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Chapter 1

Introduction

The present age is the age of science and amazing technologies. The progress
in the science that has been made during the last several decades has opened
future growth opportunities in all areas of our everyday life. We can mention
namely computer, medical, physical and chemical science, communication
technologies, nanotechnologies, aerospace, but also chemical, petrochemical,
machinery and automotive industries, oil refining and many others as excel-
lent examples of areas with the great progress. All these areas require deep
understanding of fundamental physical principles and relations. The results
of R&D (Research and Development) activities are various technologies, pro-
cedures, complex and large-scale systems, machines, production lines, etc.
Integral parts of such systems are sensors and actuators. The sensors and
actuators are utilized by electronic systems which are used for monitoring
and to ensure their accurate, reliable and safe operation during the lifetime.

Model based predictive control (MPC) is a technology offering a systematic
approach for controlling the multivariable constrained dynamical systems.
MPC technology uses a model of the controlled system to predict the future
response. The responses are functions of the system input trajectories, pa-
rameters and disturbances. The task for MPC controller is to compute the
optimal trajectories for the system inputs which are subject of the control
so that the defined objectives for the control loop will be satisfied. In the
industrial control, these inputs are known as manipulated variables (MVs).
The control objectives are expressed by using a cost function (known also
as penalty function). The cost function penalizes undesired behavior of the
system over the prediction horizon and it has usually additive form. The
individual terms of the sum describes different goals for the controller. The
importance of the particular goals are expressed by using the so called weight-
ing coefficients. The next important feature of MPC is the ability to handle
the constraints in a nature and systematic manner. These constraints are
defined namely by the technological, economical, but also safety restrictions
of the controlled system.



The MPC problem is formulated as an optimization problem which has to
be solved periodically at each sampling period. This is a real differentiator
of MPC when compared to classical control methods. In the efficient MPC
formulations, the optimization problem is expressed as a mathematical pro-
gramming problem which can be solved quite efficiently for a certain class of
problems. However, the efficiency of the solvers is still a limiting factor for
MPC applications in several areas, especially if the controlled systems are
nonlinear and/or are sampled with fast sampling period. The linearity of
the controlled system is an important factor when implementing the MPC
controller. If the MPC controller is designed for the linear system, all the
constraints are linear and the cost function is quadratic, we refer to a lin-
ear MPC controller. The linear MPC controller is translated to a quadratic
programming problem (QP) for which there exist very efficient solvers. The
first class of the most efficient solvers is based on active sets, the second is
known as interior point methods.

The things becoming complicated when the system is nonlinear. In this case
there are several options how to achieve a good MPC control. The simplest
one is just to ignore the nonlinearity at all and to design the controller for a
certain operating point of the system. With some luck, the controller will be
robust enough and will behave acceptably and we are done (...preferred in
the practice). If the nonlinearity cannot be simply ignored, the linear MPC
controller in its basic formulation cannot be used and must be extended. The
most efficient and systematic solution, at least from the theoretical point of
view, is to utilize the fully nonlinear controller. This means that the con-
troller utilizes the nonlinear model of the process to compute the predictions
and to handle the constraints. The resulting optimization problem is then
nonlinear which may be a challenge to solve in the real-time at each sampling
period, as it is required. Another interesting question, when decided for the
nonlinear MPC, is how to get a reliable nonlinear model.

It is well known that the success of the MPC application depends on the
model quality, i.e. how accurately the model describes the controlled system.
Better accuracy means usually better control performances and less compli-
cations with the robustness of the solution. The modeling phase in the MPC
design procedure plays a very important role. The designer must decide on
whether to use the linear or nonlinear approach, select suitable model struc-
ture, decide on the model complexity, prepare the identification experiment
collect representative data and to fit the model parameters. All these steps
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Figure 1.1: Hierarchical structure of a control system

are very important for the successful MPC story.

1.1 Advanced control technologies

Available computer technologies enable implementing the control systems in
a wide range of applications. Selection of appropriate control technology and
of particular control algorithms is influenced by many factors, e.g. number
of actuators, controlled variables (CV), required sampling period, safety and
reliability requirements, physical structure of the controlled system, com-
munication limitations, etc. As an example, we can mention a commonly
used structure of the control system in the process industry - hierarchical
structure. The hierarchical structure is depicted on Fig. 1.1

1.1.1 Instrumentation

This layer represents the basic actuators and sensors of the controlled tech-
nology. The number of input/output points depends on the technology but
in general, in the process industry, it may be very large (more than several
thousands). Typically, it is required to write/read all the values periodically
with a time period corresponding to the system character. The measured
values are marked by the time stamp and are stored in a process history
database which is a very efficient way how to organize the process data.



1.1.2 Basic Control

The basic control layer is usually a core system that ensures the basic func-
tionality and safety operation of the technology. The basic control must be
reliable system which often provides a backup solution for the advanced con-
trol layer. It contains various technologies to achieve the mentioned goals. If
we refer to basic control, we have to think about the technology as a whole
and not only about the elemental control loops manipulating the plant actu-
ators. This includes namely the overall control strategy and its hierarchy. It
integrates all the basic control modes (manual, automatic, cascade control)
but also monitoring and visualization tools. This layer can be seen as the
gate for the advanced control and optimization layer because it provides plant
prestabilization and reduces the nonlinearities (linearization like effect). The
feedback loops are typically implemented by PID controllers.

1.1.3 Advanced Control

The control algorithms which contain some advanced functionality are in-
cluded in the advanced control layer. These algorithms interact directly with
the basic control and perform coordination of individual parts and control
loops of basic control strategies. The coordination is usually done through
the setpoints, based on master/slave system. Note that the sampling periods
in the advanced control layer are slower than in the basic control because the
rejection of fast disturbances is a job for the basic control. The main goal
is to ensure the optimal operation of the plant under the given conditions
which are driven namely by actual technological and economical conditions
and by resource restrictions. It is clear that the advanced control algorithms
have to work with multivariable systems, must be able to handle prescribed
constraints and should ensure the optimal operation. The MPC control tech-
nology is therefore an ideal candidate for this position. This layer may contain
also the so called real-time optimization (RTO) module. RTO module is usu-
ally a model based optimization algorithm that computes the goals for the
advanced control of individual plant units or processes. RT'O may be static
or dynamic and is used for the internal coordination of individual parts of the
plant. It is not a surprise, that RTO may be formulated and implemented
by an MPC controller.

1.1.4 Planing

The top supervisory layer in the industrial control systems are planing and
scheduling. These are usual entry points for the plant technologists and
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Figure 1.2: A way from the control to an optimization problem

control problem

managers. This layer is based on economic-related informations and should
provide a complex overview about the plant performance. The main tools
here are the databases, visualization tools and specialized computation rou-
tines. The planing layer specifies the goals for the advanced control layer
in the form of various setpoints, constraints, optimality conditions, resource
availability and resource allocation, schedules, etc.

Main enablers for the advanced control and planing tools are the efficient
mathematical optimization algorithms and powerful computers which can
host the computation routines. The software architecture of the control ap-
plications must be very flexible. The solution has to be modular, easily
reusable, extendable, but also user friendly. The last mentioned feature is
very important and may be a key(!) for success of an advanced control tech-
nology.

The MPC methodology should be seen as a tool which enables to delivery
the decided goals specified for the controlled process and not as a technology
which could replace all the control techniques. The success of applications
depends namely on the skills of the application engineers responsible for MPC
implementation to a particular process. Translation of the MPC problem to
an optimization problem is relatively simple and straightforward, as it will
be shown later in this text. The difficult thing may be the formulation of
the control problem as a MPC problem. This is very important for practical
applications and it requires excellent understanding of the process (from the
control point of view) and very good knowledge of MPC, see Fig. 1.2 .

1.2 Classical approach to discrete time dynamic sys-

tem optimization

In this section three general optimization methods of discrete time dynamic
system are presented. In the first part it is variational approach based on
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mathematical programming. The second general method is discrete maxi-
mum principle and the last one is dynamic programming.

1.2.1 Mathematical programming approach to discrete
system optimization

Let us have discrete time dynamic system described by state space difference
equation

w(t+1) = f(z(t),ult),t), t=to,...,t1—1 (1.1)
with initial condition z(ty) = x¢. The problem is to find the control sequence
u(tg), ..., u(t;—1), which minimizes the criterion in the form

t—1
J=h(z(t)) + > g(x(t),u(t),t), (1.2)
t=0

where (t; — tp) is the optimality horizon. It is the problem of mathematical
programming - the minimization of the criterion (1.2) with (¢; — ¢¢) limiting
conditions in the form of equations (1.1). Such problem can be solved using
Lagrange vector A(t). Let us define augmented criterion (Lagrangian)

t1i—1

T = h(a(t)+_ {g(@t) u®), 1) + Xt + 1) (f (@), u(t),t) =2t +1)) }

t=to
The Hamiltonian is defined

1 ((0), u(t), 1) = g(a(t), u(t), 1) + Xt + D) (o), ult), 1), (1L4)

where t =1y, ...,t;—1. The Lagrangian can be written in the form

J = h(z(t)) — N (t1)z(tr) + H(x(t), u(to), to) +

t1—1

+ > {H (), u),t) - N(D20)}

t=to+1

In the following simple notation is used

H(t) = H(z(t),u(t),t),



If the function J is differentiable with respect to () a u(t), the increment
of the criterion J along the trajectory of the system state and control equals

7 = (3t 0] s+ Tant + Gt +

. %1 { @Z ((f)) _ )\T(t)] da(t) + %Z (%) du(t)} | (1.5)

Vector is always considered as a column vector and the derivative of the
scalar function g(x) of vector argument x is a row vector

dg | 9y dg
or | 0x1 " Oy,

and the increment of this function equals

_ @g(x)dx: @dxl%—"' +@dxn.

dg(x) ox 0xq o0x,,

If the function g(z,y) equals g(x,y) = yT Ax, then its derivative equals

00 _ ey 09

ar 7Y oy
The derivative of vector function f(z) of vector argument x equals Jacobi
matrix ) ;
Con 1 [Oh . oh
of Ox Oy o,
V|| O O
L Oz - | 01y 0x, |

The increment of the state dx(t) caused by increment du(t) follows from (1.1)

as
0f(t) of(t)
= dz(t du(t
5+ g -
Its influence to the criterion can be neglected if the Lagrange coefficients are
properly chosen. In formal way the necessary condition of optimum equals
0J/0x(t) = 0. From this follows the necessary conditions

de(t+1)

OH(t)" B B

0 —At) = 0, t=ty+1,...,t1—1,
On(t)” B

ey W) =0



and from the definition of the function H () as in (1.4) the difference equation
are obtained
99(t)" | 9F(t)

A@)::éx“) +—8xﬁ)A@—%1), t=to, ..., t1—1

with end condition

~Oh(t)"

The increment of the criterion (1.5) equals

A(t1)

t1—1

dJ = ; 081;1 ((f)) du(t), (1.6)

because for fixed initial condition x(ty) the increment is of course dxz(ty) =
0. The expression 0H (t)/0u(t) equals the gradient of the criterion J with
respect to control sequence u(t) and with the limitation given by system
equation (1.1). The necessary condition for optimal control sequence u*(t) is
zero increment of the criterion (1.6) for arbitrary du(t) in the neighbourhood
of u*(t). The sequence u*(t) must be stacionary point of the criterion J, so

OH (t)
ou(t)

For the solution of discrete optimal control problem it is necessary to find
the solution the system of difference equations

=0, t=tg....t;—1.

r(t+1) = (55—5%) = f(x(t),u(t),t), (1.7)

) = (%Z(f))) :(2;‘28) +Z£E2A(t+1) t=ty b1,

with boundary conditions

SIZ(tQ) = Xy,
Oh(t)\ "
At) = 1.8
® = () .
and the control u*(¢) given by the condition

OH() _ 09 05()
ou(t)  Ou(t) Oul(t)

The solution of leads to two point boundary value problem, because initial

At +1) = 0. (1.9)

conditions (1.8) for vector x(t) are given in time ¢ = ¢, and initial conditions
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for A are given in time ¢ = t;. Both equations (1.7) are coupled by control
vector u(t), which is given by equation (1.9). It is the reason for the difficulty
of the general problem of optimal control discrete time dynamic system. In
this approach there is no limitation in control sequence u(t). Such problem

can be completely solved for linear system and quadratic optimality criterion,
so called LQ) problem.

1.2.2 Maximum principle for discrete time problem

For the optimization of continuous time system the celebrated Pontriagin
maximum principle was developed. In such approach the limitation of the
control vector can be respected. In analogous way the discrete maximum
principle was developed, which is next given without proof. Let us again
have state space equations of discrete time system in the form

z(t+1)= f(z(t),ut)) (1.10)
where ¢ € Z is discrete time, x(t) is state of the system, u(t) is the control
which belongs to the limitation set ¢ and the system is for simplicity time
independent. The problem is to find optimal control w*(¢) minimizing the

criterion
t—1

J = hla(t)ult)) + 3 gl (), ult))dt (1.1)
t=to
For the solution of such problem the Hamiltonian is formed

H(x(t), u(t), p(t +1)) = —g((t), u(t)) +p" (t + 1) f(x(t),u(t)) (1.12)
The maximum principle states that optimal control maximizes the Hamilto-
nian, so

() = axg maxyyea (o (1), u(t), p(t + 1)) (113
but only in case if the reachability set R(z) = {z: 2= f(z,u),u e U} is
convex for all z(¢). The system equation (1.10) is given by
u(

1
H(2(t), u(t), p(t + ))T
r(t+1) = 1.14
4 1) = (OO (114
Equation for the so called conjugate system equals
OH (x(t), u(t) p(t + 1)\ "
t) = 1.15

plo) = (2 (115
For the system (1.10) it is usually known the initial condition x(¢y) and for
the conjugate system (1.15) the final condition equals

Oh(x(t1))
81’(t1) .

p(t) = —
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Discrete maximum principle changes the problem of optimal control to two
point boundary value problem of the two sets of difference equations and
maximization of Hamiltonian with respect to control u(t). Utilizing maxi-
mum principle the limitation of control vector u(t) € U can be accepted.

1.2.3 Dynamic programming

Dynamic programming, connected with the name R. Bellman, is based on
two simple principles. The first one is called principle of optimality. Principle
of optimality has different formulation as necessary and sufficient condition.
For our case of optimality criterion as (1.11) it is the necessary and sufficient
condition. Problem of optimal control is the multistep optimization problem,
in each time ¢ in the control interval, optimal control u*(¢) must be chosen.

Principle of optimality states that from arbitrary state z(t) our next de-
cission must be optimal, without respect how the state is reached by previous
decissons. It follows from well known proverb "Don’t cry on the spilled milk".
It is based on obvious fact that you cannot change the past but your future
must be controlled in optimal way.

The next principle is the principle of invariant imbeding. Single problem
can be nested on the whole set of similar problems and solving such set of
problems the solution of original problem is obtained.

For discrete time dynamic system (1.10) with initial condition z(ty) = z¢, we
are looking for such control sequence u(t) in time interval t € T' = [tg, t; — 1],
which minimizes the criterion (1.11) with respect to all limitation of state
z(t) € X and control u(t) € U. Such single problem is imbeded to the whole
set of problems of optimal control of dynamic system (1.10) with free initial
time which is denoted as 7 € T and free initial state which is denoted as
s € X. In such case the optimality criterion equals

k-1
J (i, 8,u(ty), ... ,u(ty — 1)) = h(z(t1)) + Z g(x(k),u(k), k)  (1.16)
k=i

The final time ¢; is fixed. By the solution of the whole set of problems our
original problem is solved for ¢ = ¢ty and s = xy. Let us introduce optimal
function V (s, 1), which is also called Bellman function

V(s,i) = ()mi(n ) J (i, s,u(to), ..., u(ty — 1)) (1.17)
u(2),...u(t1—
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Simple modification of previous relation leads to

V(s,i) = min {g (s,u(i),i) + min |h(x(t1)) + Z_ g (m(t),u(t),t)] }

u(i) u(i+1),.. e
but the second term in previous relation equals shifted optimal function
V(s(i+1),i+1)=V(f(s,u(i),i),i+1).
Optimal function V(s,4) is the solution of functional recursive equation
(Bellman equation)

V(s,i) =min{g (s,u(i), i) + V (f (s,u(i),i),i+1)}. (1.18)

u(i)
In final time ¢; the optimal function equals
Vs, k1) = h(s(ky)) (1.19)

which is the boundary condition for Bellman equation (1.18) and h(s(t))
is the target term of the optimality criterion (1.11). Computation of the
optimal function is in principle very simple. The Bellman function V' (s, )
is computed backvard in time starting from the final condition (1.19) for all
states and in each time step minimization with respect to control u(i) must be
solved. There are two problems during the solution of Bellman equation. In
general case the grig of states x(¢) must be chosen in which optimal function
is computed. For great dimension of state vector the grid of states has
large dimension which grows exponentially. Such phenomenon called Bellman
"curse of dimensionality". Another problem is the necessity to interpolate
and extrapolate in the grid of states which make the computation of Bellman
function difficult. Using Bellman equation the limitation of system states
z(t) € X and control u(t) € U can be respected. The closed form of the
solution of Bellman equation can be obtained in case of quadratic optimal
control of linear discrete or continuous time systems.

1.2.4 Quadratic Optimal Control of Linear System

The general results are now used to solve the problem of optimal control
linear discrete time system with quadratic criterion, so called LQQ problem.
Stochastic version of such problem is called LQG problem (the G is for
Gaussian noise in the system state equation). Let us have linear discrete
time system

o(t+ 1) = At)z(t) + B(t)u(t) (1.20)

12



with initial state 2(0) = x and optimality criterion in quadratic form

=
J = —:z: T(t1)Sz(ty) + = Z {aT(t ) +ulOR()u(t)},  (1.21)
2 o
where S is positive semidefinite matrix, Q(t), t = to, ..., t; is the sequence
of positive semidefinite matrices and R(t), t = tg, ..., t;—1 is the sequence of

positive definite matrices. The sequence of functions H(t) according to (1.4)
equals

H(t) = =2/ ()Q(t)x(t) + 1uT(t)R(t)u(t) + N (t+ 1) (A(t)z(t) + B(t)u(t)).

2
(1.22)
According to (1.7)—(1.9) the state x(t), costate A(t) and control u(t) is given
by the set of difference equations

r(t+1) = 8;\9(1;[——@1) = A(t)z(t) + B(t)u(t) , x(ty) = o, (1.23)
A(t) = %I;(;)) = Q(t)x(t) + ATt + 1), \(t1) = Sz(t)(1.24)
0 = %Zé;)) = R(t)u(t) + BI At + 1), (1.25)
From the (1.24) follows
u(t) = =R (t)BIt)A(t+ 1). (1.26)

Because matrices R(t) must be positive definite the existence of its inversion
is guaranted. From (1.23) and (1.24) follows

(
p(t+1) = A@t)z(t) - BOR'()B (At +1), 2(0) =
At) = Qt)x(t) + AT (At +1) A(t1) = Sx(ty).
Such system can be written in matrix form
[ z(t+1) ] B [ A(t) —B@t)R™Y(t)BT(t) ] [ z(t) ]
AE) | ] Q) AT(t) At+1) |-
From the solution of this boundary value problem, the optimal control (1.26)
is obtained. Previous matrix equation can be written in the form

e I s R O o

and for regular matrix A(¢) (if the discrete time system originated from
sampling of continuous time system, its matrix A(t) is alvays regular)

50 2 2T s g 53] o
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or

[:z:(t) ] _ [ A7L(?) AT #)B(t)R1(t) BT (t) ] [x(t+ 1) ]
A(t) Q)ATH(E) A1)+ QAT (O)BOR (B (1) | [AE+1) |

Initial condition A(#1) = Sx(#1) from (1.24) can be substituted to (1.28) and

SO
-1

[x(N—l)] [ AN=1) 0
AN-1) | T | —ov-1) I
[ B(N-)RYN-1)BYN-1)T[ I
0 AT(N-1) ] [Q(N) ] z(N)

From this follows that Lagrange vector A(¢) can be expressed in the form
At) = P(t)z(t),
where P(t) is some matrix. From (1.25) follows
0 = R(t)u(t)+BYt)P(t+ 1)zt +1)
= R(t)u(t) + B (t)P(t + 1)(A(t)z(t) + B(t)u(t))
= [R(t)+ BT(t)P(t + 1)Bt)| u(t) + B ) P(t + 1) A(t)z(t).
From previous relation optimal control sequence equals
u(t) = —[R(t)+ B (t)P(t+ 1)B(t)}_1 BT (t)P(t + 1) A(t)z(t)(1.29)
= —K(t)z(t).

Instead of regularity of the matrix R(t) it is sufficient to fulfill only weaker
condition which is the regularity of the matrix (R(t) + BI(t)P(t + 1)B(t)).
Quadratic optimal control results in linear time dependent state feedback
with gain (Kalman gain)

K(t)= [R(t)+ B'(t)P Bt)] P(t+1)A(2). (1.30)
After substitution of this control to (1 24) the follovvlng relation is obtained
P(t)z(t) = Q(t)x(t) + AT (t)P(t+ 1) A(t)a(t) + AT (1) P(t + 1) B(t)u(?)

= QU)a(t) + AT+ )AW)a(r) ~

-1
— AN(O)P(t+1)B(t) [R(t) + B'(t)P(t + 1)B(t)]  x
X BY(t)P(t+1)A(t)z(1).

Such condition is valid for arbitrary state x(t), so the sequence of matrices
P(t) is given by matrix difference equation

P(t) = APt + 1At +Q(t) — (1.31)
— AT(@)P(t + 1)B(t) [R(t) + BYt)P(t + 1)B(t)] ' BTt)P(t + 1)A(t)

14



with end condition
P(ty) = S. (1.32)

Matrix equation (1.31) is called Riccati Difference Equation. Riccati
difference equation can be written in the form

T
P(t)= (A(t)-B{t)K(t)) P(t+1)(A{t)—-B) K (1)) +K (t)R(t) K (t)+Q(1),
(1.33)
From previous relation follows that if S = ST > 0 then all matrices P(t) are
also symmetrix and positive semidefinite.

Steady state solution of Riccati equation

Let us have time invariant discrete time system
z(t+1) = Ax(t) + Bu(t) (1.34)

and optimality criterion
t—1

T = S (0)Se() + 5 YT (0Q(t) +u ()}, (135)

t=tg
where S and () are positive semidefinite constant matrices and R is positive

definite constant matrix. Optimal control «*(¢) minimizing previous criterion
results in linear state feedback

u(t) = —K(t)z(t), (1.36)

It can be shown that for increasing optimality horizon (t; — oo) Kalman
gain K (t) is approaching to constant matrix K and also matrix P(t) given
by Riccati equation is approaching to constant matrix P. Such constant
matrix P is the silution of Algebraic Riccati Equation

P = ATPA—ATPB[R+ BTPB] ' BTPA+Q, (1.37)

Such algebraic equation results from matrix Riccati equation if P = P(t) =
P(t+1). Linear optimal feedback gain (Kalman gain) equals

K = [R+B"PB] " B"PA. (1.38)

Two question must be answered. If the limiting condition of Riccati equation
eqists (lim, 4 P(t) = P) and equals to the solution of algebraic Riccati
equation P and if is stable the feedback optimal system with state matrix
(A — BK). Both conditions are fulfilled if the controlled system (1.34) is
stabilizable (couple (A, B) is stabilizable) and the system with output matrix
Cy is detectable (couple (Cg, A) is detectable), where CHCqo = Q.
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1.3 Brief overview of Model Predictive Control

Model predictive control (MPC) is one of the methods that enables optimal
control of constrained multivariable dynamical systems. It is interesting to
note that MPC has been (re)discovered and widely used by the industrial
practitioners before having solid theoretical base. The first known formula-
tion of a moving horizon controller using a linear programming is in [28] and
probably first description of MPC control application in [33]. At the present
time, MPC is a standard advanced control technology used in the process in-
dustry. For the computational limit reasons, the practical MPC applications
have been limited to the linear models which may not be accurate enough
for some classes of applications. For such classes of systems, it is beneficial
to define the nonlinear MPC which requires solution of a constrained non-
linear optimization problem at each sampling period. In nonlinear MPC,
the optimization problems are usually solved by using Sequential Quadratic
Programminyg.

In the standard formulation of the model predictive control, the optimization
problem (usually quadratic program) is solved in each sampling instance and
therefore time consumption caused by computation of control action can be
significant. It was shown that a linear |5] or quadratic |6] program can be
solved explicitly off-line and then the control action is generated by piece-
wise affine function of the system state. Such an optimization is known as
Multi-Parametric Programming [18]. This approach is useful namely in the
case when we want to use MPC for control the relatively fast sampled, but
small, systems.

Another actual topic in the model predictive control is hierarchical, decen-
tralized and distributed control [31, 36, 19, 1|. Today’s communication tech-
nologies enables coordinated control of large-scale systems, e.g. energy or
water distribution networks [29]. The large-scale system controller can be
formulated and implemented as a central algorithm which enables the over-
all optimality. The centralized optimal control enables significant savings
during the system lifetime. But there may be problems with centralized con-
trollers, e.g. too large optimization problems, communication limitations,
safety reasons, etc. It is very practical to decompose the central optimal con-
troller so that there will be smaller controller for all important subsystems
(slave controllers) which are coordinated by a coordinator (master problem).

Currently, the number of successful MPC applications and research work
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grows rapidly. Some MPC survey papers are [30, 7, 22, 2|. The standard
books about the linear MPC are 34, 21, 14| and about non-linear MPC,
for example the set of important papers [25]. A real-time iteration scheme
for the nonlinear MPC has been proposed in [16]. We can found a number
of practical commercial MPC technologies in the literature. A survey of
industrial MPC technologies can be found in [30].
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Chapter 2

Linear Model Predictive Control

This chapter deals with the fundamentals of the linear model predictive con-
trol. The linear formulation is very popular and often used in the practical
applications when compared to the nonlinear MPC. The reason is clear - the
simplicity. The advanced control technologies, for which the MPC is usually
used, are sitting at the top of the basic control strategy. Therefore, there is
no need to cover all the operating regimes of the controlled system, especially
the emergency states, system startup or shutdown, etc. The objective for the
MPC controller in the advanced control layer is to optimize the performances
while satisfying the constraints. Of course, there are applications, where the
MPC controller is used as the basic controller, directly in the basic control
layer. In this case, we can enjoy all the advantages which are offered by the
MPC, namely the ability to control the multivariable systems in a very sys-
tematic manner, to handle the constraints and to provide the optimal control
solution.

2.1 Motivation example

Before starting the formal definitions of MPC, we will give a motivation ex-
ample, which illustrates how simple the MPC controller may be. Assume a
stable linear system with one output and one input. The system is periodi-
cally sampled.

e System model and predictions: The relation between the system
input and output can be approximated based on the truncated step re-
sponse as

y(k) = yo+ > hidu(k — i) , (2.1)
i=0
where y(k), Au(k) = u(k) — u(k — 1) and h; are the system output,
increments of the system input and the step response coefficients respec-
tively. Then, the prediction at the discrete time k + j is given by (model
base predictions)

y(k+ k) =2 yo+ > hildu(k + j —ilk) . (2.2)

1=0



It is easy to show, by using (2.2), that the system output prediction over
the prediction horizon of N samples can be expressed as

VN = 1yo + HHAUS -+ HoAUFTY (2.3)

where the matrices H; and H, contain the step response coefficients,
Y,f“LN, AU]];“LN are the system output predictions and system input in-
crement predictions, AU ,]j__é are the past system input increment values,
1.e.

YN = [yk) yk+1) . yk+N) ]
AUFFN = [ Au(k) Au(k+1) ... Au(k+N) ],
AU = [Au(k—n) Au(k—n+1) ... Au(k—l)]T.

Note that the term H;AUF!in (2.3) is related to the initial system state
response, known also as autonomous or unforced response. In practical
applications, due to disturbances and model uncertainty, this term must
be replaced by a known function of the system state.

e Control problem and MPC formulation: Now, for example, we
would like the system to follow the given reference signal RZ‘LN which
trajectory is known in advance, over the whole prediction horizon. In
other words, the system output should be as close to the reference sig-
nal as possible (first control goal), with reasonable control action (second
control goal). These requirements can be expressed by defining the track-
ing error

E]1§+N _ R£+N _ Ykk+N _ R£+N Ay — HlAUlf_—é — H2AU;§+N (2.4)

and by minimizing the cost function, which can be defined, for example,
as a sum of weighted second norms ! (MPC problem)

J (AUFN|RETN) = HE,’;+NH22E - HAU,f*NHzAU : (2.5)

e Resulting optimization problem: The system input trajectory on
the prediction horizon can be determined by solving the optimization

problem

AU = arg min J (AUFN| RV (2.6)
AUI]:JrN

which can be viewed as a simple linear least squares problem. The so-
lution can be found explicitly and the result will be a linear function of
the system state and external parameters.

IThe first control goal (reference tracking) corresponds to the first term in the criterion,
the second control goal (actuator activity) to the second one.
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The example illustrated basic idea behind the MPC, i.e. using the system
model to predict the future behavior, formulation of the control goals, trans-
formation of the control goals as MPC control problem and transformation
of the MPC problem to an optimization problem.

2.2 Formulation of linear MPC

A great number of systems and processes work in a steady-state or close
to an operating point. It is well known that behavior of systems under
such conditions can be usually well approximated by a linear model. In this
section, we will formulate and analyze the basic linear MPC controller. The
main components of MPC are the following: system model, cost function,
constraints and resulting optimization problem.

2.2.1 System models in MPC

In the introductory chapter, we formulated a simple MPC algorithm based
on predictions from the step response of the system. A similar prediction
model can be derived by using the impulse response. Generally, in the linear
MPC, we can use any linear model. In addition to step and impulse based
prediction models, we will discuss only ARX and state space models. The
modeling stage in MPC design is one of the most important things. The
quality of the resulting controller is proportional to the model quality and
therefore the model should be as accurate as possible.

Impulse response

The relation between the system input and output can be described by equa-

= Z giu(k — 1), (2.7)

which is known as convolution or weighting sequence model and y(k), u(k),

tion

g; are the system output, input and coefficients of the impulse response,
respectively. The model can be used only for stable systems with the finite
impulse response (FIR). As it has been shown in the introductory MPC
example, the response is truncated and only n most important coefficients
are used. Therefore, the prediction model can be described by relation

(k + jlk) = Zgz (k+j —ilk) . (2.8)
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The advantages of the impulse and step response models are that we do not
need to know any prior information about the system (of course, it must be
stable and the responses must be finite), i.e. the system is a "black box".
These models can be also used for the multivariable systems for which we

have
p

ym(k) =Y > gl (ki) (2.9)
I=1 i=0
where y,,(k) is the m-th system output, p is number of system inputs, u'(-)
is [-th input and gﬁ’m is the sequence of impulse response of [-th input to
m-th system output. It is interesting to note, that the first and a number of
current practical MPC implementations are based on step or impulse response
models.

ARX based models

The ARX based models are popular in the control society because they enable
to describe also the basic stochastic properties of the systems. Basic form of
the ARX model with a measurable disturbance is

y(k) + i: ay(k —1i) = Z bu(k — 1)+ Z div(k —1i)+e(k), (2.10)
i=1 i=0 i=0

where y(k), u(k), d(k) and e(k) are system output, input, disturbance and
white noise. The resulting prediction model can be written in a vector form

— —]_ ~ ~ ~ — —
y=A, (—A + By + Div + Byii + D) (2.11)
where the matrices are given by the ARX model coefficients
ap . . .a1 | 10 . . . . 07
0Oap.. . |lal10 . . .0
[AA)) =10 . 0an| . a10.0]
0 ...0ap,. . a1l .0
| 0 . .. 0] . .a, . .a 1
by . .. bi b0 O . . . . 07
0by.. . |bibpO . . .0
[Bi|Bp] =0 . 0bu| . . biboo .0,
0 ... 0|by . .biby. 0
. o .
L 0 S0 . by . . by b
d, . .d1|d00 . .07
Ody.. . |dido0O . . .0
[DiD,]= |0 . .0d| dydy 0 . 0
0 . .. 0 |d diby . 0
. o
L 0 .0 | dy . . dy do



The prediction vectors are
Gk+N—-1),]"
— [ulk) - uk+N-1),]"

vk+N=1),]"

SN
I

<)

—~

™

N~—

1
I
-
—~
=y
~—

g o= [ylk—n) - yk—1)]"
i = [u(k—n,) u(k—1)]"
7 = [o(k—na) vk—1)1"

State space model

The state space models are important for the MPC. The reason is that they
provide description of multivariable systems and are also important for the
analysis. Another advantage is that the state space model can be used also
for systems with integrators and unstable systems. A basic form can be

written as
r(k+1) = Ax(k)+ Bu(k),
y(k) = Cx(k)+ Du(k) .
The prediction trajectories of the system output are given by

j= Px(k)+ Hi, (2.12)

where x(k) is the initial state. Vectors 7/, @ and matrices P, H are

§= [y®)" yk+ DT - yk+ N =T ]
¢ = [uk)h wk+1)" - wk+N-1)7T }
[ 2
_ CA _ CB D
P = . , H= . _
CAN-1 CAN=2B ... CB D
Prediction equations for the system state are given by
7= Px(k)+ Hu , (2.13)

where vector  and matrices P and H are
F=lak+1)7 z(k+2)7 ... 2k+NT]",
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_ 4 - _ B -
A? AB B
P= : ’ H = : ..
AN AN-1B AN—2B ... B
—

2.2.2 Cost function

The cost function is used to formulate goals for the MPC controller. It
has usually additive form where the individual terms express various control
requirements. The terms are multiplied by factors defining the relative im-
portance of the control goals. A basic requirement is reference tracking. The
corresponding cost function term penalizes the tracking error over a given
prediction horizon. The second basic term is a term that specifies actuator
behavior. Therefore, the standard cost function has the following form

N,—1
J (@l (to), to) = Zn@p to )l X IFyutt-+ il - (210

where tg + t; are the sampling times of predicted trajectory, to + 7; are
the sampling times of the system input, matrices @), > 0, R, > 0 are
weighting matrices, e(t) = r(t) — y(t) is the difference between the sys-
tem output and reference signal (tracking error), u(t) is the system input,
x(tp) is the initial information (does not necessarily be the system state) and
u = {u(to + 1olto), ..., u(to + 7n,-1|to) } is the set of future control actions.
The [, norm of a vector z of length n is defined as

The cost function in the form (2.14) is suitable for integrating systems. An-
other cost function which is very often used in practical applications penalizes
movements of actuators instead of penalizing the positions. MPC based on
a such cost function are referred to as minimum movement controllers. For

example
N N,—1
J (@z(to), to) = Y 1Que(to + tilto) |, + Y IR Aulte + 7ilto)ll, , (2.15)
i=0 J=0
where

Au(to + leto) = u(to + leto) — u(to + Tj_l‘to) )
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Figure 2.1: Cost functions examples - based on [y, [, and s norm.

It is clear that we can introduce various terms and cost functions in general.
For example probability terms for stochastic system, nonlinear terms, etc.
Because the cost function is optimized, we have to be careful when adding
the terms. It has to be prepared so that there exist some reliable optimization
method for the resulting optimization problem. The penalty functions (2.14)
and (2.15) are based on a general p-norm but only Iy, [+, and namely Iy norms
are used in the practical applications?, see Fig. 2.1 and Fig. 2.2 [26]. In the
linear MPC, utilization of [; and [, leads to Linear Programming (LP) and
utilization of [y norm leads to Quadratic Programming (QP). The quadratic
norm ensures good performances of the control loop, as we know from the
classical LQR? controller.

2.2.3 Constraints

A real differentiator for the MPC controllers is the fact that they can han-
dle the system constraints in a straightforward manner. All processes have
some constraints, e.g. actuator position and rate of change constraints or
constraints for the system output or any internal state

umin(t) < u(t) < Umax<t) )
Atpin (1) < Au(t) < Aumax(t) -

2Note that utilization of /; norm leads to the dead beat control.
?(Linear Quadratic Regulator)
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MPC control by minimizing of 1.0 norm MPC control by minimizing of 1.1 norm
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Figure 2.2: An example of unconstrained MPC control for different [, norms
in the cost function (Iy, l1.1, l15 and ly).

xmin(t) S x(t) S xmax(t) .

In general, the constraints are hard or soft:

e Hard constraints - physical limitations of real process, e.g. actuator
extreme positions. This type of constraints must not be violated.

e Soft constraints [35] - these can be violated though at some penalty, for
example a loss of product quality.

The soft constraints are used whenever there are some disturbances acting
directly on the constrained variable, typically all the system states and out-
puts. They are very important for all practical implementations because the
soft constraints ensure the feasibility of the MPC optimization problem. The
soft constraints can be formulated by introducing a slack optimization vari-
able or vector. Assume, for example, an upper limit for the system output,
then

y(t) < Ymax + €
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Softening variable example
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Figure 2.3: Example of soft constraints: y(t) <5+ ¢

is referred to as soft constraint. The variable € is a scalar variable. to finish
definition of the soft constraint, we have to introduce term ||5H§ into the
cost function. The soft constraint may be violated, especially during the
transients. Therefore, the weighting factor for the soft constraints must be
high enough (relative to other terms) to ensure small violation only. We
can have a common scalar slack variable for all soft constraints, we can have
a slack variable for each soft constraint or for a subset of soft constraints.
Another possibility how to formulate the soft constraints is to penalize the
constraints violation directly in the cost function, i.e.

€ < UYmax

and to introduce the term ||y(t) — &||5 into the criterion function. The result
will be exactly the same as in the first formulation. There will be differences
in the QP form structure. Note also that the second formulation introduces
box constraints, which may be beneficial for the efficiency of the optimization

algorithm. The soft constraints may be seen also as non-symmetric penalty
(see Fig. 2.3).

2.2.4 Optimization problem

We have shown that the prediction of a linear system behavior can be ex-
pressed by the affine function of the system inputs by using any linear model.
Therefore we can focus on the state space models without any restrictions
because other linear models can be transformed to this form. The basic MPC
control problem can be formulated as an optimization problem

u* = argmin J (u|z(to), to) (2.16)

subject to
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e input constraints

umin<t0 + tz)
Aumin<t0 + tz)

U(t() + tz) S umax<t0 + tz)

<
< Au(to + ti> < AUmax@() + ti)

e output constraints (usually softened)

Ymin(to + i) < y(to + i) < Ymax(to + i)
e system state constraints (usually softened)

Toin(to + 1) < x(ty + ti) < Tmax(to + i)
e system model equations

x(tiv1) = Az(t;) + Bu(ty) ,
y(t;) = Cx(t;) + Du(t;) .

The optimization problem (2.16) with all the constraints defines the MPC
problem. When using the [ norm in the cost function, the MPC problem for
a linear system with the linear constraints can be transformed to a mathe-
matical programming problem of the form

1
i* = arg min EﬁTHUJr a'Fp, st Gui<W+ Sp, (2.17)

which is a well known quadratic programming problem.  is a vector of
optimal input trajectories

= u(to) u'(t1) ... ul(tw)

}T
p'is the parameter vector containing, for example, system initial state z(ty),
reference signal trajectories, etc. The matrices H and F' can be found by
using definition of the criterion function (2.14) and the prediction equations

for the state space model ((2.12) and (2.13)).

2.2.5 Receding horizon control

It has been shown that the MPC control problem can be transformed to an
optimization problem (2.17) which is parameterized by a parameter vector
p. The result of the optimization problem at time ¢y is the optimal future
trajectory of the system input «*. An immediate idea would be to apply the
whole sequence and to compute the new trajectories at the end of prediction
horizon, i.e. at time tx. Such MPC control strategy corresponds to the open
loop control, without any feedback during the prediction horizon. It is clear
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that the open loop control is not able to reject the disturbances acting on
the system and therefore such strategy is not practical.

The standard feedback, as we know it for the classical control methods, is
introduced by using so called Receding Horizon Control. In the receding hori-
zon control, the optimization problem (2.17) is computed at each sampling
period after having new system measurements or estimates and we apply
only the first control action from the vector «*. This strategy ensures the
standard feedback control in the MPC. Note that MPC is sometime called
directly as receding horizon control.

2.2.6 Blocking strategies

It is clear that the receding control strategy increases on-line complexity of
the controller. We need to solve the optimization problem at each sam-
pling period, which may not be practical especially for large-scale systems
or systems with fast sampling period. In some situations, we need to used
MPC even for such applications and therefore we have to reduce the on-line
computation complexity. In the standard MPC formulation, the number of
optimization variables corresponds to the number of manipulated variables
multiplied by the prediction horizon length. The degrees of freedom is one
of the dominant factors of the MPC optimization problem. We can reduce
the degrees of freedom by fixing the manipulated variables to be constant
over several sampling periods. This strategy is known as blocking [13] and
is used by many practical implementations. Extreme blocking would be to
enable only one change over the whole prediction horizon, i.e. the system
inputs can do a step change at the beginning of the prediction horizon and
remain at the new position over the rest of prediction horizon. Such strategy
is known as mean control and its property is that the closed loop response is
comparable to or slower that the open loop response. This is not a problem
in a number of practical applications.

2.2.7 Offset-free tracking

In the classical control methods, the offset-free tracking control is achieved
by intruding the integral action to the controller. It is clear that if the MPC
controller uses a perfect model and there are no disturbances acting on the
system, we will not need to use any additional mechanism to achieve the
offset-free tracking, but this is not a realistic assumption. The integral ac-
tion usually acts on the tracking error. The question is, how to achieve the
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offset-free tracking property in the model predictive control. There are sev-
eral possibilities but we will mention only the two most important from the
practical point of view. The first option is to introduce the integral term
acting on the tracking error into the cost function. This approach copies
strategy from the standard PID control and requires implementation of an
anti-windup mechanism which may be impractical.

The second approach is based on assumption that there are virtual distur-
bance variables acting on the system. These virtual disturbances covers the
real disturbances, but also model inaccuracy. This approach has been utilized
successfully by many industrial MPC applications [23]. It is usually assumed
that the virtual disturbances are constant over the prediction horizon. The
disturbances can be estimated by using the augmented system state observer,
These techniques are known as Unknown Input Observer.

The virtual disturbances can be connected to the system in a number of
ways [23]. Furthermore, the disturbances may be described by a general
linear model. We will show the simplest three examples. Consider a linear
model of a controlled process

r(k+1) = Ax(k)+ Bu(k),
y(k) = Cx(k)+ Du(k) .

Assume that the disturbance model can be described by the autonomous
linear model of the form

.Id(k?—l-l) = Adxd(k:),
d(]{) = Cdxd(k;)

e Disturbance acting on the system output: In this case, it is as-
sumed that the real system output is given by y(k) = y(k) + d(k). The
augmented system model has the form

B I A S T
o) = [0 cul | 1) |+ puw

e Disturbance acting on the system state: In this case, the distur-

29



bance is assumed to act directly on the system state, i.e.

EA R AR HEC
y(k) = [C 0] [fd({?)]JrDu(k)

e Disturbance acting on the system input: In this case, the distur-
bance is connected to the system input, i.e.

oeen] = Lo S e ] [0 ]

<
o) = [¢ o) | 20|+ putt

[t is clear that we can introduce other virtual disturbance models to achieve
the offset-free tracking. The state of the augmented system model is esti-
mated by a suitable observer, e.g. by a Kalman Filter. The final closed
loop performance is directly related to the accuracy of the virtual distur-
bance model structure. In fact, it is not possible to find a good disturbance
model for all applications and therefore, the choose of this model can be seen
as an additional tuning parameter for the MPC controller. The practical
applications are often using constant disturbance, i.e. Ag = 1.

2.3 Analysis of linear MPC

The classical feedback controllers (PID) can be analyzed in a number of ways.
The most important properties are the nominal performance, stability and
robustness. In this section, we will show that a similar analysis can be done
for the MPC controller. The difference between the classical control and
MPC is that the MPC computes directly the sequence of the control actions
instead of using a control law* which generates the control action. In fact,
the optimization problem could be seen as a control law. Why the MPC
controller cannot be simple analyzed as a classical controller, e.g. PID? The
answer is - due to presence of constraints. If we would have a control law as a
result of the optimization problem, we could perform the standard analysis.
It can be shown, that we can find a control law for each combination of

“A control law in the linear control is an affine function of the system state, e.g.
u(k)=Kx(k)+g.
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feasible active constraints in the form
u(k) = Kix(k) + g; , (2.18)

where the index 7 is used to denote 7-th set of feasible active constraints.

2.3.1 Unconstrained MPC

In this section, we will show how we can derive the control law for the case
when there are no active constraints. Note that we can derive a control law
for any feasible combination of active constraints in a similar way. Assume
that the system can be described by a state space model. Then the prediction
model for a prediction horizon of length N is given by (2.12), i.e.

y = Px(k)+ Hu . (2.19)

Further, assume a quadratic cost function defining the tracking MPC prob-
lem. The basic cost function is therefore given by

J(@z(k), k)= F—9)" Q(F—1v) +d Ri.

By definition of MPC, the control action is obtained by minimizing the cost
function over the prediction horizon. In our case without the constraints, the
optimal input trajectory «@* can be found by solving a simple least squares

problem. By using (2.19), the optimal control problem is
min J (ille(k), k) = (7~ Pa(k) - Hi))" Q (7 — Px(k) — Hii) + @ Rii
with solution
i = (HTQH + R) " H'Q (7 — Px(k)) . (2.20)

As a result, we obtained a control sequence over the prediction horizon that
is parameterized by the system state at discrete time k£ and by the sequence
of future reference signal. By applying the receding horizon control strategy,
we will get a control law in the form

u(k) = —K*z(k)+ K'r, (2.21)

where the matrices K and K" are given by the first n, rows of (2.20) and
n, is the number of system inputs. Having the control law (2.21), we can do
the basic analysis of the controller.
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Numerical example

Assume the unconstrained MPC tracking problem for the linear system de-
scribed by

A:H 1],3:[0%5],0:[1 1], D=0.

The corresponding cost function is defined as
J(@|z(k), k) = (F— )" Q (F—7) + Ad" RAT

where we used penalty for Aw. Then the control law obtained from the least
squares solution has the form

u(k) = —-K"z(k)+ K'r+ K'u(k — 1) .

If we use the prediction horizon N = 10, weighting matrix for the tracking

error () = I and penalty on the input movement R = k, I, then we will get
for k, = 100

K* = —[0.0673 0.3083 | ,
K" = [0.0070 0.0111 ... —0.0047 ] ,
K" = 0.4650 .

Now we can study the controller behavior. For example, we might be inter-
ested in the influence of the tuning parameter k, which multiplies the penalty
of the actuator movements. The simulation is depicted on Fig. 2.4, the step
response of the closed loop is depicted on Fig. 2.5 and the frequency response
on Fig. 2.6.

2.3.2 Infinite prediction horizon

[t is known that the infinite horizon LQR control ensures reasonable stability
margins and reasonable control performance. The disadvantage is that it does
not enable to handle the constraints in a systematic way. Basic version of
MPC controller is based on a finite prediction horizon. We can extend the
prediction horizon to infinity by defining the cost function

J (u(0),...,u(c0)) = (z(k)" Qu(k) + u(k) Ru(k)) (2.22)
k=0

Now we can split the infinite prediction horizon into the two parts, as follows®

>This approach is also known as a Dual Mode MPC Control.
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Figure 2.4: Unconstrained MPC example - reference tracking

e Mode 1 control: a finite horizon with N samples over which the con-
trol inputs are free variables and they are determined by solving the
optimization problem.

e Mode 2 control: the subsequent infinite horizon over which the control
inputs are determined by a state feedback law: u(k) = —Kx(k). The
gain matrix K is the feedback gain that ensures the unconstrained closed-
loop stability.

Then, the cost function (2.22) can be expressed in the form

2

J(@2(0) = 3 (x(k) Qu(k) + u(k)" Ru(k)) + U (z(N)) . (2.23)

o~
|

The first part of (2.23) is a standard form of finite horizon cost function and
the last term, W (x(NN)), is known as a terminal penalty term and corresponds
to the value of the cost function on the interval (N, o0), i.e.

o

U (z(N) = > (x(k)"Qu(k) + u(k)" Ru(k)) . (2.24)

k=N

Using the quadratic cost function (2.22), it is straightforward to show that
U(z) is a quadratic function

U(r)=2"Vz T>0, (2.25)
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Figure 2.5: Unconstrained MPC example - step response

where the matrix W is the solution of the discrete-time algebraic Riccati
equation

U = ATWA— ATUB(R+B"UB) " BTUA+Q  (226)
K = (R+B"UB) ' BTWwA. (2.27)

The infinite horizon cost function (2.22) can be now rewritten to the final
form

J (d]z(0)) = (ﬂc(k)TQm(k) + u(k)TRu(k)) +z(N)TWz(N) . (2.28)

[t was shown that the infinite horizon cost function (2.22) can be written
as (2.28) where W is the appropriate solution of (2.26). The first part of
the criterion is minimized using a standard on-line optimization technique
(e.g. quadratic programming) including the system constraints. In the sec-
ond part, it is considered that the system is controlled by the L) optimal
state feedback. Note that the terminal penalty term is the basic tool when
formulating and proving the stability of the MPC controller.

2.3.3 Stability

The stability of MPC controller cannot be simply analyzed as it can be done
in the classical control methods. The properties of the MPC closed loop
are influenced by all tuning parameters, e.g. by cost function form, predic-
tion and correction horizon length, weighting matrices, etc. We can do the
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Figure 2.6: Unconstrained MPC example - frequency response

analysis if there are no active constraints or for a selected feasible set of ac-
tive constraints. The problem is that the MPC controller can be seen as a
nonlinear controller. In fact, it can be shown, that the linear MPC control
is based on switching the affine control laws, where the number of control
laws corresponds to the number of all feasible combinations of active sets.
This number may be huge even for relatively small number of constraints.
Therefore, it is clear that the analysis may not be so easy, or even impossible.

The stability of the MPC control is not ensured in its basic formulation.
On the other hand, it is fair to say that the basic MPC formulation gives
very good results and provides a good degree of stability and robustness in
practical applications. We will discuss the basic tools which can be used to
ensure the nominal stability of the controller during the design stage. There
are several ways and the most important are the following:

o Terminal equality constraints: [20| If the system origin is stable, then
the stability can be ensured by a terminal equality constraints on the
system state at the end of the prediction horizon, i.e. z(k + N) = 0.
It is clear that this can be generalized to x(k + N) = x., where x. is a
stable equilibrium.

o Terminal cost function: |9] The main idea is to add a terminal cost term
to the cost function.

o Terminal constraint set: The terminal equality constraint can be gener-
alized. The idea is based on assumption that there exist a subspace in
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the system state space for which it holds that if the system state enters
this subspace, then it will stay inside at all future time without violating
the constraints.

From the practical point of view, the most important is the combination of
the last two and therefore, we will focus on them. Before formulating an MPC
algorithm that ensures the nominal stability, we will define positively invari-
ant set, admissible positively invariant set and mazimal admissible positively
invariant set |10, 30]:

Definition 1 A positively invariant set € is a region of state space with the
property that all state trajectories starting from an initial condition within
the set remain within the set at all future instants.

Definition 2 An admissible positively invariant set € is a region of state
space with the property that all state trajectories starting from an initial
condition within the set remain within the set at all future instants and all
considered constraints will be satisfied.

Definition 3 The mazimal admissible positively invariant set (MAS) is a
region of state space of all possible initial states so that all state trajectories
starting from an initial condition within the set remain within the set at all
future instants and all considered constraints will be satisfied.

Formally, an admissible positively invariant set €2 can be defined as

(A— BK)z(k) € Q Vx(k) € Q (2.29)
Mumin < Mz(k) < mpae Va(k) € Q. (2.30)

The MAS sets can be approximated (if we cannot compute them exactly) by
a polytopic or ellipsoidal sets. An example of polytopic MAS and ellipsoidal
MAS are depicted on Fig. 2.7, where 2 is a set of all feasible initial states,
which can be driven into the MAS €2 withing the given prediction horizon.
Now assume MPC control using quasi-infinite prediction horizon

N-1
T (e (k), k) = ok + Ny + > etk +)llg + llulk + i), (231)
i=0
with constraints
Gu < W + Sz(k) (2.32)

and additional, stability, constraints
z(k+ N)eQ (2.33)
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Figure 2.7: An example of polytopic and ellipsoidal MAS (€2) and set of all
feasible initial conditions (€25) [27]

where  is MAS (or admissible positively invariant set) for the controlled
system. To prove the stability, we need to find a Lyapunov function. It is
not a surprise, that a nature candidate for the Lyapunov function is the cost
function (2.31), i.e.

V (k)= J (u|z(k), k) . (2.34)

Assume that the optimal solutions at time k£ and k + 1 are
Uy = [u*(k|k) uw (k+1|k) ... u(k+ N —1lk) ] :
Uy = [w(k+1k+1) w(k+2k+1) ... u(k+Nlk+1)]

and assume that at time k, there exist an estimate of the optimal control
—shi fted

sequence for time k + 1, denoted by u;, /1™, i.e.
@M = [ulk +1k) w(k+2\k) ... u(k+Nk)] . (2.35)

From the definition, it holds that
Vk+1) = J (@ |0k +1),k+1) < J (ﬁ;fj{te%(k F1) k4 1) (2.36)
and we can continue
V(k+1) < J (ﬁ;’f{teﬂx(/@ F1) k4 1)
< J (igla(k), k) — 2 (k[k)G — lu(klk) | — llz(k + N[k)l;
+ [Julk + NI + llo(k + N+ 1[k)]y -

It holds that
V (k) = J (u@|z(k), k)

and therefore
V(k+1)=V(k) < —|zklk)f — lluklk)l% — llo(k+ Nk)|l
+Ju(k + Nk + ok + N+ 1E)|5 -
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The Lyapunov function must satisfy condition V (k+ 1) — V(k) < 0. It is
clear that this condition will be satisfied if

l(k + NIK) |y = [lu(k + N+ lz(k+ N + 1)l (2.37)

If there exist a control law for which the condition (2.37) is satisfied, then
V (k) is a Lyapunov function and the receding horizon MPC control sequence
will stabilize the system. The two basic possibilities are the following;:

e u(k+i) =0,i > N: Then, the condition (2.37) leads to the Lyapunov
equation
ATUA-T <0

i.e. a condition, that the system is stable and the weighting matrix ¥ of
the terminal penalty term is a Lyapunov equation solution. The set 2
used in (2.33) is an admissible positively invariant set for the open loop
systemn.

o u(k+i) = —Kux(k+1i), ¢ > N: Then, the condition (2.37) leads to the
Algebraic Riccati Equation, i.e.

(A— BK) W (A—BK)+ K"RK < .

In this case, the control law K and weighting matrix ¥ must satisty
the algebraic Riccati equation and € utilized in (2.33) is corresponding
admissible positively invariant set.

It has been shown that the stability can be ensured (and proved) by adding
a terminal penalty term to the cost function and a terminal constraints set
(known also as stability constraints). This concept can be seen as Dual mode
control startegy where:

e Mode 1: The system inputs are determined by solving the optimization
problem for the finite prediction horizon.

e Mode 2: The system inputs are determined by a state space feedback
law. This mode is never applied because of the receding horizon strategy.

The presented concept can be seen as a tool for ensuring stability for gen-
eral formulation of linear MPC. We should note that, in general, we do not
need to follow the concept to ensure the stability of MPC for practical ap-
plications. There are many other ad-hoc solutions ensuring the reasonable
behavior but usually, these methods are tailored for particular MPC formu-
lations or applications and do not hold for general MPC formulation.
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The MPC control is based on solving the constrained optimization problem in
each sampling period. Therefore, it is also necessary to analyze the feasibility
of this optimization, especially if the receding horizon control is considered.
It can be shown that if the problem is feasible for the initial system state, then
it is feasible in all subsequent sampling periods (see Fig. 2.7 for illustration).
The proof can be found in the literature.

2.3.4 Robustness

All systems models used for control design in practical applications have
some uncertainties. These uncertainties are caused by disturbances, by inac-
curate identification, incorrect model structure, due to model simplification,
etc. Therefore, it is clear that the model does not describes the controlled
system accurately and the controller must be robust with respect to these
inaccuracies. Robustness is a fundamental question for all feedback control
systems. Any statement about the robustness must be connected with a
specific uncertainty range and to a specific performance criteria. It is clear
that the robust control design may be a very difficult and challenging task.
Therefore, for MPC we will present only some of the basic ideas. In the
robust control design we have to consider namely:

e Uncertainty description and modeling
e Robust control design
e Robust analysis

The first and the last items may be relative simple when compared to the
robust control design, which may be a challenge, or even impossible.

Uncertainty description

There are several approaches how to describe the uncertainties of the con-
trolled system or inaccurate model. Selection of an approach depends mainly
on the controller design method. For example, if a controller design method
is based on frequency domain, the uncertainties should be also based on the
frequency domain. In the MPC context, the most important approaches are
the following two [7]:

e The system behavior is described by a set of models, for example, the
true plant Xy belongs to a set S, Xy € S, where the set S is a given
family of LTT systems. Mathematically

z(k+1) = Ax(k)+ Bu(k), (A,B)eS, (2.38)
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where

h h
S = {Zm (A, Bi); Y mi=1,m> 0} :
i=1 i=1
e Unmeasured disturbance signal w(k) acts on the system, where w(t) €
W and W is a priory known set. Mathematically

z(k+1) = Az(k) + Bu(k) + Fw(k), w(k)eW (2.39)

Robust MPC design

In the MPC robust control design, we need to formulate an optimization
problem that ensures the robustness. We defined two classes of uncertainties
that are often used in the linear MPC. When designing the robust MPC,
we can follow the concept presented in the section about the stability, i.e.
the dual mode control. First, we need to define robust admissible positively
invariant set:

Definition 4 A robust admissible positively invariant set £ is a region of
state space with the property that all state trajectories of the system controlled
by a state feedback starting from an initial condition within the set remain
within the set at all future instants for all considered perturbations and any
of considered constraints is not violated.

An example of a robust admissible positively invariant set is depicted on
Fig. 2.8. Secondly, we have to formulate a suitable cost function as a function
of the uncertain parameter, i.e.

T (@|(k), 0(k), k) | (2.40)

where 6(k) is the uncertain parameter, for which we know that (k) € ©. In
case (2.38), the criterion function will be parameterized by 7, i.e.

h
@={77: > omi=1, m>0} (A,B)esS,
=1

and in case (2.39)

O=W,
i.e. (k) =w(k). Assume that there exist a control law u(k) = —Kx(k) for
which we can found a robust admissible positively invariant set €2,.p,s for
0(k) € © and a corresponding terminal penalty term. Then the robust MPC
optimization problem can be defined as min-max optimization |15]

U, = arg min {m@xJ <ﬁk|x(k$), O, k;)}

ULk 6‘1@
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Figure 2.8: Example of admissible positively invariant set Q4, robust ad-
missible positively invariant set Qy for uncertainty description (2.39) and
system state trajectory uncertainty (red sets) [27].

subject to the constraints
ﬁk e U,

and robust stability constraints (or terminal constraints)

N
Xk c Qrobust )

where z(k + N) € XY and XY is a set of all possible values of the system
state at the end of prediction horizon. An illustrative example of the stability
constraints for the case (2.39) is depicted on Fig. 2.9.

The min-max approaches have several important drawbacks: (i) they are
computationally demanding (based on dynamic programming), (ii) the re-
sulting control action may be too conservative. Of course there exist many
other formulations of robust MPC. For example, it can be shown, that in-
stead of looking for the optimal control sequence, we should be looking for a
sequence of the control laws rii; (x(k + 7), k) when dealing with the robust
MPC control. A better formulation would be to perform for each step ¢ in the
prediction horizon maximization over 8(k+14) and immediately minimization
over u(k +14). Another important question is whether the constraints should
be satisfied for the nominal plant only or for all possible perturbations. All
these questions have been discussed by many authors and the practical robust
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MPC formulation is still an area of active research.

2.4 Hybrid systems

Hybrid systems are a special class of dynamical systems that combines both
continuous and discrete-value variables. The main components of the hybrid
systems are the continuous dynamics (based on first principle), logical com-
ponents (switches, automate, logical conditions, etc.) and interconnections
between the logic and dynamic. The hybrid systems can be used to model
systems with several operation modes where each mode has different dynam-

ical behavior. A simple example of a hybrid system is a piece-wise affine
(PWA) system, defined as

y(k) = Ciz(k) + Diu(k) + g;

it

The PWA systems enables to describe a large class of practical applications

{x(k)] cTi, i=12....n.

and are very general. Unfortunately, they are not directly suitable for the
analysis and synthesis of optimal control problems. Another useful frame-
work for the hybrid systems is based on Mixed Logical Dynamical (MLD)
models [8]. These models transform the logical part of a hybrid system into
the mixed-integer linear inequalities by using Boolean variables. The basic
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form of the MLD system is given by [§]

z(k+1) = Ax(k)+ Bu(k) + B2d(k) + Bsz(k) ,
y(k) = Cx(k)+ Du(k) + D20(k) + Dsz(k) ,

subject to
E25<]€) + EgZ(]f) < Eu(k) + E4SU<]€) + E5 |

where (k) is a combined continuous and binary state, u(k) and y(k) are
the system inputs and outputs (continuous and binary), d(k) are auxiliary
binary variables and z(k) are auxiliary continuous variables. Now, we can
define the optimal control problem for PWA system as

N-1
J (| (k), k) = Wk + N, + Y 1Q(k + ), + || Rulk + )],
- (2.41)
subject to
z(k+1) = Aix(k) + Bu(k) + fi
y(k) = Ciz(k) + Diu(k) + gi
vf [u(k;) e T, 1,2,...,
u(k) el

The PWA system can be represented by a MLD model and therefore, the
optimal control problem corresponds to the solution of mathematical mixed-
integer program. In case of PWA system, if the cost function is quadratic,
then the optimization problem leads to Mixed-Integer Quadratic Program
and if the the cost function is based on l; or [, norm, the optimization
problem leads to Mixed-Integer Linear Programming.

2.5 Optimization algorithms

We will conclude this chapter about the linear model predictive control by
a brief discussion about suitable optimization methods for solving the opti-
mization problems. It has been shown that the MPC control problem can
be formulated as an optimization problem that is solved at each sampling
period. Therefore, the performance of the optimization algorithm in MPC is
critical. Assume a QP problem in the form

1
ur —argm1n2u THi+d'Fp, st. Gi<W+Sp. (2.42)
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Direct solution to this QP by using general QP solver can be too slow for
some applications and therefore this approach is suitable only for relatively
slow systems. The modern QP solvers are based on active set or interior-
point approach. The active set solvers are iterative algorithms. In each
iteration, we are testing the optimality conditions for actual working set of
active constraints. If the working set of active constraints does not lead to
the optimal solution, then we modify the set by adding or removing the ac-
tive constraints. In general, the active set solvers are suitable for relatively
small problems but they are very efficient in practice, especially in combina-
tion with warm-starting strategy. The interior-point methods are based on
barrier functions. The constraints are added to the criterion function in the
form of a barrier which transforms the original problem to an unconstrained
optimization. The interior-point methods are iterative (solution to optimal-
ity conditions) and usually require only a small number of iterations when
compared to active set solvers. However, the individual iterations are more
computationally expensive.

If we need extremely fast sampling periods in the MPC, we can use multi-
parametric explicit solution |5, 6]. These optimization algorithms have off-
line and on-line parts. The MPC optimization problem is solved explicitly
in the off-line part. The explicit solution divides the optimization problem
parameter space into a number of regions where each region has associated
a control law. A particular region corresponds to a feasible combination of
active constraints. All these regions and the control laws are stored for the
on-line part. In the on-line part at each sampling period, we simply construct
the parameter vector and find the corresponding region. Then we apply the
associated control law. Unfortunately, the multiparametric explicit solution
is applicable for small systems only due to storage demands. The complexity
of parametric explicit solvers are compared with the active set solvers in [12].

Another way how to improve performance of the MPC optimization is to
explore the structure of the MPC optimization problem and use this infor-
mation to design an efficient solver. For example, there are two ways how to
add the soft constraints to the optimization problem. One of them leads to
simple®, or box, constraints. if all the constraints in the optimization problem
are box, then we can use this information to implement an efficient solver,
e.g. based on gradient projection methods or their modifications.

5The box constraints are defined so that we have variables with upper and lower limits,
€.2. Tmin S xz S Tmag-
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Chapter 3

Nonlinear Model Predictive Control

Today’s processes need to be controlled under tight performance specifica-
tions which can be only met if the controller works precisely. Nonlinear model
predictive control (NMPC) is extension of the well established linear predic-
tive control to the nonlinear world. Linear model predictive control refers to
MPC algorithms in which the linear models are used. The nonlinear model
predictive control refers to MPC schemes that are based on the nonlinear
models. Because NMPC enables the optimal control of constrained nonlin-
ear systems, it is one possible candidate as an advanced control scheme for
industrial processes. The nonlinear model predictive control has been inten-
sively studied since the 90s. The fundamentals of NMPC are revieved for
example in |3, 32, 4].

3.1 Formulation of nonlinear MPC

The first step in NMPC design is obtaining an accurate system model. Usu-
ally, in the practical applications, we are able to find a model based on
physical laws. The model should be as accurate as possible to ensure reason-
able control performance. Note that the modeling phase in NMPC design is
usually the most difficult part. Consider a continous-time nonlinear system
of the form

z(t) = f(x(t),u(t))
y(t) = h(x(t),ult))

where x(t) is the system state, u(t) is the system input and y(t) is the system
output. The second step in the model predictive control design is definition
of the cost function. The general objective function for the nonlinear system
on infinite prediction horizon has the integral form

T (u(t), 2(ty)) = / L (x(t),u(t),t) dt (3.1)



where the function L (z(t),u(t),t) defines the control objectives. This func-
tion reflect the basic requirements on the controller performance and is often
defined as a sum of weighted quadratic functions of tracking error and control
signal, e.g.

L ((t),u(t) t) = |r(t) =yl + lu®)% - (3:2)

where 7(t) is a known reference trajectory. This is the basic form and is
modified with respect to a particular application and actual system require-
ments. The cost function can be split into a finite prediction horizon term
and a terminal cost as follows

J (u(t), z(ty)) =V (z(ty)) + /L (x(t),u(t),t)dt . (3.3)
where the terminal cost is ideally given by
U (z(ty)) = /L (x(t), K (z(t)),t)dt (3.4)

Assume that the control signal at the time interval t € (ty,00) is given
by a control law K (x(t)). The general nonlinear MPC problem can be
formulated as a nonlinear optimization problem defined as minimization of
the cost function

min J (u(®)]z(to)) (3.5)

subject to constraints

g(@@),u(t)) < 0, te(toty),
u(t) € U, te(ttn),
2(t) € X, te (toty) .

where the last constraint is the stability constraint. the optimal control
trajectory at the time horizon ¢ € (ty,ty) can be obtained by solving the
above nonlinear constrained optimization problem. The explicit solution is
not usually possible and therefore the problem has to be solved by a suitable
numerical method.
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3.2 Analysis of nonlinear MPC

In this section we will briefly discuss the basic stability results. There exist a
number of schemes ensuring the stability of the resulting control system [17].
Most of them modify the MPC control scheme by adding a terminal con-
straints to the optimization problem and/or terminal costs to the objective
function. The terminal cost approximates the infinite horizon control and
is usually connected with a local controller. The terminal constraints are
selected so that the system state lies in the domain of attraction of the local
controller. The principal idea to state the conditions for stability is to select
the objective function as a Lyapunov function of the closed-loop system, i.e

tN
V (tn,z(ty)) =V (z(ty)) + /L (x(7),u(r)*,7)dr (3.6)
to
The stability conditions are summarized in the following Theorem:
Theorem 1 Suppose that ¥(z.) =0, x. € Q, Q C X is a closed set and the
optimization problem 1is feasible at ty. Then the nominal closed-loop system
is asymptotically stable for any time § € (to,tn) if there exists a local control
law u(t) = k(x(t)) for t > tn with ue = k() such that:
oV (z(t)) |
—=x(t
FIORRAC
The proof of Theorem can be found in the literature. Note that in general,

it is not easy to find a terminal penalty W and terminal set €2 satisfying
conditions in the Theorem.

+ L(x(t),u(t),t) <0, z(t)eQ, r(z(t)eU (3.7)

3.3 Numerical methods for nonlinear MPC

A commonly used approach to solve the problem (3.5) is reformulation to
a finite dimensional nonlinear programming problem (NLP) by a suitable
parameterization. The most recent research in the nonlinear MPC suggests
to perform this parameterization by using Direct Multiple Shooting method
|11, 16]. The nonlinear programming problem can be solved by iterative
Sequential Quadratic Programming approach (SQP). To find the optimal so-
lution to the defined NLP, it is usually necessary to perform several iterations
which may be a time consuming task. Therefore, it is suggested to perform
only one iteration in each sampling period in real-time applications and to
use a sub-optimal instead of the optimal solution [16].
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Figure 3.1: Direct single shooting (left) and direct multiple shooting (right)

There are two important direct approaches to solve the nonlinear optimiza-
tion problems in the real-time optimizations:

e Direct single shooting is a basic approach and is similar to the ap-
proach used by the standard linear model predictive control. At the
initial time, the numerical integration is used to obtain the predicted
trajectories as a function of manipulated variable for the prediction hori-

zon, see Fig. 3.1. Having these trajectories, one can perform one iteration
of SQP procedure.

e Direct multiple shooting [11] is based on re-parameterization of the
problem on the prediction horizon. The pieces of system trajectories
are found on each time interval numerically together with sensitivity
matrices, see Fig. 3.1. The optimization problem is then augmented by
auxiliary constraints - continuity conditions.

Such parameterization can be regarded as simultaneous linearization and
discretization. One advantage of the multiple shooting methods is that the
optimization problem is sparse, i.e. the Jacobians in the optimization prob-
lem contain many zero elements which makes the QP subproblem cheaper
to built and to solve. The simulation (solution to the model) and optimiza-
tion are performed simultaneously and the solution to the problem can be
parallelized. The direct multiple shooting approach parameterizes the opti-
mization problem by a finite set of parameters, i.e. by system states x;(¢;)
(auxiliary optimization variable) and system inputs wu(t;). The key idea of
finite parameterization is to find the sensitivity matrices (or linearization) so
that

5-Ti(ti+1) ~ (I)(ti—f—l, t,)5$,(f,) + T (ti—i—la ti) 5u,(tl) ,
0ri1(tiv1) = dzi(titr)
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where ®(t;41,t;) and I" (¢;11,t;) are sensitivity matrices defined by

Oz (t) 0x(t)
833@0) 8u(t0)

The sensitivity of the system state trajectory to the initial condition can be

D(t,t0) =

T(t,t) = (3.8)

computed by solving the following differential equation

b(t, ty) = 6]((8(582 ;5 u(t ))Cb(t,to) LBt ty) = gigg;

and the sensitivity of the system trajectory to the system input at time g is
given by

— ] (3.9)

of (x(t), u(t))
0x(t)

where 1(t — tp) is the unit step defined as

. 0 t <t
L{t —to) = { 1 otherwise

of (x(t), u(t))
ou(t)

(¢, ty) = D(t,ty) + 1(t —to) ,

and the initial condition is
833@0)
8’&(250)

Calculation of sensitivity matrices for the nonlinear system requires solution
to a set of differential equations simultaneously with the system trajectory.

T(t,to) = (3.10)

This may be a consuming task.

It was shown how the optimization problem can be parameterized by a finite
number of parameters in the multiple shooting approach. Using these results,
the control problem (3.5) can be formulated as mathematical programming

u(ts),zi(ti) 2o

subject to constraints

Tiy1(tiv1) — zi(tiy) = 0, t€(0,N—1),

zo(to) — x(to) = 0,

g (zi(t),u(t;)) < 0, te(0,N),
u(t;) € U, te(0,N),
zi(t;)) € X, te(0,N),

an(tn) € €,



4 one iteration of SQP
¥~ (QP)
sensitivities and
past pre-optimization
for next sampling period
. = -
to ™ t1 ™ -
t0+delta t1+delta M

Figure 3.2: Timing diagram for real-time optimizations

The cost function at time interval ¢ € (¢;,t;11) is equal to

tiv1

L,’ (:cl(tl), U(t,), t,) = / L (ICZ'(T), U(T), 7') dT (312)

t;

and x;(t;41) is solution of the nonlinear system at time t;,1 with initial con-
dition x;(¢;). The resulting nonlinear programming problem (3.11) can be
solved, for example, by a suitable SQP framework [24].

The model based predictive control algorithms are usually formulated with
receding horizon where the optimization problem is re-calculated in each sam-
pling period and only the first control action is applied to the system. A very
efficient scheme has been proposed in [16]. The timing scheme of this ap-
proach is depicted on Fig. 3.2. There are two main phases: preparation phase
and feedback phase. During the preparation phase, the algorithm calculates
as much as it is possible without knowledge of data that will be available at
the beginning of the next sampling period. The feedback phase takes new
measurement and calculates the control action that can be immediately sent
to the system.
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