
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3. METODA POLYNOMIÁLNÍCH ROVNIC V TEORII AUTOMATICKÉHO 
ŘÍZENÍ - POLYNOMIAL CONTROL: PAST, PRESENT, AND FUTURE 

Vladimír Kučera 

Metoda polynomiálních rovnic tvoří českou vědeckou školu, která je 
uznávána po celém světě. Metoda vychází z racionálních přenosů pro 
lineární systémy, chápe je jako podíl dvou polynomů a návrh regulátoru 
redukuje na řešení lineárních rovnic pro polynomy. Poskytuje jednoduché 
výpočetní algoritmy jako alternativu stavových metod návrhu. 
 

3.1. Summary 

Polynomial techniques have made important contributions to systems and 
control theory. Engineers in industry often find polynomial and frequency 
domain methods easier to use than state equation based techniques. Control 
theorists show that results obtained in isolation using either approach are in 
fact closely related. 

Polynomial system description provides input-output models for linear systems 
with rational transfer functions. These models display two important system 
properties, namely poles and zeros, in a transparent manner. A performance 
specification in terms of polynomials is natural in many situations; see pole 
allocation techniques. 

A specific control system design technique, called polynomial equation 
approach, was developed in the 1960s and 1970s. The distinguishing feature of 
this technique is a reduction of controller synthesis to a solution of linear 
polynomial equations of specific (Diophantine or Bézout) type.  

In most cases, control systems are designed to be stable and to meet additional 
specifications, such as optimality and robustness. It is therefore natural to 
design the systems step by step: stabilization first, then the additional 
specifications each at a time. For this it is obviously necessary to have any and 
all solutions of the current step available before proceeding any further. 
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This motivates the need for a parametrization of all controllers that stabilize a 
given plant. In fact this result has become a key tool for the sequential design 
paradigm. The additional specifications are met by selecting an appropriate 
parameter. This is simple, systematic, and transparent. However, the strategy 
suffers from an excessive grow of the controller order. 

This article is a guided tour through the polynomial control system design. The 
origins of the parametrization of stabilizing controllers, called Youla-Kučera 
parametrization, are explained. Standard results on reference tracking, 
disturbance elimination, pole placement, deadbeat control, H2 control, l1 
control and robust stabilization are summarized. New and exciting applications 
of the Youla-Kučera parametrization are then discussed: stabilization subject to 
input constraints, output overshoot reduction, and fixed-order stabilizing 
controller design. 

3.2. Introduction 

The majority of control problems can be formulated using the diagram shown 
in Figure 3.1. Given a plant S, determine a controller R such that the feedback 
control system is (asymptotically) stable and satisfies some additional 
performance specifications such as reference tracking, disturbance 
attenuation, optimality or robustness. 

 

 

 

 

 

Figure 3.1 Feedback control system 

It is natural to separate this task into two steps: (1) stabilization and (2) 
achievement of additional performance specifications. To do this, all solutions 
of the first step, i.e. all controllers that stabilize the given plant, must be found. 

R   
                                                               

S   
                                                               

r e u v y 

d 

+ 

- 
+ 

+ 
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How can one characterize such controllers? Denote sensH  the reference-to-error 

transfer function (sometimes called the sensitivity function) and compH  the 

disturbance-to-control transfer function (the so called complementary 
sensitivity function) in the closed-loop control system, namely 

 
SR

H
+

=
1

1
sens ,   

SR
SRH
+

=
1comp . (3.1) 

Now suppose that S  can be expressed as the ratio of two coprime polynomials, 
abS /= , and that the controller has a like form, pqR /= . Then the two closed-

loop transfer functions can be written as 

 ,:sens aX
bqap

paH =
+

=    bY
bqap

qbH =
+

= :comp . (3.2) 

,:sens aX
bqap

paH =
+

=    bY
bqap

qbH =
+

= :comp . 

Consequently, if R  stabilizes S then the rational functions X  and Y  are bound 
to be stable. These functions cannot be arbitrary, however, since 

1compsens =+ HH . A stability equation follows [34] 

 1=+ bYaX . (3.3) 

Any stabilizing controller can be expressed as XYR /= , where X  and Y  is a 
stable rational solution pair of the stability equation [21]. This solution can be 
expressed in parametric form,  

 bWxX += ,      aWyY −= , (3.4) 

furnishing in turn an explicit parametrization [38] of all stabilizing controllers  

 
bWx
aWyR

+
−

=  (3.5) 

Here x and y are any polynomials satisfying the equation 1=+ byax  while W  is a 

free parameter ranging over the set of stable rational functions. 
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3.3. Stabilizing Controllers 

The intuitive reasoning presented in the introduction will now be made 
rigorous. Suppose that the plant and the controller are linear time-invariant 
single-input single-output continuous-time systems with real rational transfer 
functions S  and R , respectively. Generalizations will be treated at the end of 
the article. Further suppose that the state space realizations of S  and R  are 
stabilizable and detectable; in case S  and R  are not proper, the corresponding 
descriptor realizations are assumed to be also impulse controllable and impulse 
observable. 

3.3.1. Parametrization of Stabilizing Controllers 
The key result is stated in the form of a theorem; the proof is believed to be the 
simplest and most comprehensive one available on the subject. 

Theorem 3.1 

Let 
a
bS = , where a  and b  are coprime polynomials. Let x  and y  be two 

polynomials that satisfy the Bézout equation 

 1=+ byax . (3.6) 

Then the set of all controllers that (asymptotically) stabilize the control system 
shown in Figure 3.1 is given by 

 
bWx
aWyR

+
−

=
,
 (3.7) 

where W  is a parameter ranging over the set of stable (i.e., analytic in 0Re ≥s ) 
real rational functions such that bWx +  is not identically zero. 

Proof consists of three steps. 

1) Fist we shall show that if 
a
bS =  and 

p
qR = are two coprime polynomial 

fractions, and if c is defined by bqapc += , then the control system is stable if 

and only if c/1 is a stable rational function.  
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Indeed, in view of the assumptions on S  and R , the control system is stable if 
and only if the four transfer functions 

 

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




=
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










+

=







r
d

bqbp
aqap

cr
d

SRS
R

SRy
v 11

1
1  (3.8) 

are all stable. The sufficiency part of the claim is evident: the transfer functions 
are all seen to be stable. The necessity part is not evident: the denominator c  
can have zeros in 0Re ≥s  which, conceivably, might cancel in all four numerator 
polynomials ap , aq , bp  and bq . However, this is impossible as the pairs a , b  
and p , q  are both coprime. 

2) Further we shall show that a controller R stabilizes the plant abS /=  if and 
only if it can be expressed in the form XYR /=  for some stable rational solution 
pair X , Y  of the equation 1=+ bYaX . 

Indeed, let X  and Y  be two stable rational functions that satisfy 1=+ bYaX . 
Write X  and Y  as polynomial fractions, namely cpX /=  and cqY /= . Then 

cbqap =+ and c/1  is a stable rational function. Thus pqXYR // ==  is a 
stabilizing controller for S . Conversely, suppose that pqR /=  stabilizes S  and 
define stable rational functions X  and Y  by cpX /=  and cqY /= , where 

bqapc += . Then 1=+ bYaX . 

3) Finally we shall prove that all stable rational solution pairs of the equation 
1=+ bYaX  are given by  

 aWyYbWxX −=+= , , (3.9) 

where x , y  is a particular polynomial solution pair of this equation and W  is a 
parameter that ranges over the set of stable rational functions.  

Indeed, X  and Y  satisfy the specified equation: 

 1)()( =+=−++ byaxaWybbWxa . (3.10) 

It remains to show that every stable rational solution pair of the equation has 
the form shown above for some stable rational function W . We have 

 )()( YybxXa −=− . (3.11) 

Since a  and b  are coprime, the zeros of a are absorbed in those of Yy −  while 

the zeros of b  are absorbed in those of xX − . Put aYyW /)( −= , which is a 

stable rational function. Then bWxX =− , and the claim has been proved. 
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The set of stabilizing controllers for a given plant contains controllers of 
arbitrarily high order. The set may also contain controllers whose transfer 
function is not proper (i.e., analytic at ∞=s ) or is not stable. This is illustrated 
by the following example. 

Example 3.1 

Consider an integrator plant ssS /1)( = . The Bézout equation admits a solution 

0=x , 1=y  so that the set of all stabilizing controllers for S  is given by 

 W
sWsR −

=
1)(  

for any stable real rational 0≠W . 

The parameter  

 1
1)(
+

=
s

sW  

yields 1=R , a proportional gain controller. The parameter 

 1
)( 2 ++
=

ss
ssW  

results in a proportional-integral controller 

 s
sR 11)( += . 

Taking 1=W  leads to the stabilizing controller ssR −=1)( . The resulting 

feedback system is asymptotically stable but it has poles at ∞=s . On the other 
hand, taking 

 1
1)( 2 ++

+
=

ss
ssW  

yields the stabilizing controller 

 1
1)(
+

=
s

sR  

which itself is stable. 
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3.3.2. Discrete-Time Systems 
Theorem 3.1 can be applied to both continuous-time and discrete-time 
systems. Accordingly, a rational function is defined to be stable if it is analytic 
either in 0Re ≥s  or in 1≥z . 

Continuous-time systems can give rise to transfer functions that are not proper. 
In the case of discrete-time systems, however, additional constraints have to 
be imposed: the transfer functions S  and R  are proper (so that the plant and 
the controller are causal systems) and one of them is strictly proper (so that the 
closed loop system is causal). The chronology of samples in the control system 
is usually taken in such a way that S  is to be strictly proper.  

Proper rational controllers can be obtained by a degree control in the general 
formula. A better way, however, is to express S  as a ratio of two polynomials 
in 1−z  and look for polynomials x  and y  in 1−z , solutions of the Bézout 

equation, such that 0)0( ≠x . Then proper rational controllers R  correspond to 

proper stable rational parameters W . 

Example 3.2 

Consider  

 1
1)(
−

=
z

zS , 

a sampled version of the integrator plant. Write 

 1

1

1
)( −

−

−
=

z
zzS . 

Then the Bézout equation 

 1)1( 11 =+− −− yzxz  

admits a solution 1=x , 1=y . The set of all (proper rational) stabilizing 

controllers is given by 

 Wz
WzzR 1

1

1
)1(1)( −

−

+
−−

=  

for any proper stable rational W .  
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3.3.3. Historical Notes 
The use of polynomials, in one way or another, in feedback control systems 
design can be traced back to the 1950s [30], [18]. The authors noted that for a 
closed-loop system to be stable, Hcomp must absorb the plant unstable zeros. 
The plant was assumed to be stable; if this assumption were dropped, sensH  

would have been found to absorb the plant unstable poles. These conditions 
are equivalent to polynomial divisibility conditions and hence to the stability 
equation, which appears in [34]. 

The first attempt to use polynomials in an explicit manner is due to Volgin [37], 
a student of Tsypkin. He obtained a solution of the pole placement problem 
through the solution of a polynomial equation, known as the pole placement 
equation. In the early 1970s, Åström [3] published a polynomial equation 
solution to the minimum variance control problem. The solution was limited to 
minimum phase plants; a general solution was subsequently obtained by 
Peterka [31]. The ultimate book that presents the polynomial equation 
approach to multi-input multi-output control system design is [23]. 

The underlying problem in any control system design is that of stability. It is 
logical to design the control system step by step: stabilization first, then the 
additional performance specifications. To do this, we need to know any and all 
stabilizing controllers for the given plant. 

This problem was first addressed and solved by Kučera [21] in single-input 
single-output discrete-time systems. A generalization of this result to multi-
input multi-output systems was published in [22], [23]. At the same time, and 
entirely independently, an explicit parametrization of all stabilizing controllers 
for continuous-time plants was obtained by Youla et al. [38], [39] in the process 
of ensuring stability for linear-quadratic control systems.  

It took decades to appreciate the importance of the result and come up with 
applications. The milestones were the observations by Desoer et al. [6] and 
Vidyasagar [36] that the polynomial fraction approach can be extended to 
linear systems with non-rational transfer functions, as well as the result by 
Hammer [10] showing that the approach is applicable to a broad class of non-
linear plants. The parametrization was labeled in [1] as the Youla-Kučera 
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parametrization. This result launched an entirely new area of research and has 
ultimately become a new paradigm for control system design. 

3.4. Additional Performance Specifications 

Theorem 3.1 shows that there is a simple formula that generates all the 
stabilizing controllers for a given plant. Using this formula, we can obtain a 
parametrization of all stable closed-loop transfer functions that can be 
obtained by stabilizing a given plant. The bonus is that the parametrization is 
affine in the free parameter W . In contrast, the controller R  appears in a 
nonlinear fashion: 

 

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
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


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





































−+
−+

=
+

=
r
d

aWybbWxb
aWyabWxa

r
d

SRS
R

SRy
v

)()(
)()(1

1
1 . (3.12) 

As R  and W  are in a one-to-one correspondence, it is convenient to use W  in 
lieu of R  in the design process and calculate R  subsequently. Thus the 
parametrization of all stabilizing controllers makes it possible to separate the 
design process into two steps: the determination of all stabilizing controllers 
and the selection of the parameter that achieves the remaining design 
specifications. The extra benefit is that both tasks are linear. 

3.4.1.  Asymptotic Properties 
Asymptotic properties of control systems can easily be accommodated in the 
sequential design procedure. These include the elimination of an offset due to 
step references, the ability of system output to follow a class of reference 
signals, or the asymptotic elimination of specific disturbances [7]. 

In Figure 3.1, asymptotic reference tracking means that the output y  follows 

the reference r  as time approaches infinity, which is to say that the error e  
approaches zero for large times. On the other hand, we speak of asymptotic 
disturbance elimination if the effect of the disturbance d  decreases at the 
output y  for increasing time. In terms of Laplace transforms, rHe sens=  and 

dSHy sens=  are to be stable rational functions. 

Example 3.3 
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Consider the plant )1/(1)( += ssS . The Bézout equation admits a solution 0=x , 

1=y . The set of all stabilizing controllers for S  is  

 W
WssR 1)(1)( +−

=  

for any stable real rational 0≠W . The achievable sensitivity transfer functions 
are WsH )1(sens += . 

To track a step reference, sr /1= , we must take 1sWW =  for any stable rational 

01 ≠W . To eliminate a sinusoidal disturbance, )/( 22 ω+= ssd , we constrain the 

parameter as 2
22 )( WsW ω+=  for any stable rational 02 ≠W . To meet both 

requirements, we simply take 3
22 )( WsW ω+=  for any stable rational 03 ≠W , say 

422 )1/()( ++= sssW ω . 

The resulting controller is 

 )(
1)4()6(3)( 22

2223

ω
ωω

+
+−+−+

=
ss

ssssR . 

The controller obtained in Example 3.3 demonstrates the internal model 
principle: the unstable modes to be followed or eliminated must be generated 
by the controller unless they are present in the plant. 

3.4.2. Pole Placement 
The requirement of stability places all closed-loop system poles within the left 
half-plane 0Re <s . Very often, however, we wish to allocate the poles to a 
specific region of the half-plane or to achieve specific pole positions. Given a 

plant abS /= , the set of all the stabilizing controllers for S  is 
bWx
aWyR

+
−

=  where 

x , y  are polynomials such that 1=+ byax and W  is a free stable rational 

parameter. Let dwW /=  for a stable polynomial d . Then 
p
q

bwdx
awdyR =

+
−

= :  and 

the closed-loop system poles (assuming that S  and R  are both controllable 
and observable) are given by dbyaxdbqap =+=+ )( . Thus W  parametrizes all 

stabilizing controllers for S , the denominator polynomial d  of W  specifies the 
positions of the control system poles, and the numerator polynomial w  od W  
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represents the remaining degrees of freedom, i.e., parametrizes all stabilizing 
controllers that assign the specified poles.  

Example 3.4  

Consider the plant )1/(1)( −= ssS  and the set of stabilizing controllers for S : 

 W
WssR 1)(1)( −−

= . 

Let the desired pole locations be given by the polynomial 01
2 δδ ++= ssd . This is 

achieved by putting dwW /=  for an arbitrary numerator polynomial 0≠w . 

It is to be noted that d specifies the poles at finite positions only. Poles at ∞=s  
will occur whenever the control system has order higher than 2. The order of 
the plant is one, so only the controllers of order one will not generate infinite 
poles. These controllers correspond to the choice 0ω+= sw  for any real 0ω . 

3.4.3. Deadbeat Control 
Deadbeat control is a typical discrete-time control strategy. Given a plant with 
transfer function S , written in the form of a coprime fraction of two 
polynomials in 1−z , abS /= . The task is to determine a controller R  that 
stabilizes the control system of Figure 3.1 and endows its four transfer 
functions sensH , sensSH  and compH , comp

1HS −  with the finite impulse response 

property, that is to say, the corresponding impulse responses vanish in a finite 
time [27]. 

In a stabilized control system, the achievable sensitivity and complementary 
sensitivity functions can be parametrized as follows: 

 )(),( compsens aWybHbWxaH −=+= . (3.13) 

Similarly, 

 )(),( comp
1

sens aWyaHSbWxbSH −=+= −
. (3.14) 

To have the finite impulse response property, the four transfer functions must 
be polynomials in 1−z . Since a  and b  are coprime, this is the case if and only if 
W is a polynomial in 1−z . 
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Consequently, deadbeat controller assigns the pole polynomial 1=d in the 
indeterminate 1−z , i.e., all closed-loop system poles are located at the point 

0=z . 

For the impulse responses to be finite and as short as possible, we simply select 
W  so as to minimize the degrees of sensH  and compH . This corresponds to taking 

the least degree solution pair x , y  of the Bézout equation 1=+ byax and setting 

0=W . 

Example 3.5 

Consider )1/(´)( 11 −− −= zzzS , a sampled version of the integrator plant. Then the 

least degree solution of the Bézout equation 

 1)1( 11 =+− −− yzxz  

is 1=x , 1=y  and the set of all stabilizing controllers was found in Example 3.2 

to be 

 Wz
WzzR 1

1

1
)1(1)( −

−

+
−−

=  

for any proper stable rational W .  

The resulting sensitivity and complementary sensitivity functions are 
parametrized as 

 WzzzzH
WzzzzH

)1()(

)1(1)(
111

comp

111
sens

−−−

−−−

−−=

−+−=
 

and similarly 

 .)1(1)(

)(
211

comp
1

21
sens

WzzzHS
WzzzSH

−−−

−−

−−−=

+=
 

These functions are seen to be polynomials in 1−z  if and only if W  is so. The 
shortest impulse responses are achieved for 0=W  1

sens 1 −−= zH , 1
sens

−= zSH  and 
1

comp
−= zH , 1

comp
1 1 −− −= zHS . The resulting deadbeat controller is 1=R . 
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3.4.4. H2 Optimal Control 
The sequential design procedure will be further illustrated on the design of 
linear-quadratic optimal controllers. Given a plant with transfer function 

abS /= , the task is to find a controller that stabilizes the control system of 
Figure 3.1 while minimizing the H2 norm of some closed-loop transfer function, 
say of the complementary sensitivity function compH , which is defined [7], [40] 

by 

 
2
1

ω)ω(
2
1 2

comp2comp 







= ∫

∞

∞−

djHH
π . (3.15) 

The set of sensitivity functions that can be achieved in the stabilized control 
system is  

 )(comp aWybH −= , (3.16) 

where W is a free stable rational parameter. The parameter will be selected so 
as to minimize the norm of compH . 

Let αβ  be a polynomial defined by keeping the stable (in 0Re <s ) zeros of ab  

while replacing the unstable (in 0Re ≥s ) ones with their negative values. Then 
αβ/ab is inner (or all-pass) and   

 .
22

comp2comp βαβααβ W
a
yH

ab
H −==

.
 (3.17) 

Consider the decomposition  

 
a
qp

a
y

+=
βα  (3.18) 

with p  polynomial and aq /  strictly proper. With this decomposition, 

 2

2

2

2

2

2comp βαWp
a
qH −+=  (3.19) 

because aq /  and βαWp −  are orthogonal and thus the cross-terms contribute 

nothing to the norm. The last expression is a complete square whose first part 
is independent of W . Hence the minimizing parameter is αβ/pW =  and if it is 
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indeed stable and admissible, it defines the unique optimal controller. 
Otherwise, no optimal controller exists. 

 The consequent minimum norm equals 

 
2

2comp a
q

=HWmin
.
 (3.20) 

It is easy to see that the (finite) pole positions of the H2 optimal control system 
are given by the pole polynomial αβ=d . 

Example 3.6 

To illustrate, consider the plant )1/(1)( −= ssS . The class of all stabilizing 

controllers for S  was found in Example 3.4, namely 

 W
WssR )1(1)( −−

=  

for a free stable rational parameter 0≠W . The complementary sensitivity 
transfer function is  

 WssH )1(1)(comp −−= . 

Now 1+= sα , 1=β  and the polynomial part of 

 1
21

1
1

−
+=

−
+

=
ss

s
a
yβα  

is 1=p . Thus compH  attains minimum H2 norm for  

  
1

1
+

=
s

W  

and the corresponding optimal controller is 2)( =sR . 

The optimal complementary sensitivity function is  

1
2

comp +
=

s
H  

and 2
2sens =H . 
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3.4.5.  l1 Optimal Control 
The H2 norm minimization is appropriate for systems excited by finite energy 
signals. When the exogenous signals persist, a more relevant norm to measure 
system performance is the L1 norm (for continuous-time systems) or the l1 
norm (for discrete-time systems). The discrete-time case is much easier. 

The problem is posed as follows. Given a discrete-time plant abS /= , find a 
controller R  that stabilizes the control system shown in Figure 3.1 while giving 
rise to some closed-loop transfer function, say sensH , whose impulse response 

sensh  is of minimal l1 norm. 

The l1 norm of the sequence ),,,( 210sens hhhh =  is defined [7] as 

 .01sens ∑∞

=
= i ihh l .

 (3.21) 

Since +++= −− 2
2

1
10sens )( zhzhhzH , the l1 norm of sequences implies a 1-norm of 

the corresponding z-transforms, namely 

 .
1sens1sens lhH =

.
 (3.22) 

The set of sensitivity functions that can be achieved in the stabilized control 
system of Figure 3.1 is 

 ,sens abWaxH +=
.
 (3.23) 

where W  is a free stable rational parameter. The task is to select W  so as to 
minimize the 1-norm of sensH . This minimization problem is solvable if and only 

if a  and b  have no zeros on the unit circle [5]. The optimal sensitivity function 

sensH  is not unique but has a finite impulse response property [17]. 

In view of this property, we express all transfer functions as ratios of 
polynomials in 1−z . Perform the stable-unstable factorizations −+= aaa  and 

−+= bbb , where −a  and −b  absorb all the zeros of a  and b , respectively, in the 

open unit disc 11 <−z . Then sensH  is a polynomial in 1−z  if and only if W  has the 

form 
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 ,++=
ba

wW
.
 (3.24) 

where w is a free polynomial in 1−z . Indeed,  

 ,sens wbaaxH −−+=
.
 (3.25) 

and the 1-norm minimization of sensH  is equivalent to a finite linear program for 

the coefficients of w . 

The pole positions of the l1 optimal control system are given by the pole 

polynomial ++= bad  in the indeterminate 1−z , duly completed by poles at 0=z . 

Example 3.7 

Consider a plant with the transfer function 

 
.

)21(
5.1

)2(
5.11

21

1
1

2 −

−
−

−
−

=
−
−

=
z

zz
z

zS  

The Bézout equation 1=+ byax  admits a solution 15.01 −−= zx , 123 −+−= zy  and 

the set of stabilizing controllers is given by the formula 

 Wzzz
WzzR
)5.1(5.01

)21(23
111

211

−+−
−−+−

= −−−

−−

 

for any stable rational W . 

The set of achievable sensitivity functions is 

 WzzzzzH )5.1()21()5.01()21( 1211121
sens −−+−−= −−−−−  

and those which are polynomials in 1−z  are 

 ,)21()5.01()21( 211121
sens wzzzzH −−−− −+−−=  

where w is the numerator polynomial in 1−z  of 

 
.

5.11 −
= −z

wW  

An upper bound for the degree of w , as follows from a result obtained in [5], is 
2. The linear program: 
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minimize 54321 rrrrrt ++++=  

subject to  iii rhr ≤≤−  and 0≥ir , 5,2,1 =i  

where 

 







































−
−

−
+























−

−

=























2

1

0

5

4

3

2

1

400
440

144
014
001

0
0
2

6
5.4

w
w
w

h
h
h
h
h

 

then returns 

 0,0,5.1 210 === www  

so that 

 
.

5.1
5.1

1 −
= −z

W  

The optimal controller is 

 
,

)5.1)(1(
43

11

1

−+
−

= −−

−

zz
zR  

the corresponding optimal sensitivity function is 

 ,431 31
sens

−− +−= zzH  

and .8
1sens =lh  

It is to be noted that R  is not a deadbeat controller because sensSH  is not a 

polynomial. Indeed, only polynomial parameters W  result in deadbeat 
controllers 

3.4.6. Robust Stabilization 
The notion of robust stability addresses stabilization of plants subject to 
modeling errors, when the actual plant may differ from the nominal model, 
using a fixed controller. The ultimate goal is to stabilize the actual plant. The 
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actual plant is unknown, however, so the best one can do is to stabilize a large 
enough set of plants. 

Thus the basis technique to model plant uncertainty is to model the plant as 
belonging to a set. Such a set can be either structured – for example, there is a 
finite number of uncertain parameters – or unstructured – the frequency 
response lies in a set in the complex plane for every frequency. The 
unstructured uncertainty model is more important for several reasons. On the 
one hand, it is well suited to represent high-frequency modeling errors, which 
are generically present and caused by such effects as infinite-dimensional 
electromechanical resonance, transport delays, and diffusion processes. On the 
other hand, the unstructured model of uncertainty leads to a simple and useful 
design theory. 

The unstructured set of plants is usually constructed as a neighborhood of the 
nominal plant, with the uncertainty represented by additive or multiplicative 
perturbations [5], [40]. The size of the neighborhood is measured by a suitable 

norm, most common being the H∞ norm that is defined for any rational 
function G  analytic on the imaginary axis as 

 ω)(supω jGG =
∞ . (3.26) 

This section will illustrate the design for robust stability under unstructured 
norm-bounded multiplicative perturbations. Consider a nominal plant with 
transfer function S  and its neighborhood ∆S  defined by 

 SFS )1(: ∆+=∆ , (3.27) 

where F  is a fixed stable rational function and ∆ is a variable stable rational 
function such that 1≤∆

∞
. The idea behind this uncertainty model is that ∆F  is 

the normalized plant perturbation away from 1: 

 ∆=−∆ V
S
S 1

.
 (3.28) 

Hence if 1≤∆
∞

, then for all frequencies ω  
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 )(1
)(
)( ω

ω
ω jF

jS
jS

≤−∆  (3.29) 

so that )( ωjF provides the uncertainty profile while ∆ accounts for phase 

uncertainty. 

Now suppose that R  is a controller that stabilizes the nominal plant S . 
Consequently, R  will stabilize the entire family of plants ∆S  if and only if [5], 

[40] 

 1comp <
∞

FH
.
 (3.30) 

This is a necessary and sufficient condition for robust stabilization of the 
nominal plant S . 

The set of all stabilizing controllers for abS /=  is described by the formula 

 
bWx
aWyR

+
−

=
,
 (3.31) 

where 1=+ byax  and W  is a free stable rational parameter. The robust stability 

condition then reads 

 1)( <−
∞

FaWyb . (3.32) 

Any stable rational W  that satisfies this inequality then defines a robustly 
stabilizing controller R  for S . In case W  actually minimizes the norm one 
obtains the best robustly stabilizing controller. 

Example 3.8 

Consider a plant with the transfer function [26] 

 
s

s
ssS τ

τ
−

−
+

= e
1
1)(  

where the time delay τ is known only to the extent that it lies in the interval 
2.00 ≤≤τ . The task is to find a controller that stabilizes the uncertain plant τS . 

The time-delay factor sτ−e can be treated as a multiplicative perturbation of the 
nominal plant 
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 1
1)(

−
+

=
s
ssS  

by embedding τS  in the family  

 SFS )1( ∆+=∆ , 

where ∆ ranges over the set of stable rational functions such that 1≤∆
∞

. To 

do this, F  should be chosen so that the normalized perturbation satisfies 

 
ω)(1e1

ω)(
ω)( ωτ jF

jS
jS j ≤−=− −∆  

for all ω  and τ . A little time with the Bode magnitude plot [5] shows that a 
suitable uncertainty profile is 

 9
13)(

+
+

=
s
ssF . 

Figure 3.2 is the Bode magnitude plot of this F  and 1e −− sτ  for 2.0=τ , the worst 

value. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Bode plots of F (dotted) and 1e 2.0 −− s (solid) 
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The task of stabilizing the uncertain plant τS  is thus replaced by that of 

stabilizing every element in the set ∆S , that is to say, by robustly stabilizing the 

nominal plant S  with respect to the multiplicative perturbations defined by F . 

The set of all stabilizing controllers for S  is found to be 

 Ws
Ws

sR
)1(

)1(
)(

2
1

2
1

++−
−−

=  

where )1(2 +≠ sW  is any stable rational parameter. The robust stability 

condition reads 

 1<−
∞

QWP  

where 

 9
13)1)(1()(,

9
13)1(

2
1)(

+
+

+−=
+
+

+=
s
ssssQ

s
sssP . 

Since Q  has one unstable zero at 1=s , it follows from the maximum modulus 

theorem [5] that the minimum of the H∞ norm taken over all stable rational 
functions W  is 5/2)1( =P  and this minimum is achieved for 

 )13)(1(
3115

10
1

)(
(1))()(

++
+

=
−

=
ss

s
sQ
PsPsW . 

Thus the robust stability condition is satisfied and the corresponding best 
robustly stabilizing controller is 

 1
9

13
2)(

+
+

=
s
ssR . 

3.5. Advanced Applications 

The step-by-step design paradigm has found numerous applications in the 
literature. Although the idea is 30 years old, it is still a subject of current 
interest. This will be demonstrated by presenting several advanced applications 
that address control problems difficult to solve otherwise, or provide 
alternative solutions with attractive features. 
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3.5.1. Stabilization Subject to Input Constraints 
Most plants have inputs that are subject to hard limits on the range of 
variations that can be achieved. The effects of actuator saturation on a control 
system are poor performance and/or instability. Stabilization subject to input 
constraints can be formulated either as a local stabilization, when saturation is 
avoided for a set of initial states and the control system behaves as a linear 
one, or as a global stabilization, when saturation is allowed to occur and the 
control system is nonlinear. 

Consider the saturation avoidance approach [15]. Given a discrete-time plant 

 0TxSuy +=  (3.33) 

with x0 the initial state and with the input ...2
2

1
10 +++= −− zuzuuu subject to the 

constraints ...,2,1,0, =≤≤− +− kuuu k  

where u+ and u –  are positive constants. The task is to find a controller of the 
form (zero initial state 0w  assumed) 

 0QwyRu +−=  (3.34) 

such that the control system shown in Figure 3.3 is locally asymptotically stable 
for any initial state 0x  of the plant within a given polyhedron }:{ fFxxPF ≤= , 

where F  is a matrix and f  is a vector. 

 

 

 

 

 

Figure 3.3 Control system with initial states 

 

Denote abS /=  and acT /=  the polynomial fraction representation of the 
plant. The control sequences in a stabilized closed-loop system are 
parametrized as 

R S 
y 

Qw0 

 

Tx0 

 
u 

+ 

+ 
+ 

- 
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0)( xaWycu −−= . 

Taking W  in the form of a power series around the point ∞=z  

 ...2
2

1
10 +++= −− zpzppW  (3.35) 

shows that the control sequence is an affine function of the parameters 0p  , 1p , 

2p , … of the form 

 ...,2,1,0,)...,,( 010 == kxppGu kk  (3.36) 

and satisfies the given constraint if 0x  belongs to the polyhedron 

}),...,(:{ 21 gxppGxPG ≤=  generated by 
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.

 (3.37) 

Now 0x  is in FP  , so that FP  must be contained in GP . Applying the Farkas 

lemma [15], one concludes that the stabilization problem has a solution if and 
only if there exists a matrix P  with non-negative entries and real numbers 0p  , 

1p , 2p , … such that 

 gPfppGPF ≤= ,),...,( 10 . (3.38) 

This is a linear program for P  and 0p  , 1p , 2p , … . The stabilizing controller is 

then obtained by putting  

 ...zpzppW +−+−+= 2
2

1
10 . (3.39) 

If the power series W  is approximated by a polynomial in 1−z , then the program 
has a finite dimension. 

Example 3.9 

Consider the plant described by the input-output and state-output transfer 
functions 
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1

21
2)(,

21
)( −−

−

−
=

−
=

z
zT

z
zzS  

The plant input is constrained as  

 ...,2,1,0,11 =≤≤− kuk  

and the initial state 0x  belongs to the polyhedron 
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1
3
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01
1

: xPF          (or 3/10 ≤x ). 

The set of stabilizing controllers is found to be 

 Wz
WzzR 1

1

1
)21(2)( −

−

+
−−

=  

for a free, proper stable rational parameter W . The corresponding control 
sequence is  

 0
1 ])2(124[) xWzzu −−+−=( . 

Now start with 0=W  and check whether the resulting linear program for P  is 
feasible: 
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It is not, hence no controller of order 0 stabilizes the plant. 

Proceed by choosing 0pW =  and check whether the resulting linear program for 

0p  and P  is feasible: 
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It is, and the solution 
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furnishes the stabilizing controller 

 1

1

23
44)( −

−

+
+

=
z
zzR . 

The actual polyhedron of stabilizable initial states is  
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and it includes FP  as a proper subset. 

Note that the closed-loop control system features the finite impulse response 
property. Selecting a polynomial parameter W  implies that the closed-loop 
poles are all at the origin. 

3.5.2. Input and Output Shaping 
In addition to actuator amplitude or rate limits, control system design often has 
to take into account output signal overshoot or undershoot, trajectory planning 
constraints and other time-domain specifications. 

As seen in the preceding section, such constraints are easy to handle in 
discrete-time systems. The z-transform provides a simple direct relationship 
between the signals and their transforms: 

 ......),,,( 2
2

1
10210 +++⇔ −− zuzuuuuu . (3.40) 

However, this is not true for the Laplace transform applied in continuous-time 
systems. The best parallel we can make [16] is to assign distinct negative real 
poles (rather than placing them all in the origin) and express signals as 
polynomials in the corresponding exponential modes. 
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Given a plant abS /= , we are seeking in Figure 3.1 a stabilizing controller 
pqR /=  such that the output y  asymptotically follows a reference r  while the 

time-domain constraints 

 maxminmaxmin )(,)( ytyyutuu ≤≤≤≤  (3.41) 

are satisfied for all 0≥t , where minu , maxu , miny  and maxy  are given real numbers.  

We assume that S  is strictly proper and that R  is proper so as to avoid 
impulsive modes. 

Assign distinct negative integer poles is  

 )(: ii ssdbqap −Π==+ . (3.42) 

Then signals in the closed-loop system are sums of the corresponding decaying 
exponential modes, 

 ts
ii

ts
ii

ii ytyutu −− Σ=Σ= e)(,e)( . (3.43) 

Let g  be the greatest common divisor of the poles is , so that gks ii =  for some 

integers ik . The signals can now be expressed as polynomials in the 

indeterminate gt−= eλ , namely 

 ii k
ii

k
ii ytyutu λλ Σ=Σ= )(,)( . (3.44) 

When time t  increases from 0 to ∞, indeterminate λ  decreases from 1 to 0 and 
the time constraints become the polynomial bound constraints 

 maxminmaxmin )(,)( yyyuuu ≤≤≤≤ λλ  (3.45) 

or, equivalently, the polynomial non-negativity constraints  

 
,0)(,0)(

,0)(,0)(

maxmin

maxmin

≥+−≥−
≥+−≥−

yyyy
uuuu

λλ
λλ

 (3.46) 

along the interval ]1,0[∈λ .  

A polynomial non-negativity constraint 

 ],[,0)( maxmin0 λλλλλ ∈∀≥Σ= =
i

i
n
i pp  (3.47) 
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is equivalent [13] to the existence of real symmetric matrices minP , maxP  of size n  

+ 1 satisfying the linear matrix inequality constraints 

 
0,0

...,,1,0,)]([trace)]([trace

maxmin

1maxmaxmin1min

≥≥
=−+−= −−

PP
niHHPHHPp iiiii λλ

,
 (3.48) 

where iH  is the basis Hankel matrix with ones along the )1( +i th anti-diagonal 

and zeros elsewhere. 

Now all proper rational controllers R  that assign the pole polynomial 
)( ii ssd −∏=  are parametrized by a polynomial w  of appropriate degree, see 

Section 3.2. The coefficients of w  are our design parameters and they appear in 
the coefficients iu , iy  of the closed-loop signals in an affine manner. Therefore 

the linear matrix inequalities are convex in the design parameters.  

Example 3.10 

Given the plant [16] 

 )2(
5.0

−
+

=
ss

sS , 

the stabilizing controller 

 7911917
240384

23 +++
+

=
sss

sR  

assigns the closed-loop system poles at – 1, – 2, – 3, – 4, – 5 while ensuring 
asymptotic step reference tracking. Despite the poles being negative real, the 
step response features an unacceptable overshoot of 140 % due to system 
zeros, see Figure 3.4. 
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Figure 3.4 Step response with unacceptable overshoot 

The set of all proper rational controllers that assign the above poles is given by 

 wssss
wssssR

)5.0(7911917
)2(240384)( 23 +++++

−−+
=  

where swww 10 +=  is a free polynomial of degree at most 1. The closed-loop 

responses to a step input are affine in w , 

 )5)(4)(3)(2)(1(
)15.1(120432384)(

22

+++++
−−−++

=
ssssss

wssssssy , 

and correspond to a sum of decaying exponential modes in the time domain, 

 
it

ii yty −
=Σ= e)( 5

0  

or to a polynomial  

 
i

ii yy λλ 5
0)( =Σ=  

in the indeterminate .e t−=λ  The coefficients iy  are affine functions of 0w  and 

1w . 

Suppose the desired maximum overshoot is 20 %. This specification translates 
as 02.1)( yty ≤  and is equivalent to the polynomial non-negativity constraint 

 02.0)( 5
5

4
4

3
3

2
210 ≥−−−−−= λλλλλλ yyyyyyp  
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along the interval ]1,0[∈λ . This is in turn equivalent to the linear matrix 

inequality problem for 0w  and 1w . A standard solver returns 

 ssw 27.1236.100)( −−=  

and the closed-loop response shown in Figure 3.5. 

Figure 3.5 Step response with reduced overshoot 

Our design conditions are necessary and sufficient as soon as we fix the poles 
to be assigned. So it may happen that the constraints are not satisfied with a 
given choice of poles, whereas they could be satisfied with another choice. 

3.5.3. Fixed-Order Stabilizing Controllers 
A weakness of the sequential design based on the Youla-Kučera 
parametrization is that each performance specification beyond stability may 
increase the order of the controller. 

The degree control in the stable rational parameter dwW /=  is difficult. If d  is 
fixed, all closed-loop transfer functions are affine in w  but the order of w  
increases with each additional performance specification. If d  is not fixed, we 
have a greater flexibility but we run into difficulties as the set of stable 
polynomials is not convex in the space of coefficients. 

The difficulty was resolved in [12] by providing a convex inner approximation of 
the non-convex stability domain [14] in the space of polynomial coefficients. 
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This approximation is parametrized by a given stable polynomial, referred to as 
the central polynomial, as explained below. 

Given a fixed stable “central” polynomial )(sc  of degree n , polynomial )(sd  of 

degree n  is stable if there exists a real symmetric matrix Q  of size n  solving the 

linear matrix inequality 

 0),( 1
T
22

T
1

TTT ≥ΠΠ+ΠΠ+−+= QQcccddcQdH c ε , (3.49) 

where  

 




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






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
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


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





=Π

10

10
,

01

01

21   

are projection matrices, c  and d  are the coefficient vectors of the polynomials 
)(sc  and )(sd , and ε  is an arbitrarily small positive scalar. 

The interpretation of this result is as follows: as soon as polynomial c  is fixed, 
we obtain a sufficient linear matrix inequality condition for stability of 
polynomial d . Therefore,  

 }0),(::{ ≥∃= QdHQdH cc  (3.50) 

is a convex inner approximation of the (generally non-convex) stability domain 
in the space of polynomial coefficients. 

Let us now show how to design stabilizing controllers of a fixed (presumably 
low) order. Suppose a plant abS /=  is given and suppose that we have a 
stabilizing controller pqR /= . We seek to find a stabilizing controller xyR /=  of 

a given order m , if such a controller exists. 

The two stabilizing controllers are related as bWxp += , aWyq −= , where 

dwW /= . Then 

 .0
0

0
=



























−−

−

w
d
y
x

aqd
bpd

A
  

 (3.51) 



 

35 
  

Let  
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





21

21

21

21

ww
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be a minimal polynomial basis of A . Then all the stabilizing controllers for S  
are generated by the formula 

 
2211

2211

xx
yyR

λλ
λλ

+
+

=
,
 (3.52) 

where 1λ  and 2λ  are polynomials such that 2211 dd λλ +  is a stable polynomial. A 

stabilizing controller of order m  exists if  

 m
yy
xx

=
















2

1

21

21deg
λ
λ

.
 (3.53) 

Using the convex inner approximation of the set of stable polynomials, we can 
optimize over polynomials 1λ  and 2λ  to enforce low degrees of x  and y  (linear 

algebraic constraint) as well as stability of d  (linear matrix inequality 
constraint).  

The catch is that this parametrization is based on a sufficient, hence potentially 
conservative, stability condition and that the conservativeness depends on the 
choice of the central polynomial.  

Example 3.11 

Consider the plant  

 )10(
1)( 2 ++

=
sss

sS  

of order 3. A stabilizing controller of order 2 can be found by placing the 
closed-loop poles at arbitrary locations. For example, the controller 

 44
14526)( 2

2

−+
++−

=
ss

sssR  

places all five closed-loop poles at  – 1.  
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Our aim is to find a stabilizing controller of a lower order. A minimal polynomial 
basis for the polynomial matrix A  is given by 

 


















−−+
−++−

−−

10314944
26101

261
10

2

23

sss
sss

 

All the stabilizing controllers can be recovered from the polynomials 1λ  and 2λ  

such that the pole polynomial )2610( 23
21 −+++−= sssd λλ  is stable.  

From the first two rows of the basis a controller of order 0 can be obtained by 
restricting the parameters 1λ  and 2λ  to be constant. Hurwitz stability criterion 

then reveals that d  is stable if and only if )26,36(1 −−∈λ  and 12 =λ . For example, 

with 301 −=λ  we obtain the controller 4)( =sR  and the closed-loop pole 

polynomial 41023 +++= sssd . 

In this simple example, we were able to obtain an exact solution. In general, 
the linear matrix inequality has to be used. 

3.6. Concluding Remarks 

The parametrization of all stabilizing controllers can easily be extended to 
multi-input multi-output plants. Rational matrices are represented as 
„polynomial matrix fractions“, that is to say, as the left and right factorizations  

 LLRR BAABS 11 −− ==  (3.54) 

of two polynomial matrices, where RA  and RB  are right coprime while LA and 

LB are left coprime. The set of all stabilizing controllers for S  is given by 

 )(1)(1))(( LWALYLWBLXWRBRXWRARYR −−+=−+−= ,
 (3.55) 

where the polynomial matrices LX , LY  and RX , RY  satisfy the Bézout identity 

 I
AY
BX

XY
BA

RR

RR

LL

LL =







−







 −
,
 (3.56) 
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and where W  is a stable real rational matrix parameter such that LL WBX −  and 

WBX RR +  are nonsingular matrices [22], [23], [36], [39]. 

It is interesting to note that the set of stabilizing controllers can be 
parametrized also for plants with irrational transfer functions. This is possible 
whenever such a transfer function is expressed in the form of a fraction of two 
coprime stable functions. This property is by no means evident [36] and it 
holds, for instance, for transfer functions having a finite number of singularities 
in 0≥sRe , each of which is a pole. 

Even more striking is the observation that stabilizing controllers can be 
parametrized for nonlinear plants, where transfer functions no longer exist. The 
key condition is again the possibility of factorizing the nonlinear mapping that 
defines the plant into two „coprime“ mappings, one of them representing a 
stable system while the other one representing the inverse of a stable system 
[6]. Technical assumptions may prevent one from parametrizing the entire set 
of internally stabilizing controllers; still, the subset may be large enough for 
practical purposes.  

The parametrization of all stabilizing controllers is a result that launched an 
entire new area of research and that has ultimately become a new paradigm 
for the design of linear control systems. Being of algebraic nature [6], [25], it is 
a result of high generality and elegance. The stabilizing controllers are obtained 
by solving a linear equation. This is not because the plant to be stabilized is 
linear but because it is expressed as an element of the ring of fractions defined 
over the ring of stable plants [36]. The requirement of stability is thus 
expressed as one of divisibility in a ring. 

The ring of stable plants depends of course on the notion of stability that is 
applied. Asymptotically stable systems give rise to transfer functions that are 
analytic in 0≥sRe , whereas bounded-input bounded-output systems have 

transfer functions that are analytic in 0≥sRe as well as at ∞=s . That is why we 

could work with polynomial fractions in this paper; had we required the control 
system to be bounded-input bounded-output stable, proper stable fractions 
would be appropriate. The Bézout equation, though solved in a different ring in 
each case, stands as the fundamental linear design equation. 
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There is a dual result: the parametrization of all plants that can be stabilized by 
a fixed controller. This result is useful in system identification. In fact, the 
(difficult) problem of closed-loop identification of the plant becomes a (simple) 
problem of open-loop identification of the parameter, as discussed in [1]. 
Consequently, the parametrization may facilitate the study of dual control. 
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4. PARAMETRIZACE VŠECH STABILIZUJÍCÍCH REGULÁTORŮ - STATE SPACE 
REPRESENTATION OF ALL STABILIZING CONTROLLERS 

Vladimír Kučera 

Stabilita je základním požadavkem při návrhu regulačních systémů. Proto 
je důležité znát všechny regulátory, které stabilizují danou soustavu. 
Takových regulátorů je nekonečně mnoho a parametrizace je vhodným 
způsobem jejich vyjádření. Splnění dalších požadavků na regulační systém 
pak lze zajistit vhodným výběrem parametru. 

 

Most control systems are designed to be stable and to meet additional 
specifications, such as optimality and robustness. It is therefore natural to 
design the systems step by step: stabilization first, then the additional 
specifications each at a time. For this it is obviously necessary to have any and 
all solutions of the current step available before proceeding any further. 

This motivates the need for all controllers that stabilize a given system. In fact, 
this is an infinite family and we find it convenient to describe it in a parametric 
form, known as the Youla-Kučera parameterization. The additional 
specifications are then met by selecting an appropriate parameter. Such a 
procedure is simple, systematic, and transparent.  

The lecture will start with a transfer function approach to the parameterization 
of all stabilizing controllers and proceed with a state space approach. It will be 
shown how doubly coprime fractional representations of a system can be 
obtained by applying to it a stabilizing state feedback and a stabilizing output 
injection. Consequently, all controllers that stabilize a given system are built 
around an observer-based central stabilizing controller. 

The lecture has a significant pedagogic value. State space and transfer function 
techniques are presented as connected approaches, rather than isolated 
alternatives. 
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5. KVADRATICKY OPTIMÁLNÍ SYSTÉMY S PŘEDEPSANÝMI PÓLY - 
OPTIMAL CONTROL SYSTEMS WITH PRESCRIBED EIGENVALUES 

Jiří Cigler 

Póly lineárního systému lze umístit do požadované polohy buď přímo, 
metodou přiřazení pólů, nebo nepřímo, například pomocí kvadratické 
optimalizace. Optimální řízení vyústí v určité rozložení pólů podle 
zadaného kritéria kvality regulace. Ukážeme, jak kvadratickým kritériem 
dosáhnout předepsaného rozložení pólů. 

 

5.1. Introduction 

The optimal linear-quadratic design has several nice features. In particular, the 
closed-loop system enjoys certain robustness properties. The transient 
behavior of the closed-loop system, however, is difficult to determine in 
advance since there is no simple relation between the weighting matrices that 
specify the performance index and the closed-loop eigenvalues. To get a good 
transient response, the weights are often determined iteratively through trial 
and error. 

The eigenvalue assignment (or pole placement) methods address the transient 
phenomena directly by specifying a set of desired closed-loop eigenvalues. 
However, different feedback gains can lead to the same pole pattern when the 
system has several inputs and these gains can produce different transients.  

Attempts to combine the two methods are of an early date. Results exist on 
optimal control with eigenvalues restricted to a specified region of the complex 
plane, namely a semi-plane [2], a disk [9], a sector [11], or a hyperbolic region 
[19]. Optimal control with exactly prescribed eigenvalues is more difficult to 
achieve. Various results reflect various approaches to seeking a relationship 
between the weighting matrices and eigenvalue locations [33], [35], [8], [20], 
[4].  

This paper is a streamlined presentation of paper [4], with some 
generalizations. The weighting matrices of the optimal control problem are 
constructed so as to relocate a single eigenvalue (or a pair of complex 
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conjugate eigenvalues) to a prescribed position while leaving the remaining 
eigenvalues at their original positions. The region of the complex plane into 
which each eigenvalue can be located is described. The process of relocation 
can be repeated as long as a desired eigenvalue pattern is achieved.  

5.2. Preliminaries 

We consider a continuous-time linear system 

 0),()()( ≥+= ttButAxtx  (5.1) 

and seek a control law 

 )()( tFxtu =  

that minimizes a quadratic cost of the form 

 dtRuuQxx TT )(
0∫
∞

+  (5.2) 

for every initial state )0(x . The matrices Q  and R  are symmetric with 

0≥= CCQ T  and 0>R . 

We suppose that the pair ),( BA  is stabilizable and the pair ),( CA  is detectable. 

Then  

 ,1 PBRF T−−=  (5.3) 

where P  is a unique symmetric solution of the algebraic Riccati equation 

 01 =+−+ − QPBPBRPAPA TT  (5.4) 

such that .0≥P  The optimal closed-loop system  

 )()()( txBFAtx +=  (5.5) 

is asymptotically stable. 

Consider the Hamiltonian matrix 

 








−−
−

=
−

T

T

AQ
BBRA

H
1

 (5.6) 
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The eigenvalues of H  are symmetrically distributed with respect to the 
imaginary axis. One half of the eigenvalues have negative real parts; they are 
the eigenvalues of the optimal closed-loop system (5.5). 

5.3. Single Eigenvalue Relocation 

The linear-quadratic control imposes the eigenvalues of the closed-loop 
system. Given A  and B , the choice of Q  and R  achieves a certain pattern of 

the eigenvalues of H , which in turn define the closed-loop system eigenvalues.  

In order to achieve an optimal system with prescribed eigenvalues, we shall 
investigate the possibility of selecting Q  and R  so as to relocate (or shift) a 

single eigenvalue at a time, leaving the remaining eigenvalues at their original 
positions. For the sake of exposition, we shall consider the two cases as follows. 

5.3.1. The Case of a Real Simple Eigenvalue 
Let T  be a similarity transformation that brings A  to its Jordan form, 

 BTBATTA 11 ~,~ −− ==  (5.7) 

and suppose that A~ is diagonal.  

Choose one controllable eigenvalue, say 1λ , of A  to be re-located and exhibit it 

in the Jordan form as follows 

 








×
=








=

Tb
B

J
A 1

1

1 ~,
0

0~ λ
 (5.8) 

where Tb1 is the first row of matrix B~ and × indicates the remaining entries. 

Take the weighting matrix Q  as  

 ,~)( 11 −−= TQTQ T  (5.9) 

where 

 







=

00
0~ 1q

Q  (5.10) 
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with 01 ≥q  a real parameter, and select the weighting matrix R  so that 

11
1

1 =− bRbT .  

Let 1µ be the desired position to which the eigenvalue 1λ is to be relocated. We 

shall first analyze which positions for 1µ are admissible and which matrices Q  

will realize the shift.  

Consider the Hamiltonian matrix (5.6), 


















−−
−



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



=

−−

− TT

T

T T
T
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T
T

H
0

0
~~

~~~

)(0
0 11

1 , 

and calculate  
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0
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1
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where 

 








−−
−

=
11

1
1

1
λ

λ
q

H  

and where × indicates the remaining entries. It follows that all the eigenvalues 
of A  but 1λ remain unchanged and the re-location of 1λ to 1µ requires that 

 ))(()(det 1 µµ +−=− ssHsI , 

that is, 

 
2
1

2
1

2
1

2
1 )()(det µλ −=+−=− sqsHsI . 

We conclude that 11 λµ ≥
 
since 01 ≥q . The eigenvalue can only be relocated 

further from the origin. In particular, if 1µ  is to be stable, it can only be shifted 

to the left.  
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Having chosen Q  and R , the optimal control law (5.3) that achieves the desired 

shift is given by solving the Riccati equation (5.4). Make an inspired guess that 
the optimal solution matrix P  is 

 ,~)( 11 −−= TPTP T  (5.11) 

where 

 







=

00
0~ 1p

P  (5.12) 

for some real constant 01 ≥p . Substituting (5.7), (5.9) and (5.11) into (5.4) gives 

 0)~~~~~~~~~~()( 111 =+−+ −−− TQPBRBPPAAPT TTT . 

Using (5.8), (5.10) and (5.12), the Riccati equation is reduced to a scalar 
equation for 1p , namely 

 02 111
2
1 =−− qpp λ , 

which can readily be solved. In particular, 111 µλ −=p . 

The process can be repeated for each eigenvalue ad libitum until the desired 
pattern of eigenvalues is achieved.  

5.3.2. The Case of a Real Multiple Eigenvalue 
Now suppose that the controllable eigenvalue of A  to be relocated, call it again

1λ , is real but it generates a Jordan block of size k . 

We claim that the result obtained in Subsection A  holds in this case also. 
Indeed, the choice of Q  as described above results in a shift of 1λ to a new 

position .1µ The remaining eigenvalues of A  keep their original positions. In 

particular, 1λ remains an eigenvalue of A  but it generates a Jordan block of size 

1−k . 

Therefore, the effect of the optimal control law (5.3) on sys-tem (5.1) is to split 
the Jordan block of 1λ into a single eigenvalue 1µ and a smaller block of 1λ . This 

process can be continued, resulting in a spectrum of k  eigenvalues kµµµ ,...,, 21  
positioned outward of 1λ .  
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5.4. Relocation of a Complex Conjugate Pair of Eigenvalues 

Suppose that A  has a pair of simple, complex conjugate eigenvalues, say λλ =1

and λλ =2 , which are controllable and are to be relocated simultaneously to 

obtain a new complex conjugate pair of eigenvalues µµ =1  and µµ =2 . In this 

case we have, using an appropriate similarity transformation T , 

 








×
=







Λ
=

TB
B

J
A 2

2

2 ~,
0

0~  (5.13) 

where 

 







=Λ

λ
λ
0

0
2  (5.14) 

and where TB2 denotes the first two rows of B~ and× indicates the remaining 

entries. 

Take the weighting matrix Q  as  

 ,~)( 11 −−= TQTQ T  (5.15) 

where 

 







=

00
0~ 2Q

Q  (5.16) 

and 02 ≥Q is a Hermitian 2× 2 matrix parameter. As the first two columns of T  

are complex conjugate of each other, 2Q  will have equal diagonal entries, 

 







=

qq
qq

Q
12

12
2  (5.17) 

for a real q  and a complex 12q  that satisfy 12qq ≥ . Select the weighting matrix 

R  so that 

 22
1

2 :
1

1
 Ω=








=−

ω
ω

BRBT  (5.18) 

for a complex ω  such that .1≤ω  
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For a single eigenvalue, only an outward shift is possible. The situation is more 
involved in the case of shifting a pair of eigenvalues. The relevant quantities are 
related by the 4× 4 Hamiltonian matrix 









Λ−−
Ω−Λ

= TQ
H

22

22
2  

whose eigenvalues are to equal µµ,  and µµ −− , . Substituting from (5.14), 

(5.17) and (5.18), we obtain 

 

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

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
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
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det)(det
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).)(1(Re22

)Re(Re2
2

12
22

12
224

2
12

24

qqqq

sqqs

−−+++

+++−=

ωωλλλ

ωλ
 

The intended relocation calls for 

4224
2 Re2)(det µµ +−=− ssHsI  

and the admissible region into which λλ,  can be relocated is determined by 

the equalities 

 12
22 ReReRe qq ωλµ ++=  (5.19) 

 
.))(1(

Re22
2

12
22

12
2244

qq

qq

−−+

++=

ω

ωλλλµ
 (5.20) 

The shape of the admissible region for µµ,  depends on λ and ω . To visualize 

the region, we denote µRe=x , =y  µIm  so as to have  

 
2224222 )(,Re yxyx +=−= µµ  

and we proceed by fixing the values of ω  as follows. 
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5.4.1. The Case of 1=ω  
In this case Ω  is a rank-one singular matrix, which happens for single-input 
systems. Equations (5.19) and (5.20) read 

 12
222 ReRe qqyx ωλ ++=−  (5.21) 

 12
224222 Re22)( qqyx ωλλλ ++=+  (5.22) 

We observe that these equations are linear in q  and are to be solved for some 

real 12qq ≥ .  

 

Figure 5.1 Stable admissible region for λ = – 1 + 2j and for |ω| = 1. 

Therefore suppose that 12qq ≥ . Then 

 qqqq ≤≤≤ 121212Re ωω  

and 

 .Re 2
12

2
12

2
12

2 qqqq λλωλωλ ≤≤≤  

In view of that,  

 ,0Re 12 ≥+ qq ω  0Re22 12
22 ≥+ qq ωλλ  

and (5.21), (5.22) yield the inequalities 

 222 Reλ≥− yx  (5.23) 
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 .222 λ≥+ yx  (5.24) 

Observe that (5.23) represents either the interior of the equi-lateral hyperbola 

 
222 Reλ≥− yx ,  

or the exterior of the conjugated hyperbola 

 
222 Reλ−≤− xy , 

or the sector delineated by their asymptotes 

 ,, xyxy −==  

depending on the sign of 2Reλ . The real and imaginary axes of the above 

hyperbolas equal the square root of 2Reλ .  

Inequality (5.24) represents the exterior of a circle with radius λ , centered at 

the origin. 

Figure 5.1 and Figure 5.2 visualize as shaded areas the stable admissible regions 
into which the eigenvalues j21+−=λ , j23+=λ  can be relocated when 1=ω .  

5.4.2. The Case of ω = 0 
In this case Ω  is the identity matrix. Equations (5.19) and (5.20) read 

 qyx +=− 222 Reλ  (5.25) 

 .2)( 2
12

224222 qqqyx −++=+ λλ  (5.26) 

We observe that these equations are quadratic in q  and are to be solved for 

some real q  and a complex 12q  such that 12qq ≥ . It follows from (5.25) that q  is 

real as long as (5.26) is satisfied for some 12q .  

Write (5.26) in the form 

 .)()( 222222
12 yxqq +−+= λ  

In view of 012 ≥q  this equation implies the inequality 
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 .222 λ+≤+ qyx  

 

Figure 5.2 Stable admissible region for λ = 3 + 2j and for |ω| = 1. 

Substituting for q from (5.25), one obtains 

 
222 Re2 λλ −≤y  

or equivalently 

 λ22 Im≤y  (5.27) 

On the other hand, the condition 12qq ≥   turns (5.26) into the inequality 

.2)( 224222 qyx ++≥+ λλ  

Substituting for q  from (5.25), one obtains 

 λλλλ 224222222 Im4)(2)( ≥+−−+ yxyx  (5.28) 

Observe that equation (5.27) defines a strip of width λIm2  along the real axis 

while equation (5.28) represents the exterior of a Cassini oval with foci at the 
points )0,(),( λ=yx  and )0,(),( λ−=yx . The shape of the Cassini oval depends 

on the value of ./)(Im4 22 λλ  Thus the real part of the eigenvalues λλ, can only 

be relocated outside the oval while the imaginary part is not increased.  
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Figure 5.3 Stable admissible region for λ = – 1 + 2j and for ω = 0 

Figure 5.3 and Figure 5.4 visualize the stable admissible regions – the shaded 
areas – into which the eigenvalues j21+−=λ , j23+=λ  can be relocated when 

0=ω . The ovals are shown in blue whereas the strip boundaries are shown in 
red. 

 

Figure 5.4 Stable admissible region for λ = 3 + 2j and for ω = 0. 

5.4.3. The Case of 10 << ω  
In this case Ω  is a general rank-two matrix. The shape of the admissible region 
can be investigated using (5.19) and (5.20) while considering the conditions for 
a real q  and a complex 12q  to exist such that 12qq ≥ . 

Equations (5.19) and (5.20) read 
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 12
222 ReRe qqyx ωλ ++=−  (5.29) 

 
.))(1(

Re22)(
2

12
22

12
224222

qq

qqyx

−−+

++=+

ω

ωλλλ
 (5.30) 

It follows from (5.29) that q  is real as long as (5.30) is satisfied for some 12q . 

The condition 12qq ≥  turns (5.30) into the in-equality  

 .Re22)( 12
224222 qqyx ωλλλ ++≥+  (5.31) 

Now (5.29) and (5.31) jointly define regions bounded by a family of octic curves 
parameterized by ω. The curves are shown for the eigenvalue j21+−=λ  in 

Figure 5.5 and Figure 5.6 in blue, each figure corresponding to a particular 
value of  ω . 

On the other hand, the upper bound for the imaginary part y  of µ  is evaluated 

from (5.29) and (5.30) for each x . The result is a family of curves parameterized 
by ω . The curves are shown for the eigenvalue j21+−=λ  in Figure 5.5 and 

Figure 5.6 in red, each figure corresponding to a particular value of ω .  

The shaded areas that are shown in Figure 5.5 and Figure 5.6 por-tray the 
regions into which µµ ,  can be relocated. Thus the real part of the eigenvalues 

can be shifted outward while the imaginary part is bounded from above.  

Note that when ,0→ω  the attainable regions shown in Figure 5.5 and Figure 

5.6 approach the region shown in Figure 5.3. On the other hand, when ,1→ω  

we recover the singular case, see Figure 4.1. It is of interest to note that the 
maximal assignable imaginary part in Figure 5.5 and Figure 5.6 grows 
progressively with ω . The growth is slow for 5.0<ω  and is fast only when

9.0>ω . 

The target eigenvalues can in particular be taken real, resulting in a double real 
eigenvalue µ . This case is addressed by setting 0Im == µy  in the expressions 

above. 

Having chosen Q  and R , the optimal control law (5.3) that achieves the desired 

shift is obtained by solving the Riccati equation (5.4). Make an inspired guess 
that the optimal solution matrix P  is 
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 ,~)( 11 −−= TPTP T  (5.32) 

 

Figure 5.5 Stable admissible region for λ = – 1 + 2j and for |ω| = 0.5. 

where 

 







=

00
0~ 2P

P  (5.33) 

for some 2× 2 Hermitian matrix 02 ≥P  having equal diagonal entries. Substituting 

(5.7), (5.15) and (5.32) into (5.4) yields  

 0)~~~~~~~~~~()( 111 =+−+ −−− TQPBRBPPAAPT TTT . 

Figure 5.6 Stable admissible region for λ = – 1 + 2j and for |ω| = 0.95. 

Using (5.13), (5.16), (5.18) and (5.33), the Riccati equation reduces to 
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 ,022222222 =+Ω−Λ+Λ QPPPP T  

to be solved for 2P .  

 

The process can be repeated for each pair of complex conjugate eigenvalues ad 
libitum until the desired eigenvalue pattern is achieved. 

5.5. Conclusion 

A design of linear-quadratic optimal systems with prescribed eigenvalues has 
been presented. The method is well suited to modify a given linear-quadratic 
design so as to improve the transient response of the closed-loop system. Slow 
eigenvalues can be made faster and oscillatory eigenvalues can be dampened. 
The didactic value of the results can be seen in providing an explicit 
relationship between the weighting matrices and the closed-loop eigenvalue 
positions. The method is so simple that it can eventually make its way to 
control textbooks.  
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6. JE KONEČNÝ POČET KROKŮ REGULACE KVADRATICKY 
OPTIMÁLNÍ? - DEADBEAT RESPONSE IS L2 0PTIMAL 

Vladimír Kučera 

Konečný počet kroků regulace je specifickým požadavkem při návrhu 
diskrétně pracujících regulačních obvodů. Naproti tomu kvadratické 
kritérium je uznávanou metodou návrhu stabilních a optimálních 
systémů. Je překvapující, že systémy zaručující konečný počet kroků 
regulace jsou kvadraticky optimální. 
 
 

6.1. Deadbeat Regulator 

We consider a linear system ),( BA  described by the state equation  

 ...,1,0,1 =+=+ kBuAxx kkk  (6.1) 

where m
k RIu ∈ and .n

k RIx ∈  The objective of deadbeat regulation is to 

determine a linear state feedback of the form 

 kk Lxu −=  (6.2) 

that drives each initial state 0x  to the origin in a least number of steps. 

We define the reachability subspaces of system (6.1) by 

 ....,2,1],...[range 

,0
1

0

==

=
− kBAABBR

R
k

k

 

Hence kR  is the set of states of (6.1) that can be reached from the origin in k  

steps by applying an input sequence 110 ,,, −kuuu  . When ,n
n RIR =  the system 

),( BA  of (6.1) is said to be reachable. 

Define the integers  

 1dimension  dimension −−= kkk RRq  

and for mk ,,2,1 =  let 
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 }. :{y cardinalit iqqr kki ≥=  

The integers mrrr ≥≥≥ 21  are the reachability indices of system (6.1). 

We further define the controllability subspaces for (6.1) by 

 
...,2,1},:{

,00

=∈∈=

=

kRxFRIxC
C

k
kn

k

 

Thus kC  is the set of all states of (6.1) that can be steered to the origin in k  

steps by an appropriate control sequence 110 ,,, −kuuu  . When ,n
n RIC =  the 

system ),( BA  of (6.1) is said to be controllable. It follows from the definitions 

that reachability implies controllability and the converse is true whenever A  is 
nonsingular. 

The existence and construction of deadbeat control laws is described below. 
For each ,2,1=k  let kSSS ,,, 21   be a sequence of kqmqmqm ××× ...,,, 21  matrices 

such that 

 . range ]...[ range 1
21 kk

k RBSAABSBS =−  

Therefore kSSS ,,, 21   serve to select a basis for kR . 

Theorem 6.1 

[29] There exists a deadbeat control law (6.2) if and only if the system ),( BA  of 

(6.1) is controllable. Let 

 
...,2,1,)(

,0

11

0

=−′+=

=

−− kBLALLL
L

k
kkkk

 (6.3) 

where kL′  satisfies 

 ].0...0[]...[ 1
21 kk

k
k SBSAABSBSL =′ −  

Then nLL =  is a deadbeat regulator gain. 

The theorem identifies all deadbeat control laws via the recursive procedure 
(6.3). Actually the procedure can be terminated in q  steps, where 

}.C:{min 1 kkCkq == +  The resulting closed-loop system matrix is nilpotent with 

index q , 
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 .0)( =− qBLA  (6.4) 

If A is nonsingular, the recursive procedure (6.3) can be shortcut by setting 
01 =−qL . Then, the Jordan structure of BLA−  comprises m  nilpotent blocks [28] 

of sizes mrrr ,,, 21   and the index of nilpotency equals 1rq = . In fact, this is the 

least size of Jordan blocks that can be achieved [24] in a reachable system (6.1) 
by applying state feedback (6.2). 

6.2. Linear Quadratic Regulator 

We consider a linear system described by the state equation (6.1), 

 ...,1,0,1 =+=+ kBuAxx kkk  

where m
k RIu ∈ and .n

k RIx ∈  The objective of LQ regulation is to find a linear 

state feedback of the form (6.2), 

 kk Lxu −=   

that stabilizes the closed-loop system 

 kk xBLAx )(1 −=+  

and, for every initial state x0, minimizes the l2 norm 

 ∑∞

=
= 0

T2

k kk yyy  

of a specified output p
k RIy ∈ of the form 

 .kkk DuCxy +=  (6.5) 

The existence and construction of an LQ control law is described below. We say 
that the system ),( BA  of (6.1) is stabilizable if the system matrices can be 

transformed to the following form using an appropriate basis: 

 







=








=

0
,

0
1

22

1211 B
B

A
AA

A  

where the subsystem defined by the pair of matrices ),( 111 BA  is reachable and 

22A  is a stable matrix. We say that the system ),,,( DCBA  defined by the state 
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equation (6.1) and the output equation (6.5) is left invertible if its transfer 
function DBAzIC n +− −1)(  has full column normal rank. We further define the 

system matrix as the polynomial matrix 

 






 −−
=

DC
BAzI

zS n)(  

and say that a complex number ξ  is an invariant zero of the system ),,,( DCBA  
if the rank of )(ξS  is strictly less than the normal rank of )(zS . 

Theorem 6.2 

[32] Suppose that the system ),( BA  of (6.1) is stabilizable. Suppose that the 

system ),,,( DCBA  defined by (6.1) and (6.5) is left invertible and also has no 

invariant zeros on the unit circle 1=z . Then, there exists a unique LQ regulator 

gain given by 

 ),()( 1 CDXABXBBDDL TTTT ++= −  (6.6) 

where X  is the largest symmetric nonnegative definite solution of the algebraic 
Riccati equation 

 
).()()( 1

TT

CDXABXBBDDCDXAB
CCXAAX

TTTTTTT +++−

+=
−

 (6.7) 

The assumption of left invertibility for ),,,( DCBA  is required in order for the 

matrix XBBDD TT +  to be nonsingular while the remaining assumptions are 
required for the existence of the requisite solution X  of the algebraic Riccati 
equation. 

6.3. The Deadbeat Regulator As an LQ Regulator 

The aim of this section is to show that deadbeat control laws in reachable 
systems are LQ optimal. This will be done by constructing an output (6.5) of the 
system (6.1) so that the resulting LQ regulator gain is a deadbeat gain. 

Let the system ),( BA  of (6.1) be reachable with reachability indices mrrr ,,, 21  . 

Then there exists a similarity transformation T  that brings the matrices A  and 
B  to the standard reachability form [28], 



 

58 
  

 TBBTATA =′=′ − ,1  (6.8) 

where A′  is a top-companion matrix with nonzero entries in rows ir , mi ,,2,1 =  

and B′  has nonzero entries only in rows ir  and columns ij ≥ , mi ,,2,1 = . 

Theorem 6.3 

Suppose that the system ),( BA  of (6.1) is reachable, with reachability indices 

mrrr ≥≥≥ 21  and with the matrix B  having rank m . Let T  be a similarity 

transformation that brings A  and B  to the standard reachability form. Then, 
the feedback gain L  that is LQ optimal with respect to TC =  and 0=D  in (6.5) 
is a deadbeat gain. 

Proof. Consider the transfer function of system (6.1) in polynomial matrix 
fraction form 

 )()()( 11 zPzQBAzIn
−− =−  (6.9) 

where P  and Q  are right coprime polynomial matrices in z  of respective size 

 mm×  and mn× , with P  column reduced and column-degree ordered with 
column degrees mrrr ≥≥≥ 21 . These integers are the reachability indices of 

(6.1). 

The system (6.1) being reachable, the matrices AzIn −  and B  are left coprime. 

It follows from (6.9) that the denominator matrices AzIn −  and )(zP  have the 

same determinant (in fact, the same invariant polynomials). 

For any feedback (6.2) applied to system (6.1), one obtains 

 ])([
0

][ BBLAzI
IL

I
BAzI n

m

n
n −−−=








−

−−  

and 

 .
)()(

)(
)(
)(0









+

=















zLQzP

zQ
zP
zQ

IL
I

m

n  

Then (6.9) implies that  

 .)]()()[()]([ 11 −− +=−− zLQzPzQBBLAzIn  (6.10) 
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Thus the closed-loop system transfer function matrices )( BLAzIn −−  and B  are 

left coprime while )()( zLQzP +  and )(zQ  are right coprime. It follows from 

(6.10) that the polynomial matrices )( BLAzIn −−  and )()( zLQzP +  have the 

same determinant (in fact, the same invariant polynomials). 

Now we show that an LQ regulator gain exists that is optimal with respect to 
TC =  and 0=D . Indeed, the pair ),( BA  is reachable, hence stabilizable. The 

quadruple )0,,,( TBA  corresponds to the transfer function BAzIT n
1)( −−  whose 

column normal rank is m , hence the system is left invertible. The system matrix  

 






 −−
=

0
)(

T
BAzI

zS n  

has rank mn +  for all complex numbers z , which implies that )0,,,( TBA  has no 

invariant zeros at all. Consequently, the assumptions of Theorem 6.2 are all 
satisfied, which shows the existence of an LQ optimal regulator gain (6.6). 

Consider the associated algebraic Riccati equation (6.7). Add  
zXAXAXAXAz T1 )()( −+−−  to the right-hand side of the equation in order to 

introduce polynomial matrix factorizations, then use (6.6) and (6.9) to get the 
following identity [28] 

 
)].()([)]()([

)]()()[()]()([
T11

TT11

zDPzCQzDPzCQ
zLQzPXBBDDzLQzP T

++=

+++
−−

−−

 (6.11) 

Define a polynomial mm×  matrix F , which is column reduced and column-
degree ordered with column degrees mrrr ≥≥≥ 21 , by the equation 

 )]()([)]()([)()( T111T zDPzCQzDPzCQzFzF ++= −−−  (6.12) 

in such a way that its inverse 1−F  is analytic in the domain 1|| ≥z . This matrix is 

referred to as the spectral factor and it is determined uniquely by (6.12) up to 
multiplication on the left by a constant orthogonal matrix. 

The pair ),( BA  being reachable, the matrices A  and B  can be brought to the 

reachability standard form (6.8) using the similarity transformation matrix T . 
The corresponding right coprime polynomial fraction matrices are related by 

 )()(),()( zTQzQzPzP =′=′  
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and Q′  has the block-diagonal form 

 .]

1

...,,

1

,

1

[ diag-block )(

111 21






















































=′

−−− mrrr z

z

z

z

z

z
zQ


 

The spectral factorization (6.12) reads 

 
]...,,,[ diag)()(

)()()()(

21
1

T1T1T

m
T rrrzQzQ

zTQTzQzFzF
=′′=

=
−

−−

 

so that 

 ]....,,,[ diag)( 21
21

mr
m

rr zrzrzrzF =  

It follows from (6.11) that the LQ regulator that is optimal with respect to TC =  
and 0=D  induces the closed-loop right denominator matrix )()( zLQzP +  with 

invariant factors .,...,,, 21 mrrr zzz  The same factors are shared by the closed-loop 

left denominator matrix )( BLAzIn −− . Therefore, BLA−  is nilpotent with 

Jordan structure comprising m  nilpotent blocks of sizes mrrr ,, 21 . The 

nilpotency index of BLA−  is 1r , the largest reachability index. Q.E.D. 

The restriction of Theorem 6.3 to reachable systems, while technically 
important, is actually a mild restriction as it covers the case of main practical 
interest. Controllable systems (6.1) that are not reachable possess a singular 
matrix A  with nilpotent dynamics. Such systems are inherently discrete. In 
particular, the periodically sampled continuous time systems, considered in the 
discrete instants of time, have a nonsingular matrix A . 

The other restriction applied in Theorem 6.3, namely B  having full column rank 
m , is needed to guarantee the solvability of the LQ regulator. It represents no 
practical constraint, either. Indeed, if the rank of B  is less than m , then the 
components of the control vector u  are linearly dependent. 

6.4. Example 

To illustrate, let us consider a system (6.1) described by the matrices 
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 .
10
00
01

,
100
011
010
















=
















= BA  

Since 

 3
3210

1010
0100
0001

 image,
10
00
01

 image,0 RIRRRR =















==
















==  

the system is reachable with reachability indices r1 = 2, r2 = 1. Since 

 3
3210

100
010
001

 image,
10
01
01

 image,0 RICCCC =















==















−
==  

the system is controllable and 2=q . 

Deadbeat gains can be calculated using Theorem 6.1. One can take 

 







=








=

0
1

,
10
01

21 SS  

thus obtaining, recursively, 

 







==







 +
=

1
021

,
1
01

321 αααα
ββ

LLL  

for any real numbers α  and β . Any and all deadbeat gains are given as 

 .
1
021








=

αα
L  

The closed-loop system (6.1), (6.2) is described by 

 ,
0
011
011

















−−

−−
=−

αα
BLA  

which is a nilpotent matrix with index 2=q . Any initial state is driven to the 

controllability subspace 1C  in one step and then to the origin in the second 
step. 
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Let us now transform (6.1) to the reachability standard form. An appropriate 
similarity transformation T  is found to be 

 .
100
011
010
















=T  

It allows calculating a deadbeat gain as the LQ regulator gain that is optimal 
with respect to TC =  and 0=D . 

Since rank 2=B , the conditions of Theorem 6.2 are all satisfied. The algebraic 
Riccati equation (6.7) has a unique symmetric non-negative definite solution 

 .
100
032
022
















=X  

The resulting LQ regulator gain (6.6), 

 ,
100
021








=L  

is indeed a deadbeat gain, corresponding to 0=α . The other deadbeat gains, 
however, cannot be obtained using this approach. 

6.5. Conclusion 

Deadbeat control and LQ regulation in discrete-time systems, two control 
strategies that are so different in nature, are in fact related. It has been shown 
that a deadbeat control law can be obtained by solving a particular LQ 
regulator problem, at least for reachable systems. This demonstrates the 
flexibility offered by the LQ regulator design. 

The LQ optimal regulator gain is unique, whereas the deadbeat feedback gains 
are not. Only one deadbeat gain is LQ optimal. An alternative construction of 
such a gain, based on solving an algebraic Riccati equation, is thus available. 
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8. PŘÍLOHY 

8.1. Příklady k učebním textům 

1. Určete všechny zpětnovazební regulátory s ryzím racionálním přenosem 
)(sR , které asymptoticky stabilizují minimální realizaci přenosu 

 
s

ssS 1)( +
= . 

Je mezi nimi proporcionální regulátor 1)( =sR ? 

2. Určete všechny zpětnovazební regulátory s ryzím racionálním přenosem 
R(s), které  asymptoticky stabilizují minimální realizaci přenosu  

 
1

)(
+

= s
ssS . 

 Je mezi nimi regulátor 0)( =sR ? 

3. Určete všechny zpětnovazební regulátory s ryzím racionálním přenosem 
)(sR , které asymptoticky stabilizují minimální realizaci přenosu  

 
1_)( s

ssS = . 

4. Určete stavovou reprezentaci )0,,,( CBA  řádu 1 všech striktně ryzích 
regulátorů, které asymptoticky stabilizují systém uxyuxx +=+= , . 

5. Dán diskrétní systém s přenosem 

 2)1_(
1)(

z
zS = . 

Určete přenos regulátoru, který zajistí nejkratší odezvy y  a e  na 

jednotkový impuls, přivedený na vstupy r  a d . 

6. Dán systém, který je minimální realizací přenosu 

 
2_

1)(
s

zS = . 

Určete přenos regulátoru, který zpětnovazební systém stabilizuje a 
minimalizuje normu H2 jeho přenosu HC mezi vstupem r  a výstupem y . 

7. Dán diskrétní systém, který je minimální realizací přenosu 
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2_

1)(
z

zS = . 

Určete přenos regulátoru, který zpětnovazební systém stabilizuje a 
minimalizuje normu l1 jeho přenosu HS mezi vstupem r  a odchylkou e . 

8. Dán systém kkk BuAxx +=+1 s maticemi 

 















=
















=

10
11
00

,
010
001
010

BA . 

Určete všechna zesílení L  zpětnovazebního zákona řízení kk Lxu −=  xk tak, 

aby výsledný systém převedl libovolný stav 0x  do nulového stavu 0=kx  za 

nejmenší počet kroků K . Kolik je K ? 

9. Dán systém kkk BuAxx +=+1 s maticemi 

 







=








=

0
1

,
01
10

BA  

a kvadratické kritérium 

 
2kk DuCxJ +=  

s maticemi 

 [ ] .0,01 == DC  

Určete zpětnovazební zákon řízení kk Lxu −= , který minimalizuje J pro 

každý počáteční stav 0x . 

10. Dán systém kkk BuAxx +=+1 s maticemi 

 







=








=

0
1

,
01
10

BA . 

Určete zákon řízení kk Lxu −= , který převede libovolný počáteční stav do 

nuly za nejkratší počet kroků (a) přímým výpočtem a (b) minimalizací 
kvadratického kritéria. 
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