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Chapter 1
Introdu
tion

The present age is the age of s
ien
e and amazing te
hnologies. The progressin the s
ien
e that has been made during the last several de
ades has openedfuture growth opportunities in all areas of our everyday life. We 
an mentionnamely 
omputer, medi
al, physi
al and 
hemi
al s
ien
e, 
ommuni
ationte
hnologies, nanote
hnologies, aerospa
e, but also 
hemi
al, petro
hemi
al,ma
hinery and automotive industries, oil re�ning and many others as ex
el-lent examples of areas with the great progress. All these areas require deepunderstanding of fundamental physi
al prin
iples and relations. The resultsof R&D (Resear
h and Development) a
tivities are various te
hnologies, pro-
edures, 
omplex and large-s
ale systems, ma
hines, produ
tion lines, et
.Integral parts of su
h systems are sensors and a
tuators. The sensors anda
tuators are utilized by ele
troni
 systems whi
h are used for monitoringand to ensure their a

urate, reliable and safe operation during the lifetime.Model based predi
tive 
ontrol (MPC) is a te
hnology o�ering a systemati
approa
h for 
ontrolling the multivariable 
onstrained dynami
al systems.MPC te
hnology uses a model of the 
ontrolled system to predi
t the futureresponse. The responses are fun
tions of the system input traje
tories, pa-rameters and disturban
es. The task for MPC 
ontroller is to 
ompute theoptimal traje
tories for the system inputs whi
h are subje
t of the 
ontrolso that the de�ned obje
tives for the 
ontrol loop will be satis�ed. In theindustrial 
ontrol, these inputs are known as manipulated variables (MVs).The 
ontrol obje
tives are expressed by using a 
ost fun
tion (known alsoas penalty fun
tion). The 
ost fun
tion penalizes undesired behavior of thesystem over the predi
tion horizon and it has usually additive form. Theindividual terms of the sum des
ribes di�erent goals for the 
ontroller. Theimportan
e of the parti
ular goals are expressed by using the so 
alled weight-ing 
oe�
ients. The next important feature of MPC is the ability to handlethe 
onstraints in a nature and systemati
 manner. These 
onstraints arede�ned namely by the te
hnologi
al, e
onomi
al, but also safety restri
tionsof the 
ontrolled system.



The MPC problem is formulated as an optimization problem whi
h has tobe solved periodi
ally at ea
h sampling period. This is a real di�erentiatorof MPC when 
ompared to 
lassi
al 
ontrol methods. In the e�
ient MPCformulations, the optimization problem is expressed as a mathemati
al pro-gramming problem whi
h 
an be solved quite e�
iently for a 
ertain 
lass ofproblems. However, the e�
ien
y of the solvers is still a limiting fa
tor forMPC appli
ations in several areas, espe
ially if the 
ontrolled systems arenonlinear and/or are sampled with fast sampling period. The linearity ofthe 
ontrolled system is an important fa
tor when implementing the MPC
ontroller. If the MPC 
ontroller is designed for the linear system, all the
onstraints are linear and the 
ost fun
tion is quadrati
, we refer to a lin-ear MPC 
ontroller. The linear MPC 
ontroller is translated to a quadrati
programming problem (QP) for whi
h there exist very e�
ient solvers. The�rst 
lass of the most e�
ient solvers is based on a
tive sets, the se
ond isknown as interior point methods.The things be
oming 
ompli
ated when the system is nonlinear. In this 
asethere are several options how to a
hieve a good MPC 
ontrol. The simplestone is just to ignore the nonlinearity at all and to design the 
ontroller for a
ertain operating point of the system. With some lu
k, the 
ontroller will berobust enough and will behave a

eptably and we are done (...preferred inthe pra
ti
e). If the nonlinearity 
annot be simply ignored, the linear MPC
ontroller in its basi
 formulation 
annot be used and must be extended. Themost e�
ient and systemati
 solution, at least from the theoreti
al point ofview, is to utilize the fully nonlinear 
ontroller. This means that the 
on-troller utilizes the nonlinear model of the pro
ess to 
ompute the predi
tionsand to handle the 
onstraints. The resulting optimization problem is thennonlinear whi
h may be a 
hallenge to solve in the real-time at ea
h samplingperiod, as it is required. Another interesting question, when de
ided for thenonlinear MPC, is how to get a reliable nonlinear model.It is well known that the su

ess of the MPC appli
ation depends on themodel quality, i.e. how a

urately the model des
ribes the 
ontrolled system.Better a

ura
y means usually better 
ontrol performan
es and less 
ompli-
ations with the robustness of the solution. The modeling phase in the MPCdesign pro
edure plays a very important role. The designer must de
ide onwhether to use the linear or nonlinear approa
h, sele
t suitable model stru
-ture, de
ide on the model 
omplexity, prepare the identi�
ation experiment
olle
t representative data and to �t the model parameters. All these steps3



Figure 1.1: Hierar
hi
al stru
ture of a 
ontrol systemare very important for the su

essful MPC story.1.1 Advan
ed 
ontrol te
hnologiesAvailable 
omputer te
hnologies enable implementing the 
ontrol systems ina wide range of appli
ations. Sele
tion of appropriate 
ontrol te
hnology andof parti
ular 
ontrol algorithms is in�uen
ed by many fa
tors, e.g. numberof a
tuators, 
ontrolled variables (CV), required sampling period, safety andreliability requirements, physi
al stru
ture of the 
ontrolled system, 
om-muni
ation limitations, et
. As an example, we 
an mention a 
ommonlyused stru
ture of the 
ontrol system in the pro
ess industry - hierar
hi
alstru
ture. The hierar
hi
al stru
ture is depi
ted on Fig. 1.11.1.1 InstrumentationThis layer represents the basi
 a
tuators and sensors of the 
ontrolled te
h-nology. The number of input/output points depends on the te
hnology butin general, in the pro
ess industry, it may be very large (more than severalthousands). Typi
ally, it is required to write/read all the values periodi
allywith a time period 
orresponding to the system 
hara
ter. The measuredvalues are marked by the time stamp and are stored in a pro
ess historydatabase whi
h is a very e�
ient way how to organize the pro
ess data.4



1.1.2 Basi
 ControlThe basi
 
ontrol layer is usually a 
ore system that ensures the basi
 fun
-tionality and safety operation of the te
hnology. The basi
 
ontrol must bereliable system whi
h often provides a ba
kup solution for the advan
ed 
on-trol layer. It 
ontains various te
hnologies to a
hieve the mentioned goals. Ifwe refer to basi
 
ontrol, we have to think about the te
hnology as a wholeand not only about the elemental 
ontrol loops manipulating the plant a
tu-ators. This in
ludes namely the overall 
ontrol strategy and its hierar
hy. Itintegrates all the basi
 
ontrol modes (manual, automati
, 
as
ade 
ontrol)but also monitoring and visualization tools. This layer 
an be seen as thegate for the advan
ed 
ontrol and optimization layer be
ause it provides plantprestabilization and redu
es the nonlinearities (linearization like e�e
t). Thefeedba
k loops are typi
ally implemented by PID 
ontrollers.1.1.3 Advan
ed ControlThe 
ontrol algorithms whi
h 
ontain some advan
ed fun
tionality are in-
luded in the advan
ed 
ontrol layer. These algorithms intera
t dire
tly withthe basi
 
ontrol and perform 
oordination of individual parts and 
ontrolloops of basi
 
ontrol strategies. The 
oordination is usually done throughthe setpoints, based on master/slave system. Note that the sampling periodsin the advan
ed 
ontrol layer are slower than in the basi
 
ontrol be
ause thereje
tion of fast disturban
es is a job for the basi
 
ontrol. The main goalis to ensure the optimal operation of the plant under the given 
onditionswhi
h are driven namely by a
tual te
hnologi
al and e
onomi
al 
onditionsand by resour
e restri
tions. It is 
lear that the advan
ed 
ontrol algorithmshave to work with multivariable systems, must be able to handle pres
ribed
onstraints and should ensure the optimal operation. The MPC 
ontrol te
h-nology is therefore an ideal 
andidate for this position. This layer may 
ontainalso the so 
alled real-time optimization (RTO) module. RTO module is usu-ally a model based optimization algorithm that 
omputes the goals for theadvan
ed 
ontrol of individual plant units or pro
esses. RTO may be stati
or dynami
 and is used for the internal 
oordination of individual parts of theplant. It is not a surprise, that RTO may be formulated and implementedby an MPC 
ontroller.1.1.4 PlaningThe top supervisory layer in the industrial 
ontrol systems are planing ands
heduling. These are usual entry points for the plant te
hnologists and5



Figure 1.2: A way from the 
ontrol to an optimization problemmanagers. This layer is based on e
onomi
-related informations and shouldprovide a 
omplex overview about the plant performan
e. The main toolshere are the databases, visualization tools and spe
ialized 
omputation rou-tines. The planing layer spe
i�es the goals for the advan
ed 
ontrol layerin the form of various setpoints, 
onstraints, optimality 
onditions, resour
eavailability and resour
e allo
ation, s
hedules, et
.Main enablers for the advan
ed 
ontrol and planing tools are the e�
ientmathemati
al optimization algorithms and powerful 
omputers whi
h 
anhost the 
omputation routines. The software ar
hite
ture of the 
ontrol ap-pli
ations must be very �exible. The solution has to be modular, easilyreusable, extendable, but also user friendly. The last mentioned feature isvery important and may be a key(!) for su

ess of an advan
ed 
ontrol te
h-nology.The MPC methodology should be seen as a tool whi
h enables to deliverythe de
ided goals spe
i�ed for the 
ontrolled pro
ess and not as a te
hnologywhi
h 
ould repla
e all the 
ontrol te
hniques. The su

ess of appli
ationsdepends namely on the skills of the appli
ation engineers responsible for MPCimplementation to a parti
ular pro
ess. Translation of the MPC problem toan optimization problem is relatively simple and straightforward, as it willbe shown later in this text. The di�
ult thing may be the formulation ofthe 
ontrol problem as a MPC problem. This is very important for pra
ti
alappli
ations and it requires ex
ellent understanding of the pro
ess (from the
ontrol point of view) and very good knowledge of MPC, see Fig. 1.2 .1.2 Classi
al approa
h to dis
rete time dynami
 sys-tem optimizationIn this se
tion three general optimization methods of dis
rete time dynami
system are presented. In the �rst part it is variational approa
h based on6



mathemati
al programming. The se
ond general method is dis
rete maxi-mum prin
iple and the last one is dynami
 programming.1.2.1 Mathemati
al programming approa
h to dis
retesystem optimizationLet us have dis
rete time dynami
 system des
ribed by state spa
e di�eren
eequation
x(t+ 1) = f

(
x(t), u(t), t

)
, t = t0, . . . , t1−1 (1.1)with initial 
ondition x(t0) = x0. The problem is to �nd the 
ontrol sequen
e

u(t0), . . . , u(t1−1), whi
h minimizes the 
riterion in the form
J = h

(
x(t1)

)
+

t1−1∑

t=0

g
(
x(t), u(t), t

)
, (1.2)where (t1 − t0) is the optimality horizon. It is the problem of mathemati
alprogramming - the minimization of the 
riterion (1.2) with (t1 − t0) limiting
onditions in the form of equations (1.1). Su
h problem 
an be solved usingLagrange ve
tor λ(t). Let us de�ne augmented 
riterion (Lagrangian)

J̄ = h
(
x(t1)

)
+

t1−1∑

t=t0

{
g
(
x(t), u(t), t

)
+ λT(t+ 1)

(
f
(
x(t), u(t), t

)
− x(t+ 1)

)}
.(1.3)The Hamiltonian is de�ned

H
(
x(t), u(t), t

)
= g

(
x(t), u(t), t

)
+ λT(t+ 1)f

(
x(t), u(t), t

)
, (1.4)where t = t0, . . . , t1−1. The Lagrangian 
an be written in the form

J̄ = h
(
x(t1)

)
− λT (t1)x(t1) +H(x(t0), u(t0), t0) +

+

t1−1∑

t=t0+1

{
H
(
x(t), u(t), t

)
− λT(t)x(t)

}
.In the following simple notation is used

H(t) = H
(
x(t), u(t), t

)
,

g(t) = L
(
x(t), u(t), t

)
,

f(t) = f
(
x(t), u(t), t

)
.7



If the fun
tion J̄ is di�erentiable with respe
t to x(t) a u(t), the in
rementof the 
riterion J̄ along the traje
tory of the system state and 
ontrol equals
dJ̄ =

[
∂h(t1)

∂x(t1)
− λT (t1)

]
dx(t1) +

∂H(t0)

∂x(t0)
dx(t0) +

∂H(t0)

∂u(t0)
du(t0) +

+

t1−1∑

t=t0+1

{[
∂H(t)

∂x(t)
− λT(t)

]
dx(t) +

∂H(t)

∂u(t)
du(t)

}
. (1.5)Ve
tor is always 
onsidered as a 
olumn ve
tor and the derivative of thes
alar fun
tion g(x) of ve
tor argument x is a row ve
tor

∂g

∂x
=

[
∂g

∂x1
, . . . ,

∂g

∂xn

]and the in
rement of this fun
tion equals
dg(x) =

∂g(x)

∂x
dx =

∂g

∂x1
dx1 + · · · +

∂g

∂xn

dxn.If the fun
tion g(x, y) equals g(x, y) = yTAx, then its derivative equals
∂g

∂x
= yTA,

∂g

∂y
= xTAT .The derivative of ve
tor fun
tion f(x) of ve
tor argument x equals Ja
obimatrix

∂f

∂x
=




∂f1
∂x...
∂fm
∂x


 =




∂f1
∂x1

· · ·
∂f1
∂xn... ...

∂fm
∂x1

· · ·
∂fm
∂xn



.The in
rement of the state dx(t) 
aused by in
rement du(t) follows from (1.1)as

dx(t+ 1) =
∂f(t)

∂x(t)
dx(t) +

∂f(t)

∂u(t)
du(t),Its in�uen
e to the 
riterion 
an be negle
ted if the Lagrange 
oe�
ients areproperly 
hosen. In formal way the ne
essary 
ondition of optimum equals

∂J̄/∂x(t) = 0. From this follows the ne
essary 
onditions
∂H(t)

∂x(t)

T

− λ(t) = 0 , t = t0 + 1, . . . , t1−1,

∂h(t1)

∂x(t1)

T

− λ(t1) = 0 8



and from the de�nition of the fun
tionH(t) as in (1.4) the di�eren
e equationare obtained
λ(t) =

∂g(t)

∂x(t)

T

+
∂f(t)

∂x(t)
λ(t+ 1) , t = t0, . . . , t1−1with end 
ondition

λ(t1) =
∂h(t1)

∂x(t1)

T

.The in
rement of the 
riterion (1.5) equals
dJ̄ =

t1−1∑

t=t0

∂H(t)

∂u(t)
du(t), (1.6)be
ause for �xed initial 
ondition x(t0) the in
rement is of 
ourse dx(t0) =

0. The expression ∂H(t)/∂u(t) equals the gradient of the 
riterion J withrespe
t to 
ontrol sequen
e u(t) and with the limitation given by systemequation (1.1). The ne
essary 
ondition for optimal 
ontrol sequen
e u∗(t) iszero in
rement of the 
riterion (1.6) for arbitrary du(t) in the neighbourhoodof u∗(t). The sequen
e u∗(t) must be sta
ionary point of the 
riterion J , so
∂H(t)

∂u(t)
= 0 , t = t0, . . . , t1−1.For the solution of dis
rete optimal 
ontrol problem it is ne
essary to �ndthe solution the system of di�eren
e equations

x(t+ 1) =

(
∂H(t)

∂λ(t+ 1)

)T

= f(x(t), u(t), t) , (1.7)
λ(t) =

(
∂H(t)

∂x(t)

)T

=

(
∂g(t)

∂x(t)

)T

+
∂f(t)

∂x(t)
λ(t+ 1) , t = t0, . . . , t1−1,with boundary 
onditions

x(t0) = x0,

λ(t1) =

(
∂h(t1)

∂x(t1)

)T (1.8)and the 
ontrol u∗(t) given by the 
ondition
∂H(t)

∂u(t)
=

∂g

∂u(t)
+

∂f(t)

∂u(t)
λ(t+ 1) = 0. (1.9)The solution of leads to two point boundary value problem, be
ause initial
onditions (1.8) for ve
tor x(t) are given in time t = t0 and initial 
onditions9



for λ are given in time t = t1. Both equations (1.7) are 
oupled by 
ontrolve
tor u(t), whi
h is given by equation (1.9). It is the reason for the di�
ultyof the general problem of optimal 
ontrol dis
rete time dynami
 system. Inthis approa
h there is no limitation in 
ontrol sequen
e u(t). Su
h problem
an be 
ompletely solved for linear system and quadrati
 optimality 
riterion,so 
alled LQ problem.1.2.2 Maximum prin
iple for dis
rete time problemFor the optimization of 
ontinuous time system the 
elebrated Pontriaginmaximum prin
iple was developed. In su
h approa
h the limitation of the
ontrol ve
tor 
an be respe
ted. In analogous way the dis
rete maximumprin
iple was developed, whi
h is next given without proof. Let us againhave state spa
e equations of dis
rete time system in the form
x(t+ 1) = f(x(t), u(t)) (1.10)where t ∈ Z is dis
rete time, x(t) is state of the system, u(t) is the 
ontrolwhi
h belongs to the limitation set U and the system is for simpli
ity timeindependent. The problem is to �nd optimal 
ontrol u∗(t) minimizing the
riterion

J = h(x(t1), u(t1)) +

t1−1∑

t=t0

g(x(t), u(t))dt (1.11)For the solution of su
h problem the Hamiltonian is formed
H(x(t), u(t), p(t+ 1)) = −g(x(t), u(t)) + pT (t+ 1)f(x(t), u(t)) (1.12)The maximum prin
iple states that optimal 
ontrol maximizes the Hamilto-nian, so

u∗(t) = argmaxu(t)∈UH(x(t), u(t), p(t+ 1)) (1.13)but only in 
ase if the rea
hability set R(z) = {z : z = f(x, u), u ∈ U} is
onvex for all x(t). The system equation (1.10) is given by
x(t+ 1) =

(
∂H(x(t), u(t), p(t+ 1)

∂p(t+ 1)

)T (1.14)Equation for the so 
alled 
onjugate system equals
p(t) =

(
∂H(x(t), u(t), p(t+ 1))

∂x(t)

)T (1.15)For the system (1.10) it is usually known the initial 
ondition x(t0) and forthe 
onjugate system (1.15) the �nal 
ondition equals
p(t1) = −

∂h(x(t1))

∂x(t1)
.10



Dis
rete maximum prin
iple 
hanges the problem of optimal 
ontrol to twopoint boundary value problem of the two sets of di�eren
e equations andmaximization of Hamiltonian with respe
t to 
ontrol u(t). Utilizing maxi-mum prin
iple the limitation of 
ontrol ve
tor u(t) ∈ U 
an be a

epted.1.2.3 Dynami
 programmingDynami
 programming, 
onne
ted with the name R. Bellman, is based ontwo simple prin
iples. The �rst one is 
alled prin
iple of optimality. Prin
ipleof optimality has di�erent formulation as ne
essary and su�
ient 
ondition.For our 
ase of optimality 
riterion as (1.11) it is the ne
essary and su�
ient
ondition. Problem of optimal 
ontrol is the multistep optimization problem,in ea
h time t in the 
ontrol interval, optimal 
ontrol u∗(t) must be 
hosen.Prin
iple of optimality states that from arbitrary state x(t) our next de-
ission must be optimal, without respe
t how the state is rea
hed by previousde
issons. It follows from well known proverb "Don't 
ry on the spilled milk".It is based on obvious fa
t that you 
annot 
hange the past but your futuremust be 
ontrolled in optimal way.The next prin
iple is the prin
iple of invariant imbeding. Single problem
an be nested on the whole set of similar problems and solving su
h set ofproblems the solution of original problem is obtained.For dis
rete time dynami
 system (1.10) with initial 
ondition x(t0) = x0, weare looking for su
h 
ontrol sequen
e u(t) in time interval t ∈ T ≡ [t0, t1−1],whi
h minimizes the 
riterion (1.11) with respe
t to all limitation of state
x(t) ∈ X and 
ontrol u(t) ∈ U . Su
h single problem is imbeded to the wholeset of problems of optimal 
ontrol of dynami
 system (1.10) with free initialtime whi
h is denoted as i ∈ T and free initial state whi
h is denoted as
s ∈ X. In su
h 
ase the optimality 
riterion equals

J (i, s, u(t0), . . . , u(t1 − 1)) = h (x(t1)) +

k1−1∑

k=i

g (x(k), u(k), k) (1.16)The �nal time t1 is �xed. By the solution of the whole set of problems ouroriginal problem is solved for i = t0 and s = x0. Let us introdu
e optimalfun
tion V (s, i), whi
h is also 
alled Bellman fun
tion
V (s, i) = min

u(i),...u(t1−1)
J (i, s, u(t0), . . . , u(t1 − 1)) (1.17)11



Simple modi�
ation of previous relation leads to
V (s, i) = min

u(i)

{
g (s, u(i), i) + min

u(i+1),...

[
h (x(t1)) +

t1−1∑

t=i+1

g (x(t), u(t), t)

]}

but the se
ond term in previous relation equals shifted optimal fun
tion
V (s(i+ 1), i+ 1) = V (f (s, u(i), i) , i+ 1) .Optimal fun
tion V (s, i) is the solution of fun
tional re
ursive equation(Bellman equation)

V (s, i) = min
u(i)

{g (s, u(i), i) + V (f (s, u(i), i) , i+ 1)} . (1.18)In �nal time t1 the optimal fun
tion equals
V (s, k1) = h (s(k1)) (1.19)whi
h is the boundary 
ondition for Bellman equation (1.18) and h(s(t1))is the target term of the optimality 
riterion (1.11). Computation of theoptimal fun
tion is in prin
iple very simple. The Bellman fun
tion V (s, i)is 
omputed ba
kvard in time starting from the �nal 
ondition (1.19) for allstates and in ea
h time step minimization with respe
t to 
ontrol u(i)must besolved. There are two problems during the solution of Bellman equation. Ingeneral 
ase the grig of states x(t) must be 
hosen in whi
h optimal fun
tionis 
omputed. For great dimension of state ve
tor the grid of states haslarge dimension whi
h grows exponentially. Su
h phenomenon 
alled Bellman"
urse of dimensionality". Another problem is the ne
essity to interpolateand extrapolate in the grid of states whi
h make the 
omputation of Bellmanfun
tion di�
ult. Using Bellman equation the limitation of system states

x(t) ∈ X and 
ontrol u(t) ∈ U 
an be respe
ted. The 
losed form of thesolution of Bellman equation 
an be obtained in 
ase of quadrati
 optimal
ontrol of linear dis
rete or 
ontinuous time systems.1.2.4 Quadrati
 Optimal Control of Linear SystemThe general results are now used to solve the problem of optimal 
ontrollinear dis
rete time system with quadrati
 
riterion, so 
alled LQ problem.Sto
hasti
 version of su
h problem is 
alled LQG problem (the G is forGaussian noise in the system state equation). Let us have linear dis
retetime system
x(t+ 1) = A(t)x(t) +B(t)u(t) (1.20)12



with initial state x(0) = x0 and optimality 
riterion in quadrati
 form
J =

1

2
xT (t1)Sx(t1) +

1

2

t1−1∑

t=t0

{
xT (t)Q(t)x(t) + uT(t)R(t)u(t)

}
, (1.21)where S is positive semide�nite matrix, Q(t), t = t0, . . . , t1 is the sequen
eof positive semide�nite matri
es and R(t), t = t0, . . . , t1−1 is the sequen
e ofpositive de�nite matri
es. The sequen
e of fun
tions H(t) a

ording to (1.4)equals

H(t) =
1

2
xT(t)Q(t)x(t) +

1

2
uT(t)R(t)u(t) + λT (t+ 1)

(
A(t)x(t) +B(t)u(t)

)
.(1.22)A

ording to (1.7)�(1.9) the state x(t), 
ostate λ(t) and 
ontrol u(t) is givenby the set of di�eren
e equations

x(t+ 1) =
∂H(t)

∂λ(t+ 1)
= A(t)x(t) + B(t)u(t) , x(t0) = x0, (1.23)

λ(t) =
∂H(t)

∂x(t)
= Q(t)x(t) + AT (t)λ(t+ 1) , λ(t1) = Sx(t1),(1.24)

0 =
∂H(t)

∂u(t)
= R(t)u(t) +BT(t)λ(t+ 1). (1.25)From the (1.24) follows

u(t) = −R−1(t)BT(t)λ(t+ 1). (1.26)Be
ause matri
es R(t) must be positive de�nite the existen
e of its inversionis guaranted. From (1.23) and (1.24) follows
x(t+ 1) = A(t)x(t)−B(t)R−1(t)BT (t)λ(t+ 1) , x(0) = x0

λ(t) = Q(t)x(t) +AT (t)λ(t+ 1) , λ(t1) = Sx(t1).Su
h system 
an be written in matrix form
[
x(t+ 1)
λ(t)

]
=

[
A(t) −B(t)R−1(t)BT (t)
Q(t) AT(t)

] [
x(t)

λ(t+ 1)

]
.From the solution of this boundary value problem, the optimal 
ontrol (1.26)is obtained. Previous matrix equation 
an be written in the form

[
I B(t)R−1(t)BT (t)

0 AT (t)

] [
x(t+ 1)

λ(t+ 1)

]
=

[
A(t) 0

−Q(t) I

] [
x(t)

λ(t)

] (1.27)and for regular matrix A(t) (if the dis
rete time system originated fromsampling of 
ontinuous time system, its matrix A(t) is alvays regular)
[
x(t)
λ(t)

]
=

[
A(t) 0
−Q(t) I

]−1 [
I B(t)R−1(t)BT (t)
0 AT (t)

] [
x(t+ 1)
λ(t+ 1)

]
, (1.28)13



or[
x(t)
λ(t)

]
=

[
A−1(t) A−1(t)B(t)R−1(t)BT (t)

Q(t)A−1(t) AT (t) +Q(t)A−1(t)B(t)R−1(t)BT (t)

] [
x(t+ 1)
λ(t+ 1)

]
.Initial 
ondition λ(t1) = Sx(t1) from (1.24) 
an be substituted to (1.28) andso

[
x(N−1)
λ(N−1)

]
=

[
A(N−1) 0
−Q(N−1) I

]−1

[
I B(N−1)R−1(N−1)BT (N−1)
0 AT (N−1)

] [
I

Q(N)

]
x(N).From this follows that Lagrange ve
tor λ(t) 
an be expressed in the form

λ(t) = P (t)x(t),where P (t) is some matrix. From (1.25) follows
0 = R(t)u(t) +BT(t)P (t+ 1)x(t+ 1)

= R(t)u(t) +BT(t)P (t+ 1)(A(t)x(t) +B(t)u(t))

=
[
R(t) +BT (t)P (t+ 1)B(t)

]
u(t) + BT (t)P (t+ 1)A(t)x(t).From previous relation optimal 
ontrol sequen
e equals

u(t) = −
[
R(t) + BT(t)P (t+ 1)B(t)

]−1
BT (t)P (t+ 1)A(t)x(t)(1.29)

= −K(t)x(t).Instead of regularity of the matrix R(t) it is su�
ient to ful�ll only weaker
ondition whi
h is the regularity of the matrix (R(t) + BT(t)P (t+ 1)B(t)).Quadrati
 optimal 
ontrol results in linear time dependent state feedba
kwith gain (Kalman gain)
K(t) =

[
R(t) +BT(t)P (t+ 1)B(t)

]−1
BT (t)P (t+ 1)A(t). (1.30)After substitution of this 
ontrol to (1.24) the following relation is obtained

P (t)x(t) = Q(t)x(t) + AT (t)P (t+ 1)A(t)x(t) +AT (t)P (t+ 1)B(t)u(t)

= Q(t)x(t) + AT (t)P (t+ 1)A(t)x(t)−

− AT (t)P (t+ 1)B(t)
[
R(t) + BT(t)P (t+ 1)B(t)

]−1
×

× BT (t)P (t+ 1)A(t)x(t).Su
h 
ondition is valid for arbitrary state x(t), so the sequen
e of matri
es
P (t) is given by matrix di�eren
e equation
P (t) = AT(t)P (t+ 1)A(t) +Q(t)− (1.31)

− AT (t)P (t+ 1)B(t)
[
R(t) + BT(t)P (t+ 1)B(t)

]−1
BT(t)P (t+ 1)A(t)14



with end 
ondition
P (t1) = S. (1.32)Matrix equation (1.31) is 
alled Ri

ati Di�eren
e Equation. Ri

atidi�eren
e equation 
an be written in the form

P (t) =
(
A(t)−B(t)K(t)

)T
P (t+1)

(
A(t)−B(t)K(t)

)
+KT(t)R(t)K(t)+Q(t),(1.33)From previous relation follows that if S = ST ≥ 0 then all matri
es P (t) arealso symmetrix and positive semide�nite.Steady state solution of Ri

ati equationLet us have time invariant dis
rete time system

x(t+ 1) = Ax(t) +Bu(t) (1.34)and optimality 
riterion
J =

1

2
xT (t1)Sx(t1) +

1

2

t1−1∑

t=t0

{
xT (t)Qx(t) + uT(t)(t)u(t)

}
, (1.35)where S and Q are positive semide�nite 
onstant matri
es and R is positivede�nite 
onstant matrix. Optimal 
ontrol u∗(t)minimizing previous 
riterionresults in linear state feedba
k

u(t) = −K(t)x(t), (1.36)It 
an be shown that for in
reasing optimality horizon (t1 → ∞) Kalmangain K(t) is approa
hing to 
onstant matrix K and also matrix P (t) givenby Ri

ati equation is approa
hing to 
onstant matrix P . Su
h 
onstantmatrix P is the silution of Algebrai
 Ri

ati Equation
P = ATPA− ATPB

[
R + BTPB

]−1
BTPA +Q, (1.37)Su
h algebrai
 equation results from matrix Ri

ati equation if P = P (t) =

P (t+ 1). Linear optimal feedba
k gain (Kalman gain) equals
K =

[
R +BTPB

]−1
BTPA. (1.38)Two question must be answered. If the limiting 
ondition of Ri

ati equationeqists (lim(t1−t)→∞ P (t) = P ) and equals to the solution of algebrai
 Ri

atiequation P and if is stable the feedba
k optimal system with state matrix

(A − BK). Both 
onditions are ful�lled if the 
ontrolled system (1.34) isstabilizable (
ouple (A,B) is stabilizable) and the system with output matrix
CQ is dete
table (
ouple (CQ, A) is dete
table), where CT

QCQ = Q.15



1.3 Brief overview of Model Predi
tive ControlModel predi
tive 
ontrol (MPC) is one of the methods that enables optimal
ontrol of 
onstrained multivariable dynami
al systems. It is interesting tonote that MPC has been (re)dis
overed and widely used by the industrialpra
titioners before having solid theoreti
al base. The �rst known formula-tion of a moving horizon 
ontroller using a linear programming is in [28℄ andprobably �rst des
ription of MPC 
ontrol appli
ation in [33℄. At the presenttime, MPC is a standard advan
ed 
ontrol te
hnology used in the pro
ess in-dustry. For the 
omputational limit reasons, the pra
ti
al MPC appli
ationshave been limited to the linear models whi
h may not be a

urate enoughfor some 
lasses of appli
ations. For su
h 
lasses of systems, it is bene�
ialto de�ne the nonlinear MPC whi
h requires solution of a 
onstrained non-linear optimization problem at ea
h sampling period. In nonlinear MPC,the optimization problems are usually solved by using Sequential Quadrati
Programming.In the standard formulation of the model predi
tive 
ontrol, the optimizationproblem (usually quadrati
 program) is solved in ea
h sampling instan
e andtherefore time 
onsumption 
aused by 
omputation of 
ontrol a
tion 
an besigni�
ant. It was shown that a linear [5℄ or quadrati
 [6℄ program 
an besolved expli
itly o�-line and then the 
ontrol a
tion is generated by pie
e-wise a�ne fun
tion of the system state. Su
h an optimization is known asMulti-Parametri
 Programming [18℄. This approa
h is useful namely in the
ase when we want to use MPC for 
ontrol the relatively fast sampled, butsmall, systems.Another a
tual topi
 in the model predi
tive 
ontrol is hierar
hi
al, de
en-tralized and distributed 
ontrol [31, 36, 19, 1℄. Today's 
ommuni
ation te
h-nologies enables 
oordinated 
ontrol of large-s
ale systems, e.g. energy orwater distribution networks [29℄. The large-s
ale system 
ontroller 
an beformulated and implemented as a 
entral algorithm whi
h enables the over-all optimality. The 
entralized optimal 
ontrol enables signi�
ant savingsduring the system lifetime. But there may be problems with 
entralized 
on-trollers, e.g. too large optimization problems, 
ommuni
ation limitations,safety reasons, et
. It is very pra
ti
al to de
ompose the 
entral optimal 
on-troller so that there will be smaller 
ontroller for all important subsystems(slave 
ontrollers) whi
h are 
oordinated by a 
oordinator (master problem).Currently, the number of su

essful MPC appli
ations and resear
h work16



grows rapidly. Some MPC survey papers are [30, 7, 22, 2℄. The standardbooks about the linear MPC are [34, 21, 14℄ and about non-linear MPC,for example the set of important papers [25℄. A real-time iteration s
hemefor the nonlinear MPC has been proposed in [16℄. We 
an found a numberof pra
ti
al 
ommer
ial MPC te
hnologies in the literature. A survey ofindustrial MPC te
hnologies 
an be found in [30℄.
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Chapter 2 Linear Model Predi
tive Control
This 
hapter deals with the fundamentals of the linear model predi
tive 
on-trol. The linear formulation is very popular and often used in the pra
ti
alappli
ations when 
ompared to the nonlinear MPC. The reason is 
lear - thesimpli
ity. The advan
ed 
ontrol te
hnologies, for whi
h the MPC is usuallyused, are sitting at the top of the basi
 
ontrol strategy. Therefore, there isno need to 
over all the operating regimes of the 
ontrolled system, espe
iallythe emergen
y states, system startup or shutdown, et
. The obje
tive for theMPC 
ontroller in the advan
ed 
ontrol layer is to optimize the performan
eswhile satisfying the 
onstraints. Of 
ourse, there are appli
ations, where theMPC 
ontroller is used as the basi
 
ontroller, dire
tly in the basi
 
ontrollayer. In this 
ase, we 
an enjoy all the advantages whi
h are o�ered by theMPC, namely the ability to 
ontrol the multivariable systems in a very sys-temati
 manner, to handle the 
onstraints and to provide the optimal 
ontrolsolution.2.1 Motivation exampleBefore starting the formal de�nitions of MPC, we will give a motivation ex-ample, whi
h illustrates how simple the MPC 
ontroller may be. Assume astable linear system with one output and one input. The system is periodi-
ally sampled.
• System model and predi
tions: The relation between the systeminput and output 
an be approximated based on the trun
ated step re-sponse as

y(k) ∼= y0 +

n∑

i=0

hi∆u(k − i) , (2.1)where y(k), ∆u(k) = u(k) − u(k − 1) and hi are the system output,in
rements of the system input and the step response 
oe�
ients respe
-tively. Then, the predi
tion at the dis
rete time k+ j is given by (modelbase predi
tions)
y(k + j|k) ∼= y0 +

n∑

i=0

hi∆u(k + j − i|k) . (2.2)



It is easy to show, by using (2.2), that the system output predi
tion overthe predi
tion horizon of N samples 
an be expressed as
Y k+N
k = 1y0 +H1∆Uk−1

k−n +H2∆Uk+N
k , (2.3)where the matri
es H1 and H2 
ontain the step response 
oe�
ients,

Y k+N
k , ∆Uk+N

k are the system output predi
tions and system input in-
rement predi
tions, ∆Uk−1
k−n are the past system input in
rement values,i.e.

Y k+N
k =

[
y(k) y(k + 1) . . . y(k +N)

]T
,

∆Uk+N
k =

[
∆u(k) ∆u(k + 1) . . . ∆u(k +N)

]T
,

∆Uk−1
k−n =

[
∆u(k − n) ∆u(k − n+ 1) . . . ∆u(k − 1)

]T
.Note that the termH1∆Uk−1

k−n in (2.3) is related to the initial system stateresponse, known also as autonomous or unfor
ed response. In pra
ti
alappli
ations, due to disturban
es and model un
ertainty, this term mustbe repla
ed by a known fun
tion of the system state.
• Control problem and MPC formulation: Now, for example, wewould like the system to follow the given referen
e signal Rk+N

k whi
htraje
tory is known in advan
e, over the whole predi
tion horizon. Inother words, the system output should be as 
lose to the referen
e sig-nal as possible (�rst 
ontrol goal), with reasonable 
ontrol a
tion (se
ond
ontrol goal). These requirements 
an be expressed by de�ning the tra
k-ing error
Ek+N

k = Rk+N
k − Y k+N

k = Rk+N
k − 1y0 −H1∆Uk−1

k−n −H2∆Uk+N
k (2.4)and by minimizing the 
ost fun
tion, whi
h 
an be de�ned, for example,as a sum of weighted se
ond norms 1 (MPC problem)

J
(
∆Uk+N

k |Rk+N
k

)
=

∥∥Ek+N
k

∥∥2

QE
+
∥∥∆Uk+N

k

∥∥2

Q∆U
. (2.5)

• Resulting optimization problem: The system input traje
tory onthe predi
tion horizon 
an be determined by solving the optimizationproblem
∆U ∗k+N

k = arg min
∆Uk+N

k

J
(
∆Uk+N

k |Rk+N
k

)
, (2.6)whi
h 
an be viewed as a simple linear least squares problem. The so-lution 
an be found expli
itly and the result will be a linear fun
tion ofthe system state and external parameters.1The �rst 
ontrol goal (referen
e tra
king) 
orresponds to the �rst term in the 
riterion,the se
ond 
ontrol goal (a
tuator a
tivity) to the se
ond one.19



The example illustrated basi
 idea behind the MPC, i.e. using the systemmodel to predi
t the future behavior, formulation of the 
ontrol goals, trans-formation of the 
ontrol goals as MPC 
ontrol problem and transformationof the MPC problem to an optimization problem.2.2 Formulation of linear MPCA great number of systems and pro
esses work in a steady-state or 
loseto an operating point. It is well known that behavior of systems undersu
h 
onditions 
an be usually well approximated by a linear model. In thisse
tion, we will formulate and analyze the basi
 linear MPC 
ontroller. Themain 
omponents of MPC are the following: system model, 
ost fun
tion,
onstraints and resulting optimization problem.2.2.1 System models in MPCIn the introdu
tory 
hapter, we formulated a simple MPC algorithm basedon predi
tions from the step response of the system. A similar predi
tionmodel 
an be derived by using the impulse response. Generally, in the linearMPC, we 
an use any linear model. In addition to step and impulse basedpredi
tion models, we will dis
uss only ARX and state spa
e models. Themodeling stage in MPC design is one of the most important things. Thequality of the resulting 
ontroller is proportional to the model quality andtherefore the model should be as a

urate as possible.Impulse responseThe relation between the system input and output 
an be des
ribed by equa-tion
y(k) =

∞∑

i=0

giu(k − i) , (2.7)whi
h is known as 
onvolution or weighting sequen
e model and y(k), u(k),
gi are the system output, input and 
oe�
ients of the impulse response,respe
tively. The model 
an be used only for stable systems with the �niteimpulse response (FIR). As it has been shown in the introdu
tory MPCexample, the response is trun
ated and only n most important 
oe�
ientsare used. Therefore, the predi
tion model 
an be des
ribed by relation

ŷ(k + j|k) =

n∑

i=0

giu(k + j − i|k) . (2.8)20



The advantages of the impulse and step response models are that we do notneed to know any prior information about the system (of 
ourse, it must bestable and the responses must be �nite), i.e. the system is a "bla
k box".These models 
an be also used for the multivariable systems for whi
h wehave
ym(k) =

p∑

l=1

n∑

i=0

gl,mi ul(k − i) , (2.9)where ym(k) is the m-th system output, p is number of system inputs, ul(·)is l-th input and gl,mi is the sequen
e of impulse response of l-th input to
m-th system output. It is interesting to note, that the �rst and a number of
urrent pra
ti
al MPC implementations are based on step or impulse responsemodels.ARX based modelsThe ARX based models are popular in the 
ontrol so
iety be
ause they enableto des
ribe also the basi
 sto
hasti
 properties of the systems. Basi
 form ofthe ARX model with a measurable disturban
e is

y(k) +

na∑

i=1

aiy(k − i) =

nb∑

i=0

biu(k − i)+

nd∑

i=0

div(k − i) + e(k) , (2.10)where y(k), u(k), d(k) and e(k) are system output, input, disturban
e andwhite noise. The resulting predi
tion model 
an be written in a ve
tor form
~y = A−1

p (−Atỹ + Btũ+Dtṽ + Bp~u+Dp~v) , (2.11)where the matri
es are given by the ARX model 
oe�
ients
[At|Ap] =




an . . . a1 | 1 0 . . . . 0
0 an . . . | a1 1 0 . . . 0
. . . . . | . . . . . . .

0 . . 0 an | . . a1 1 0 . 0
0 . . . 0 | an . . a1 1 . 0
. . . . . | . . . . . . .

0 . . . 0 | . . an . . a1 1


 ,

[Bt|Bp] =




bn . . . b1 | b0 0 . . . . 0
0 bn . . . | b1 b0 0 . . . 0
. . . . . | . . . . . . .

0 . . 0 bn | . . b1 b0 0 . 0
0 . . . 0 | bn . . b1 b0 . 0
. . . . . | . . . . . . .

0 . . . 0 | . . bn . . b1 b0


 ,

[Dt|Dp] =




dn . . . d1 | d0 0 . . . . 0
0 dn . . . | d1 d0 0 . . . 0
. . . . . | . . . . . . .

0 . . 0 dn | . . d1 d0 0 . 0
0 . . . 0 | dn . . d1 b0 . 0
. . . . . | . . . . . . .

0 . . . 0 | . . dn . . d1 d0


 .
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The predi
tion ve
tors are
~y =

[
ŷ(k) · · · ŷ(k +N − 1),

]T
,

~u =
[
u(k) · · · u(k +N − 1),

]T
,

~v =
[
v(k) · · · v(k +N − 1),

]T
,and the ve
tors of past output, input and disturban
e values are

ỹ =
[
y(k − na) · · · y(k − 1)

]T
,

ũ =
[
u(k − na) · · · u(k − 1)

]T
,

ṽ =
[
v(k − na) · · · v(k − 1)

]T
.State spa
e modelThe state spa
e models are important for the MPC. The reason is that theyprovide des
ription of multivariable systems and are also important for theanalysis. Another advantage is that the state spa
e model 
an be used alsofor systems with integrators and unstable systems. A basi
 form 
an bewritten as

x(k + 1) = Ax(k) + Bu(k) ,

y(k) = Cx(k) +Du(k) .The predi
tion traje
tories of the system output are given by
~y = P̄x(k) + H̄~u , (2.12)where x(k) is the initial state. Ve
tors ~y, ~u and matri
es P̄ , H̄ are

~y =
[
y(k)T y(k + 1)T · · · y(k +N − 1)T

]T
,

~u =
[
u(k)T u(k + 1)T · · · u(k +N − 1)T

]T
,

P̄ =




C
CA...

CAN−1


 , H̄ =




D
CB D... . . .

CAN−2B · · · CB D


 .Predi
tion equations for the system state are given by

~x = Px(k) +H~u , (2.13)where ve
tor ~x and matri
es P and H are
~x =

[
x(k + 1)T x(k + 2)T . . . x(k +N)T

]T
,22



P =




A

A2...
AN


 , H =




B

AB B... . . .
AN−1B AN−2B · · · B


 .

≻2.2.2 Cost fun
tionThe 
ost fun
tion is used to formulate goals for the MPC 
ontroller. Ithas usually additive form where the individual terms express various 
ontrolrequirements. The terms are multiplied by fa
tors de�ning the relative im-portan
e of the 
ontrol goals. A basi
 requirement is referen
e tra
king. The
orresponding 
ost fun
tion term penalizes the tra
king error over a givenpredi
tion horizon. The se
ond basi
 term is a term that spe
i�es a
tuatorbehavior. Therefore, the standard 
ost fun
tion has the following form
J (~u|x(t0), t0) =

N∑

i=0

‖Qpe(t0 + ti|t0)‖p +

Nu−1∑

j=0

‖Rpu(t0 + τj|t0)‖p . (2.14)where t0 + ti are the sampling times of predi
ted traje
tory, t0 + τi arethe sampling times of the system input, matri
es Qp ≥ 0, Rp > 0 areweighting matri
es, e(t) = r(t) − y(t) is the di�eren
e between the sys-tem output and referen
e signal (tra
king error), u(t) is the system input,
x(t0) is the initial information (does not ne
essarily be the system state) and
~u = {u(t0 + τ0|t0), . . . , u(t0 + τNu−1|t0)} is the set of future 
ontrol a
tions.The lp norm of a ve
tor x of length n is de�ned as

‖x‖p =
p

√√√√
n∑

i=1

|xi|
p .The 
ost fun
tion in the form (2.14) is suitable for integrating systems. An-other 
ost fun
tion whi
h is very often used in pra
ti
al appli
ations penalizesmovements of a
tuators instead of penalizing the positions. MPC based ona su
h 
ost fun
tion are referred to as minimum movement 
ontrollers. Forexample

J (~u|x(t0), t0) =

N∑

i=0

‖Qpe(t0 + ti|t0)‖p +

Nu−1∑

j=0

‖Rp∆u(t0 + τj|t0)‖p , (2.15)where
∆u(t0 + τj|t0) = u(t0 + τj|t0)− u(t0 + τj−1|t0) .23



Figure 2.1: Cost fun
tions examples - based on l1, l∞ and l2 norm.It is 
lear that we 
an introdu
e various terms and 
ost fun
tions in general.For example probability terms for sto
hasti
 system, nonlinear terms, et
.Be
ause the 
ost fun
tion is optimized, we have to be 
areful when addingthe terms. It has to be prepared so that there exist some reliable optimizationmethod for the resulting optimization problem. The penalty fun
tions (2.14)and (2.15) are based on a general p-norm but only l1, l∞ and namely l2 normsare used in the pra
ti
al appli
ations2, see Fig. 2.1 and Fig. 2.2 [26℄. In thelinear MPC, utilization of l1 and l∞ leads to Linear Programming (LP) andutilization of l2 norm leads to Quadrati
 Programming (QP). The quadrati
norm ensures good performan
es of the 
ontrol loop, as we know from the
lassi
al LQR3 
ontroller.2.2.3 ConstraintsA real di�erentiator for the MPC 
ontrollers is the fa
t that they 
an han-dle the system 
onstraints in a straightforward manner. All pro
esses havesome 
onstraints, e.g. a
tuator position and rate of 
hange 
onstraints or
onstraints for the system output or any internal state
umin(t) ≤ u(t) ≤ umax(t) ,

∆umin(t) ≤ ∆u(t) ≤ ∆umax(t) .2Note that utilization of l1 norm leads to the dead beat 
ontrol.3(Linear Quadrati
 Regulator) 24
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Figure 2.2: An example of un
onstrained MPC 
ontrol for di�erent lp normsin the 
ost fun
tion (l1, l1.1, l1.5 and l2).
ymin(t) ≤ y(t) ≤ ymax(t) ,

xmin(t) ≤ x(t) ≤ xmax(t) .In general, the 
onstraints are hard or soft:
• Hard 
onstraints - physi
al limitations of real pro
ess, e.g. a
tuatorextreme positions. This type of 
onstraints must not be violated.
• Soft 
onstraints [35℄ - these 
an be violated though at some penalty, forexample a loss of produ
t quality.The soft 
onstraints are used whenever there are some disturban
es a
tingdire
tly on the 
onstrained variable, typi
ally all the system states and out-puts. They are very important for all pra
ti
al implementations be
ause thesoft 
onstraints ensure the feasibility of the MPC optimization problem. Thesoft 
onstraints 
an be formulated by introdu
ing a sla
k optimization vari-able or ve
tor. Assume, for example, an upper limit for the system output,then

y(t) ≤ ymax + ε25
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Figure 2.3: Example of soft 
onstraints: y(t) ≤ 5 + εis referred to as soft 
onstraint. The variable ε is a s
alar variable. to �nishde�nition of the soft 
onstraint, we have to introdu
e term ‖ε‖22 into the
ost fun
tion. The soft 
onstraint may be violated, espe
ially during thetransients. Therefore, the weighting fa
tor for the soft 
onstraints must behigh enough (relative to other terms) to ensure small violation only. We
an have a 
ommon s
alar sla
k variable for all soft 
onstraints, we 
an havea sla
k variable for ea
h soft 
onstraint or for a subset of soft 
onstraints.Another possibility how to formulate the soft 
onstraints is to penalize the
onstraints violation dire
tly in the 
ost fun
tion, i.e.
ε ≤ ymaxand to introdu
e the term ‖y(t)− ε‖22 into the 
riterion fun
tion. The resultwill be exa
tly the same as in the �rst formulation. There will be di�eren
esin the QP form stru
ture. Note also that the se
ond formulation introdu
esbox 
onstraints, whi
h may be bene�
ial for the e�
ien
y of the optimizationalgorithm. The soft 
onstraints may be seen also as non-symmetri
 penalty(see Fig. 2.3).2.2.4 Optimization problemWe have shown that the predi
tion of a linear system behavior 
an be ex-pressed by the a�ne fun
tion of the system inputs by using any linear model.Therefore we 
an fo
us on the state spa
e models without any restri
tionsbe
ause other linear models 
an be transformed to this form. The basi
 MPC
ontrol problem 
an be formulated as an optimization problem

~u∗ = argmin
~u

J (~u|x(t0), t0) (2.16)subje
t to 26



• input 
onstraints
umin(t0 + ti) ≤ u(t0 + ti) ≤ umax(t0 + ti)

∆umin(t0 + ti) ≤ ∆u(t0 + ti) ≤ ∆umax(t0 + ti)

• output 
onstraints (usually softened)
ymin(t0 + ti) ≤ y(t0 + ti) ≤ ymax(t0 + ti)

• system state 
onstraints (usually softened)
xmin(t0 + ti) ≤ x(t0 + ti) ≤ xmax(t0 + ti)

• system model equations
x(ti+1) = Ax(ti) +Bu(ti) ,

y(ti) = Cx(ti) +Du(ti) .The optimization problem (2.16) with all the 
onstraints de�nes the MPCproblem. When using the l2 norm in the 
ost fun
tion, the MPC problem fora linear system with the linear 
onstraints 
an be transformed to a mathe-mati
al programming problem of the form
~u∗ = argmin

~u

1

2
~uTH~u+ ~uTF~p , s.t. G~u ≤ W + S~p , (2.17)whi
h is a well known quadrati
 programming problem. ~u is a ve
tor ofoptimal input traje
tories

~u =
[
uT (t0) uT (t1) . . . uT (tN)

]T
,

~p is the parameter ve
tor 
ontaining, for example, system initial state x(t0),referen
e signal traje
tories, et
. The matri
es H and F 
an be found byusing de�nition of the 
riterion fun
tion (2.14) and the predi
tion equationsfor the state spa
e model ((2.12) and (2.13)).2.2.5 Re
eding horizon 
ontrolIt has been shown that the MPC 
ontrol problem 
an be transformed to anoptimization problem (2.17) whi
h is parameterized by a parameter ve
tor
~p. The result of the optimization problem at time t0 is the optimal futuretraje
tory of the system input ~u∗. An immediate idea would be to apply thewhole sequen
e and to 
ompute the new traje
tories at the end of predi
tionhorizon, i.e. at time tN . Su
h MPC 
ontrol strategy 
orresponds to the openloop 
ontrol, without any feedba
k during the predi
tion horizon. It is 
lear27



that the open loop 
ontrol is not able to reje
t the disturban
es a
ting onthe system and therefore su
h strategy is not pra
ti
al.The standard feedba
k, as we know it for the 
lassi
al 
ontrol methods, isintrodu
ed by using so 
alled Re
eding Horizon Control. In the re
eding hori-zon 
ontrol, the optimization problem (2.17) is 
omputed at ea
h samplingperiod after having new system measurements or estimates and we applyonly the �rst 
ontrol a
tion from the ve
tor ~u∗. This strategy ensures thestandard feedba
k 
ontrol in the MPC. Note that MPC is sometime 
alleddire
tly as re
eding horizon 
ontrol.2.2.6 Blo
king strategiesIt is 
lear that the re
eding 
ontrol strategy in
reases on-line 
omplexity ofthe 
ontroller. We need to solve the optimization problem at ea
h sam-pling period, whi
h may not be pra
ti
al espe
ially for large-s
ale systemsor systems with fast sampling period. In some situations, we need to usedMPC even for su
h appli
ations and therefore we have to redu
e the on-line
omputation 
omplexity. In the standard MPC formulation, the number ofoptimization variables 
orresponds to the number of manipulated variablesmultiplied by the predi
tion horizon length. The degrees of freedom is oneof the dominant fa
tors of the MPC optimization problem. We 
an redu
ethe degrees of freedom by �xing the manipulated variables to be 
onstantover several sampling periods. This strategy is known as blo
king [13℄ andis used by many pra
ti
al implementations. Extreme blo
king would be toenable only one 
hange over the whole predi
tion horizon, i.e. the systeminputs 
an do a step 
hange at the beginning of the predi
tion horizon andremain at the new position over the rest of predi
tion horizon. Su
h strategyis known as mean 
ontrol and its property is that the 
losed loop response is
omparable to or slower that the open loop response. This is not a problemin a number of pra
ti
al appli
ations.2.2.7 O�set-free tra
kingIn the 
lassi
al 
ontrol methods, the o�set-free tra
king 
ontrol is a
hievedby intruding the integral a
tion to the 
ontroller. It is 
lear that if the MPC
ontroller uses a perfe
t model and there are no disturban
es a
ting on thesystem, we will not need to use any additional me
hanism to a
hieve theo�set-free tra
king, but this is not a realisti
 assumption. The integral a
-tion usually a
ts on the tra
king error. The question is, how to a
hieve the28



o�set-free tra
king property in the model predi
tive 
ontrol. There are sev-eral possibilities but we will mention only the two most important from thepra
ti
al point of view. The �rst option is to introdu
e the integral terma
ting on the tra
king error into the 
ost fun
tion. This approa
h 
opiesstrategy from the standard PID 
ontrol and requires implementation of ananti-windup me
hanism whi
h may be impra
ti
al.The se
ond approa
h is based on assumption that there are virtual distur-ban
e variables a
ting on the system. These virtual disturban
es 
overs thereal disturban
es, but also model ina

ura
y. This approa
h has been utilizedsu

essfully by many industrial MPC appli
ations [23℄. It is usually assumedthat the virtual disturban
es are 
onstant over the predi
tion horizon. Thedisturban
es 
an be estimated by using the augmented system state observer,These te
hniques are known as Unknown Input Observer.The virtual disturban
es 
an be 
onne
ted to the system in a number ofways [23℄. Furthermore, the disturban
es may be des
ribed by a generallinear model. We will show the simplest three examples. Consider a linearmodel of a 
ontrolled pro
ess
x(k + 1) = Ax(k) + Bu(k) ,

ŷ(k) = Cx(k) +Du(k) .Assume that the disturban
e model 
an be des
ribed by the autonomouslinear model of the form
xd(k + 1) = Adxd(k) ,

d(k) = Cdxd(k) .

• Disturban
e a
ting on the system output: In this 
ase, it is as-sumed that the real system output is given by y(k) = ŷ(k) + d(k). Theaugmented system model has the form
[

x(k + 1)
xd(k + 1)

]
=

[
A 0
0 Ad

] [
x(k)
xd(k)

]
+

[
B
0

]
u(k)

y(k) =
[
C Cd

] [ x(k)
xd(k)

]
+Du(k)

• Disturban
e a
ting on the system state: In this 
ase, the distur-29



ban
e is assumed to a
t dire
tly on the system state, i.e.
[

x(k + 1)

xd(k + 1)

]
=

[
A Cd

0 Ad

] [
x(k)

xd(k)

]
+

[
B

0

]
u(k)

y(k) =
[
C 0

] [ x(k)

xd(k)

]
+Du(k)

• Disturban
e a
ting on the system input: In this 
ase, the distur-ban
e is 
onne
ted to the system input, i.e.
[

x(k + 1)

xd(k + 1)

]
=

[
A BCd

0 Ad

] [
x(k)

xd(k)

]
+

[
B

0

]
u(k)

y(k) =
[
C 0

] [ x(k)

xd(k)

]
+Du(k)It is 
lear that we 
an introdu
e other virtual disturban
e models to a
hievethe o�set-free tra
king. The state of the augmented system model is esti-mated by a suitable observer, e.g. by a Kalman Filter. The �nal 
losedloop performan
e is dire
tly related to the a

ura
y of the virtual distur-ban
e model stru
ture. In fa
t, it is not possible to �nd a good disturban
emodel for all appli
ations and therefore, the 
hoose of this model 
an be seenas an additional tuning parameter for the MPC 
ontroller. The pra
ti
alappli
ations are often using 
onstant disturban
e, i.e. Ad = I.2.3 Analysis of linear MPCThe 
lassi
al feedba
k 
ontrollers (PID) 
an be analyzed in a number of ways.The most important properties are the nominal performan
e, stability androbustness. In this se
tion, we will show that a similar analysis 
an be donefor the MPC 
ontroller. The di�eren
e between the 
lassi
al 
ontrol andMPC is that the MPC 
omputes dire
tly the sequen
e of the 
ontrol a
tionsinstead of using a 
ontrol law4 whi
h generates the 
ontrol a
tion. In fa
t,the optimization problem 
ould be seen as a 
ontrol law. Why the MPC
ontroller 
annot be simple analyzed as a 
lassi
al 
ontroller, e.g. PID? Theanswer is - due to presen
e of 
onstraints. If we would have a 
ontrol law as aresult of the optimization problem, we 
ould perform the standard analysis.It 
an be shown, that we 
an �nd a 
ontrol law for ea
h 
ombination of4A 
ontrol law in the linear 
ontrol is an a�ne fun
tion of the system state, e.g.u(k)=Kx(k)+g. 30



feasible a
tive 
onstraints in the form
u(k) = Kix(k) + gi , (2.18)where the index i is used to denote i-th set of feasible a
tive 
onstraints.2.3.1 Un
onstrained MPCIn this se
tion, we will show how we 
an derive the 
ontrol law for the 
asewhen there are no a
tive 
onstraints. Note that we 
an derive a 
ontrol lawfor any feasible 
ombination of a
tive 
onstraints in a similar way. Assumethat the system 
an be des
ribed by a state spa
e model. Then the predi
tionmodel for a predi
tion horizon of length N is given by (2.12), i.e.
~y = P̄x(k) + H̄~u . (2.19)Further, assume a quadrati
 
ost fun
tion de�ning the tra
king MPC prob-lem. The basi
 
ost fun
tion is therefore given by

J(~u|x(k), k) = (~r − ~y)T Q (~r − ~y) + ~uTR~u .By de�nition of MPC, the 
ontrol a
tion is obtained by minimizing the 
ostfun
tion over the predi
tion horizon. In our 
ase without the 
onstraints, theoptimal input traje
tory ~u∗ 
an be found by solving a simple least squaresproblem. By using (2.19), the optimal 
ontrol problem is
min
~u

J(~u|x(k), k) =
(
~r − P̄ x(k)− H̄~u

)T
Q
(
~r − P̄ x(k)− H̄~u

)
+ ~uTR~u ,with solution

~u∗ =
(
H̄TQH̄ + R

)−1
H̄TQ

(
~r − P̄ x(k)

)
. (2.20)As a result, we obtained a 
ontrol sequen
e over the predi
tion horizon thatis parameterized by the system state at dis
rete time k and by the sequen
eof future referen
e signal. By applying the re
eding horizon 
ontrol strategy,we will get a 
ontrol law in the form

u(k)∗ = −Kxx(k) +Kr~r , (2.21)where the matri
es Kx and Kr are given by the �rst nu rows of (2.20) and
nu is the number of system inputs. Having the 
ontrol law (2.21), we 
an dothe basi
 analysis of the 
ontroller. 31



Numeri
al exampleAssume the un
onstrained MPC tra
king problem for the linear system de-s
ribed by
A =

[
1 1

0 1

]
, B =

[
1

0.5

]
, C =

[
1 1

]
, D = 0 .The 
orresponding 
ost fun
tion is de�ned as

J(~u|x(k), k) = (~r − ~y)T Q (~r − ~y) + ∆~uTR∆~uwhere we used penalty for ∆~u. Then the 
ontrol law obtained from the leastsquares solution has the form
u(k) = −Kxx(k) +Kr~r +Kuu(k − 1) .If we use the predi
tion horizon N = 10, weighting matrix for the tra
kingerror Q = I and penalty on the input movement R = krI, then we will getfor kr = 100

Kx = −
[
0.0673 0.3083

]
,

Kr =
[
0.0070 0.0111 . . . −0.0047

]
,

Ku = 0.4650 .Now we 
an study the 
ontroller behavior. For example, we might be inter-ested in the in�uen
e of the tuning parameter kr whi
h multiplies the penaltyof the a
tuator movements. The simulation is depi
ted on Fig. 2.4, the stepresponse of the 
losed loop is depi
ted on Fig. 2.5 and the frequen
y responseon Fig. 2.6.2.3.2 In�nite predi
tion horizonIt is known that the in�nite horizon LQR 
ontrol ensures reasonable stabilitymargins and reasonable 
ontrol performan
e. The disadvantage is that it doesnot enable to handle the 
onstraints in a systemati
 way. Basi
 version ofMPC 
ontroller is based on a �nite predi
tion horizon. We 
an extend thepredi
tion horizon to in�nity by de�ning the 
ost fun
tion
J (u(0), . . . , u(∞)) =

∞∑

k=0

(
x(k)TQx(k) + u(k)TRu(k)

) (2.22)Now we 
an split the in�nite predi
tion horizon into the two parts, as follows55This approa
h is also known as a Dual Mode MPC Control.32
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Figure 2.4: Un
onstrained MPC example - referen
e tra
king
• Mode 1 
ontrol: a �nite horizon with N samples over whi
h the 
on-trol inputs are free variables and they are determined by solving theoptimization problem.
• Mode 2 
ontrol: the subsequent in�nite horizon over whi
h the 
ontrolinputs are determined by a state feedba
k law: u(k) = −Kx(k). Thegain matrixK is the feedba
k gain that ensures the un
onstrained 
losed-loop stability.Then, the 
ost fun
tion (2.22) 
an be expressed in the form

J (~u|x(0)) =
N−1∑

k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
+Ψ(x(N)) . (2.23)The �rst part of (2.23) is a standard form of �nite horizon 
ost fun
tion andthe last term, Ψ(x(N)), is known as a terminal penalty term and 
orrespondsto the value of the 
ost fun
tion on the interval 〈N, ∞), i.e.

Ψ(x(N)) =
∞∑

k=N

(
x(k)TQx(k) + u(k)TRu(k)

)
. (2.24)Using the quadrati
 
ost fun
tion (2.22), it is straightforward to show that

Ψ(x) is a quadrati
 fun
tion
Ψ(x) = xTΨx Ψ ≥ 0 , (2.25)33
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Figure 2.5: Un
onstrained MPC example - step responsewhere the matrix Ψ is the solution of the dis
rete-time algebrai
 Ri

atiequation
Ψ = ATΨA− ATΨB

(
R+ BTΨB

)−1
BTΨA+Q (2.26)

K =
(
R+ BTΨB

)−1
BTΨA . (2.27)The in�nite horizon 
ost fun
tion (2.22) 
an be now rewritten to the �nalform

J (~u|x(0)) =

N−1∑

k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
+ x(N)TΨx(N) . (2.28)It was shown that the in�nite horizon 
ost fun
tion (2.22) 
an be writtenas (2.28) where Ψ is the appropriate solution of (2.26). The �rst part ofthe 
riterion is minimized using a standard on-line optimization te
hnique(e.g. quadrati
 programming) in
luding the system 
onstraints. In the se
-ond part, it is 
onsidered that the system is 
ontrolled by the LQ optimalstate feedba
k. Note that the terminal penalty term is the basi
 tool whenformulating and proving the stability of the MPC 
ontroller.2.3.3 StabilityThe stability of MPC 
ontroller 
annot be simply analyzed as it 
an be donein the 
lassi
al 
ontrol methods. The properties of the MPC 
losed loopare in�uen
ed by all tuning parameters, e.g. by 
ost fun
tion form, predi
-tion and 
orre
tion horizon length, weighting matri
es, et
. We 
an do the34
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Figure 2.6: Un
onstrained MPC example - frequen
y responseanalysis if there are no a
tive 
onstraints or for a sele
ted feasible set of a
-tive 
onstraints. The problem is that the MPC 
ontroller 
an be seen as anonlinear 
ontroller. In fa
t, it 
an be shown, that the linear MPC 
ontrolis based on swit
hing the a�ne 
ontrol laws, where the number of 
ontrollaws 
orresponds to the number of all feasible 
ombinations of a
tive sets.This number may be huge even for relatively small number of 
onstraints.Therefore, it is 
lear that the analysis may not be so easy, or even impossible.The stability of the MPC 
ontrol is not ensured in its basi
 formulation.On the other hand, it is fair to say that the basi
 MPC formulation givesvery good results and provides a good degree of stability and robustness inpra
ti
al appli
ations. We will dis
uss the basi
 tools whi
h 
an be used toensure the nominal stability of the 
ontroller during the design stage. Thereare several ways and the most important are the following:
• Terminal equality 
onstraints: [20℄ If the system origin is stable, thenthe stability 
an be ensured by a terminal equality 
onstraints on thesystem state at the end of the predi
tion horizon, i.e. x(k + N) = 0.It is 
lear that this 
an be generalized to x(k +N) = xe, where xe is astable equilibrium.
• Terminal 
ost fun
tion: [9℄ The main idea is to add a terminal 
ost termto the 
ost fun
tion.
• Terminal 
onstraint set: The terminal equality 
onstraint 
an be gener-alized. The idea is based on assumption that there exist a subspa
e in35



the system state spa
e for whi
h it holds that if the system state entersthis subspa
e, then it will stay inside at all future time without violatingthe 
onstraints.From the pra
ti
al point of view, the most important is the 
ombination ofthe last two and therefore, we will fo
us on them. Before formulating an MPCalgorithm that ensures the nominal stability, we will de�ne positively invari-ant set, admissible positively invariant set and maximal admissible positivelyinvariant set [10, 30℄:De�nition 1 A positively invariant set Ω is a region of state spa
e with theproperty that all state traje
tories starting from an initial 
ondition withinthe set remain within the set at all future instants.De�nition 2 An admissible positively invariant set Ω is a region of statespa
e with the property that all state traje
tories starting from an initial
ondition within the set remain within the set at all future instants and all
onsidered 
onstraints will be satis�ed.De�nition 3 The maximal admissible positively invariant set (MAS) is aregion of state spa
e of all possible initial states so that all state traje
toriesstarting from an initial 
ondition within the set remain within the set at allfuture instants and all 
onsidered 
onstraints will be satis�ed.Formally, an admissible positively invariant set Ω 
an be de�ned as
(A− BK)x(k) ∈ Ω ∀x(k) ∈ Ω (2.29)

mmin ≤ Mx(k) ≤ mmax ∀x(k) ∈ Ω . (2.30)The MAS sets 
an be approximated (if we 
annot 
ompute them exa
tly) bya polytopi
 or ellipsoidal sets. An example of polytopi
 MAS and ellipsoidalMAS are depi
ted on Fig. 2.7, where Ωf is a set of all feasible initial states,whi
h 
an be driven into the MAS Ω withing the given predi
tion horizon.Now assume MPC 
ontrol using quasi-in�nite predi
tion horizon
J (~uk|x(k), k) = ‖x(k +N)‖2Ψ +

N−1∑

i=0

‖x(k + i)‖2Q+ ‖u(k + i)‖2R , (2.31)with 
onstraints
G~u ≤ W + Sx(k) (2.32)and additional, stability, 
onstraints
x(k +N) ∈ Ω (2.33)36
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Figure 2.7: An example of polytopi
 and ellipsoidal MAS (Ω) and set of allfeasible initial 
onditions (Ωf) [27℄where Ω is MAS (or admissible positively invariant set) for the 
ontrolledsystem. To prove the stability, we need to �nd a Lyapunov fun
tion. It isnot a surprise, that a nature 
andidate for the Lyapunov fun
tion is the 
ostfun
tion (2.31), i.e.
V (k) = J (~u∗

k|x(k), k) . (2.34)Assume that the optimal solutions at time k and k + 1 are
~u∗
k =

[
u∗(k|k) u∗(k + 1|k) . . . u∗(k +N − 1|k)

]
,

~u∗
k+1 =

[
u∗(k + 1|k + 1) u∗(k + 2|k + 1) . . . u∗(k +N |k + 1)

]and assume that at time k, there exist an estimate of the optimal 
ontrolsequen
e for time k + 1, denoted by ~ushifted
k+1 , i.e.

~ushift
k+1 =

[
u(k + 1|k) u(k + 2|k) . . . u(k +N |k)

]
. (2.35)From the de�nition, it holds that

V (k + 1) = J (~u∗
k+1|x(k + 1), k + 1) ≤ J

(
~ushifted
k+1 |x(k + 1), k + 1

) (2.36)and we 
an 
ontinue
V (k + 1) ≤ J

(
~ushifted
k+1 |x(k + 1), k + 1

)

≤ J (~u∗
k|x(k), k)− ‖x(k|k)‖2Q − ‖u(k|k)‖2R − ‖x(k +N |k)‖2Ψ

+ ‖u(k +N |k)‖2R + ‖x(k +N + 1|k)‖2Ψ .It holds that
V (k) = J (~u∗

k|x(k), k)and therefore
V (k + 1)− V (k) ≤ −‖x(k|k)‖2Q − ‖u(k|k)‖2R − ‖x(k +N |k)‖2Ψ

+ ‖u(k +N |k)‖2R + ‖x(k +N + 1|k)‖2Ψ .37



The Lyapunov fun
tion must satisfy 
ondition V (k + 1) − V (k) ≤ 0. It is
lear that this 
ondition will be satis�ed if
‖x(k +N |k)‖2Ψ ≥ ‖u(k +N |k)‖2R + ‖x(k +N + 1|k)‖2Ψ (2.37)If there exist a 
ontrol law for whi
h the 
ondition (2.37) is satis�ed, then

V (k) is a Lyapunov fun
tion and the re
eding horizon MPC 
ontrol sequen
ewill stabilize the system. The two basi
 possibilities are the following:
• u(k + i) = 0 , i ≥ N : Then, the 
ondition (2.37) leads to the Lyapunovequation

ATΨA−Ψ ≤ 0i.e. a 
ondition, that the system is stable and the weighting matrix Ψ ofthe terminal penalty term is a Lyapunov equation solution. The set Ωused in (2.33) is an admissible positively invariant set for the open loopsystem.
• u(k + i) = −Kx(k + i), i ≥ N : Then, the 
ondition (2.37) leads to theAlgebrai
 Ri

ati Equation, i.e.

(A− BK)T Ψ(A− BK) +KTRK ≤ Ψ .In this 
ase, the 
ontrol law K and weighting matrix Ψ must satisfythe algebrai
 Ri

ati equation and Ω utilized in (2.33) is 
orrespondingadmissible positively invariant set.It has been shown that the stability 
an be ensured (and proved) by addinga terminal penalty term to the 
ost fun
tion and a terminal 
onstraints set(known also as stability 
onstraints). This 
on
ept 
an be seen as Dual mode
ontrol startegy where:
• Mode 1: The system inputs are determined by solving the optimizationproblem for the �nite predi
tion horizon.
• Mode 2: The system inputs are determined by a state spa
e feedba
klaw. This mode is never applied be
ause of the re
eding horizon strategy.The presented 
on
ept 
an be seen as a tool for ensuring stability for gen-eral formulation of linear MPC. We should note that, in general, we do notneed to follow the 
on
ept to ensure the stability of MPC for pra
ti
al ap-pli
ations. There are many other ad-ho
 solutions ensuring the reasonablebehavior but usually, these methods are tailored for parti
ular MPC formu-lations or appli
ations and do not hold for general MPC formulation.38



The MPC 
ontrol is based on solving the 
onstrained optimization problem inea
h sampling period. Therefore, it is also ne
essary to analyze the feasibilityof this optimization, espe
ially if the re
eding horizon 
ontrol is 
onsidered.It 
an be shown that if the problem is feasible for the initial system state, thenit is feasible in all subsequent sampling periods (see Fig. 2.7 for illustration).The proof 
an be found in the literature.2.3.4 RobustnessAll systems models used for 
ontrol design in pra
ti
al appli
ations havesome un
ertainties. These un
ertainties are 
aused by disturban
es, by ina
-
urate identi�
ation, in
orre
t model stru
ture, due to model simpli�
ation,et
. Therefore, it is 
lear that the model does not des
ribes the 
ontrolledsystem a

urately and the 
ontroller must be robust with respe
t to theseina

ura
ies. Robustness is a fundamental question for all feedba
k 
ontrolsystems. Any statement about the robustness must be 
onne
ted with aspe
i�
 un
ertainty range and to a spe
i�
 performan
e 
riteria. It is 
learthat the robust 
ontrol design may be a very di�
ult and 
hallenging task.Therefore, for MPC we will present only some of the basi
 ideas. In therobust 
ontrol design we have to 
onsider namely:
• Un
ertainty des
ription and modeling
• Robust 
ontrol design
• Robust analysisThe �rst and the last items may be relative simple when 
ompared to therobust 
ontrol design, whi
h may be a 
hallenge, or even impossible.Un
ertainty des
riptionThere are several approa
hes how to des
ribe the un
ertainties of the 
on-trolled system or ina

urate model. Sele
tion of an approa
h depends mainlyon the 
ontroller design method. For example, if a 
ontroller design methodis based on frequen
y domain, the un
ertainties should be also based on thefrequen
y domain. In the MPC 
ontext, the most important approa
hes arethe following two [7℄:
• The system behavior is des
ribed by a set of models, for example, thetrue plant Σ0 belongs to a set S, Σ0 ∈ S, where the set S is a givenfamily of LTI systems. Mathemati
ally

x(k + 1) = Ax(k) + Bu(k) , (A,B) ∈ S , (2.38)39



where
S =

{
h∑

i=1

ηi (Ai, Bi) ;
h∑

i=1

ηi = 1, ηi ≥ 0

}
.

• Unmeasured disturban
e signal w(k) a
ts on the system, where w(t) ∈

W and W is a priory known set. Mathemati
ally
x(k + 1) = Ax(k) +Bu(k) + Fw(k) , w(k) ∈ W (2.39)Robust MPC designIn the MPC robust 
ontrol design, we need to formulate an optimizationproblem that ensures the robustness. We de�ned two 
lasses of un
ertaintiesthat are often used in the linear MPC. When designing the robust MPC,we 
an follow the 
on
ept presented in the se
tion about the stability, i.e.the dual mode 
ontrol. First, we need to de�ne robust admissible positivelyinvariant set:De�nition 4 A robust admissible positively invariant set Ω is a region ofstate spa
e with the property that all state traje
tories of the system 
ontrolledby a state feedba
k starting from an initial 
ondition within the set remainwithin the set at all future instants for all 
onsidered perturbations and anyof 
onsidered 
onstraints is not violated.An example of a robust admissible positively invariant set is depi
ted onFig. 2.8. Se
ondly, we have to formulate a suitable 
ost fun
tion as a fun
tionof the un
ertain parameter, i.e.

J (~uk|x(k), θ(k), k) , (2.40)where θ(k) is the un
ertain parameter, for whi
h we know that θ(k) ∈ Θ. In
ase (2.38), the 
riterion fun
tion will be parameterized by η, i.e.
Θ =

{
η :

h∑

i=1

ηi = 1, ηi ≥ 0

}
, (A,B) ∈ S ,and in 
ase (2.39)

Θ = W ,i.e. θ(k) = w(k). Assume that there exist a 
ontrol law u(k) = −Kx(k) forwhi
h we 
an found a robust admissible positively invariant set Ωrobust for
θ(k) ∈ Θ and a 
orresponding terminal penalty term. Then the robust MPCoptimization problem 
an be de�ned as min-max optimization [15℄

~u∗
k = argmin

~uk

{
max
~θk

J
(
~uk|x(k), ~θk, k

)}40
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Figure 2.8: Example of admissible positively invariant set ΩA, robust ad-missible positively invariant set ΩW for un
ertainty des
ription (2.39) andsystem state traje
tory un
ertainty (red sets) [27℄.subje
t to the 
onstraints
~uk ∈ Ukand robust stability 
onstraints (or terminal 
onstraints)

XN
k ∈ Ωrobust ,where x(k + N) ∈ XN

k and XN
k is a set of all possible values of the systemstate at the end of predi
tion horizon. An illustrative example of the stability
onstraints for the 
ase (2.39) is depi
ted on Fig. 2.9.The min-max approa
hes have several important drawba
ks: (i) they are
omputationally demanding (based on dynami
 programming), (ii) the re-sulting 
ontrol a
tion may be too 
onservative. Of 
ourse there exist manyother formulations of robust MPC. For example, it 
an be shown, that in-stead of looking for the optimal 
ontrol sequen
e, we should be looking for asequen
e of the 
ontrol laws κk+i (x(k + i), k) when dealing with the robustMPC 
ontrol. A better formulation would be to perform for ea
h step i in thepredi
tion horizon maximization over θ(k+ i) and immediately minimizationover u(k+ i). Another important question is whether the 
onstraints shouldbe satis�ed for the nominal plant only or for all possible perturbations. Allthese questions have been dis
ussed by many authors and the pra
ti
al robust41
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Figure 2.9: Illustration of a robust target set: robust admissible positivelyinvariant set Ωrobust (green) and XN
0 (orange) [27℄.MPC formulation is still an area of a
tive resear
h.2.4 Hybrid systemsHybrid systems are a spe
ial 
lass of dynami
al systems that 
ombines both
ontinuous and dis
rete-value variables. The main 
omponents of the hybridsystems are the 
ontinuous dynami
s (based on �rst prin
iple), logi
al 
om-ponents (swit
hes, automate, logi
al 
onditions, et
.) and inter
onne
tionsbetween the logi
 and dynami
. The hybrid systems 
an be used to modelsystems with several operation modes where ea
h mode has di�erent dynam-i
al behavior. A simple example of a hybrid system is a pie
e-wise a�ne(PWA) system, de�ned as

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) +Diu(k) + giif [
x(k)
u(k)

]
∈ Ti, i = 1, 2, . . . , n .The PWA systems enables to des
ribe a large 
lass of pra
ti
al appli
ationsand are very general. Unfortunately, they are not dire
tly suitable for theanalysis and synthesis of optimal 
ontrol problems. Another useful frame-work for the hybrid systems is based on Mixed Logi
al Dynami
al (MLD)models [8℄. These models transform the logi
al part of a hybrid system intothe mixed-integer linear inequalities by using Boolean variables. The basi
42



form of the MLD system is given by [8℄
x(k + 1) = Ax(k) +Bu(k) +B2δ(k) +B3z(k) ,

y(k) = Cx(k) +Du(k) +D2δ(k) +D3z(k) ,subje
t to
E2δ(k) + E3z(k) ≤ Eu(k) + E4x(k) + E5 ,where x(k) is a 
ombined 
ontinuous and binary state, u(k) and y(k) arethe system inputs and outputs (
ontinuous and binary), δ(k) are auxiliarybinary variables and z(k) are auxiliary 
ontinuous variables. Now, we 
ande�ne the optimal 
ontrol problem for PWA system as

J (~uk|x(k), k) = ‖Ψx(k +N)‖p +
N−1∑

i=0

‖Qx(k + i)‖p+ ‖Ru(k + i)‖p ,(2.41)subje
t to
x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi

if

[
x(k)

u(k)

]
∈ Ti, i = 1, 2, . . . , n

u(k) ∈ UThe PWA system 
an be represented by a MLD model and therefore, theoptimal 
ontrol problem 
orresponds to the solution of mathemati
al mixed-integer program. In 
ase of PWA system, if the 
ost fun
tion is quadrati
,then the optimization problem leads to Mixed-Integer Quadrati
 Programand if the the 
ost fun
tion is based on l1 or l∞ norm, the optimizationproblem leads to Mixed-Integer Linear Programming.2.5 Optimization algorithmsWe will 
on
lude this 
hapter about the linear model predi
tive 
ontrol bya brief dis
ussion about suitable optimization methods for solving the opti-mization problems. It has been shown that the MPC 
ontrol problem 
anbe formulated as an optimization problem that is solved at ea
h samplingperiod. Therefore, the performan
e of the optimization algorithm in MPC is
riti
al. Assume a QP problem in the form
~u∗ = argmin

~u

1

2
~uTH~u+ ~uTF~p , s.t. G~u ≤ W + S~p . (2.42)43



Dire
t solution to this QP by using general QP solver 
an be too slow forsome appli
ations and therefore this approa
h is suitable only for relativelyslow systems. The modern QP solvers are based on a
tive set or interior-point approa
h. The a
tive set solvers are iterative algorithms. In ea
hiteration, we are testing the optimality 
onditions for a
tual working set ofa
tive 
onstraints. If the working set of a
tive 
onstraints does not lead tothe optimal solution, then we modify the set by adding or removing the a
-tive 
onstraints. In general, the a
tive set solvers are suitable for relativelysmall problems but they are very e�
ient in pra
ti
e, espe
ially in 
ombina-tion with warm-starting strategy. The interior-point methods are based onbarrier fun
tions. The 
onstraints are added to the 
riterion fun
tion in theform of a barrier whi
h transforms the original problem to an un
onstrainedoptimization. The interior-point methods are iterative (solution to optimal-ity 
onditions) and usually require only a small number of iterations when
ompared to a
tive set solvers. However, the individual iterations are more
omputationally expensive.If we need extremely fast sampling periods in the MPC, we 
an use multi-parametri
 expli
it solution [5, 6℄. These optimization algorithms have o�-line and on-line parts. The MPC optimization problem is solved expli
itlyin the o�-line part. The expli
it solution divides the optimization problemparameter spa
e into a number of regions where ea
h region has asso
iateda 
ontrol law. A parti
ular region 
orresponds to a feasible 
ombination ofa
tive 
onstraints. All these regions and the 
ontrol laws are stored for theon-line part. In the on-line part at ea
h sampling period, we simply 
onstru
tthe parameter ve
tor and �nd the 
orresponding region. Then we apply theasso
iated 
ontrol law. Unfortunately, the multiparametri
 expli
it solutionis appli
able for small systems only due to storage demands. The 
omplexityof parametri
 expli
it solvers are 
ompared with the a
tive set solvers in [12℄.Another way how to improve performan
e of the MPC optimization is toexplore the stru
ture of the MPC optimization problem and use this infor-mation to design an e�
ient solver. For example, there are two ways how toadd the soft 
onstraints to the optimization problem. One of them leads tosimple6, or box, 
onstraints. if all the 
onstraints in the optimization problemare box, then we 
an use this information to implement an e�
ient solver,e.g. based on gradient proje
tion methods or their modi�
ations.6The box 
onstraints are de�ned so that we have variables with upper and lower limits,e.g. xmin ≤ x ≤ xmax. 44



Chapter 3 Nonlinear Model Predi
tive Control
Today's pro
esses need to be 
ontrolled under tight performan
e spe
i�
a-tions whi
h 
an be only met if the 
ontroller works pre
isely. Nonlinear modelpredi
tive 
ontrol (NMPC) is extension of the well established linear predi
-tive 
ontrol to the nonlinear world. Linear model predi
tive 
ontrol refers toMPC algorithms in whi
h the linear models are used. The nonlinear modelpredi
tive 
ontrol refers to MPC s
hemes that are based on the nonlinearmodels. Be
ause NMPC enables the optimal 
ontrol of 
onstrained nonlin-ear systems, it is one possible 
andidate as an advan
ed 
ontrol s
heme forindustrial pro
esses. The nonlinear model predi
tive 
ontrol has been inten-sively studied sin
e the 90s. The fundamentals of NMPC are revieved forexample in [3, 32, 4℄.3.1 Formulation of nonlinear MPCThe �rst step in NMPC design is obtaining an a

urate system model. Usu-ally, in the pra
ti
al appli
ations, we are able to �nd a model based onphysi
al laws. The model should be as a

urate as possible to ensure reason-able 
ontrol performan
e. Note that the modeling phase in NMPC design isusually the most di�
ult part. Consider a 
ontinous-time nonlinear systemof the form

ẋ(t) = f (x(t), u(t))

y(t) = h (x(t), u(t))where x(t) is the system state, u(t) is the system input and y(t) is the systemoutput. The se
ond step in the model predi
tive 
ontrol design is de�nitionof the 
ost fun
tion. The general obje
tive fun
tion for the nonlinear systemon in�nite predi
tion horizon has the integral form
J (u(t), x(t0)) =

∞∫

t0

L (x(t), u(t), t) dt , (3.1)



where the fun
tion L (x(t), u(t), t) de�nes the 
ontrol obje
tives. This fun
-tion re�e
t the basi
 requirements on the 
ontroller performan
e and is oftende�ned as a sum of weighted quadrati
 fun
tions of tra
king error and 
ontrolsignal, e.g.
L (x(t), u(t), t) = ‖r(t)− y(t)‖2Q + ‖u(t)‖2R , (3.2)where r(t) is a known referen
e traje
tory. This is the basi
 form and ismodi�ed with respe
t to a parti
ular appli
ation and a
tual system require-ments. The 
ost fun
tion 
an be split into a �nite predi
tion horizon termand a terminal 
ost as follows

J (u(t), x(t0)) = Ψ (x(tN)) +

tN∫

t0

L (x(t), u(t), t) dt . (3.3)where the terminal 
ost is ideally given by
Ψ(x(tN)) =

∞∫

tN

L (x(t), K (x(t)) , t) dt (3.4)Assume that the 
ontrol signal at the time interval t ∈ 〈tN ,∞〉 is givenby a 
ontrol law K (x(t)). The general nonlinear MPC problem 
an beformulated as a nonlinear optimization problem de�ned as minimization ofthe 
ost fun
tion
min
u(t)

J (u(t)|x(t0)) , (3.5)subje
t to 
onstraints
ẋ(t)− f (x(t), u(t)) = 0 ,

x(t0)− x0 = 0 ,

g (x(t), u(t)) ≤ 0 , t ∈ (t0, tN) ,

u(t) ∈ U , t ∈ (t0, tN) ,

x(t) ∈ X , t ∈ (t0, tN) ,

x(tN) ∈ Ω ,where the last 
onstraint is the stability 
onstraint. the optimal 
ontroltraje
tory at the time horizon t ∈ 〈t0, tN〉 
an be obtained by solving theabove nonlinear 
onstrained optimization problem. The expli
it solution isnot usually possible and therefore the problem has to be solved by a suitablenumeri
al method. 46



3.2 Analysis of nonlinear MPCIn this se
tion we will brie�y dis
uss the basi
 stability results. There exist anumber of s
hemes ensuring the stability of the resulting 
ontrol system [17℄.Most of them modify the MPC 
ontrol s
heme by adding a terminal 
on-straints to the optimization problem and/or terminal 
osts to the obje
tivefun
tion. The terminal 
ost approximates the in�nite horizon 
ontrol andis usually 
onne
ted with a lo
al 
ontroller. The terminal 
onstraints aresele
ted so that the system state lies in the domain of attra
tion of the lo
al
ontroller. The prin
ipal idea to state the 
onditions for stability is to sele
tthe obje
tive fun
tion as a Lyapunov fun
tion of the 
losed-loop system, i.e
V (tN , x(t0)) = Ψ (x(tN)) +

tN∫

t0

L (x(τ), u(τ)∗, τ) dτ (3.6)The stability 
onditions are summarized in the following Theorem:Theorem 1 Suppose that Ψ(xe) = 0, xe ∈ Ω, Ω ⊆ X is a 
losed set and theoptimization problem is feasible at t0. Then the nominal 
losed-loop systemis asymptoti
ally stable for any time δ ∈ (t0, tN) if there exists a lo
al 
ontrollaw u(t) = κ(x(t)) for t ≥ tN with ue = κ(xe) su
h that:
δΨ(x(t))

δx(t)
ẋ(t) + L (x(t), u(t), t) ≤ 0, x(t) ∈ Ω, κ (x(t)) ∈ U (3.7)The proof of Theorem 
an be found in the literature. Note that in general,it is not easy to �nd a terminal penalty Ψ and terminal set Ω satisfying
onditions in the Theorem.3.3 Numeri
al methods for nonlinear MPCA 
ommonly used approa
h to solve the problem (3.5) is reformulation toa �nite dimensional nonlinear programming problem (NLP) by a suitableparameterization. The most re
ent resear
h in the nonlinear MPC suggeststo perform this parameterization by using Dire
t Multiple Shooting method[11, 16℄. The nonlinear programming problem 
an be solved by iterativeSequential Quadrati
 Programming approa
h (SQP). To �nd the optimal so-lution to the de�ned NLP, it is usually ne
essary to perform several iterationswhi
h may be a time 
onsuming task. Therefore, it is suggested to performonly one iteration in ea
h sampling period in real-time appli
ations and touse a sub-optimal instead of the optimal solution [16℄.47
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Figure 3.1: Dire
t single shooting (left) and dire
t multiple shooting (right)There are two important dire
t approa
hes to solve the nonlinear optimiza-tion problems in the real-time optimizations:
• Dire
t single shooting is a basi
 approa
h and is similar to the ap-proa
h used by the standard linear model predi
tive 
ontrol. At theinitial time, the numeri
al integration is used to obtain the predi
tedtraje
tories as a fun
tion of manipulated variable for the predi
tion hori-zon, see Fig. 3.1. Having these traje
tories, one 
an perform one iterationof SQP pro
edure.
• Dire
t multiple shooting [11℄ is based on re-parameterization of theproblem on the predi
tion horizon. The pie
es of system traje
toriesare found on ea
h time interval numeri
ally together with sensitivitymatri
es, see Fig. 3.1. The optimization problem is then augmented byauxiliary 
onstraints - 
ontinuity 
onditions.Su
h parameterization 
an be regarded as simultaneous linearization anddis
retization. One advantage of the multiple shooting methods is that theoptimization problem is sparse, i.e. the Ja
obians in the optimization prob-lem 
ontain many zero elements whi
h makes the QP subproblem 
heaperto built and to solve. The simulation (solution to the model) and optimiza-tion are performed simultaneously and the solution to the problem 
an beparallelized. The dire
t multiple shooting approa
h parameterizes the opti-mization problem by a �nite set of parameters, i.e. by system states xi(ti)(auxiliary optimization variable) and system inputs u(ti). The key idea of�nite parameterization is to �nd the sensitivity matri
es (or linearization) sothat

δxi(ti+1) ≈ Φ(ti+1, ti)δxi(ti) + Γ (ti+1, ti) δui(ti) ,

δxi+1(ti+1) = δxi(ti+1) 48



where Φ(ti+1, ti) and Γ (ti+1, ti) are sensitivity matri
es de�ned by
Φ(t, t0) =

∂x(t)

∂x(t0)
, Γ(t, t0) =

∂x(t)

∂u(t0)
. (3.8)The sensitivity of the system state traje
tory to the initial 
ondition 
an be
omputed by solving the following di�erential equation

Φ̇(t, t0) =
∂f (x(t), u(t))

∂x(t)
Φ(t, t0) , Φ(t, t0) =

∂x(t0)

∂x(t0)
= I (3.9)and the sensitivity of the system traje
tory to the system input at time t0 isgiven by

Γ̇(t, t0) =
∂f (x(t), u(t))

∂x(t)
Γ(t, t0) +

∂f (x(t), u(t))

∂u(t)
1(t− t0) ,where 1(t− t0) is the unit step de�ned as

1(t− t0) =

{
0 t < t0
1 otherwiseand the initial 
ondition is

Γ(t, t0) =
∂x(t0)

∂u(t0)
= 0 (3.10)Cal
ulation of sensitivity matri
es for the nonlinear system requires solutionto a set of di�erential equations simultaneously with the system traje
tory.This may be a 
onsuming task.It was shown how the optimization problem 
an be parameterized by a �nitenumber of parameters in the multiple shooting approa
h. Using these results,the 
ontrol problem (3.5) 
an be formulated as mathemati
al programming

min
u(ti),xi(ti)

N−1∑

i=0

Li (xi(ti), u(ti), ti) + Ψ (xN(tN)) (3.11)subje
t to 
onstraints
xi+1(ti+1)− xi(ti+1) = 0 , t ∈ (0, N − 1) ,

x0(t0)− x(t0) = 0 ,

g (xi(ti), u(ti)) ≤ 0 , t ∈ (0, N) ,

u(ti) ∈ U , t ∈ (0, N) ,

xi(ti) ∈ X , t ∈ (0, N) ,

xN(tN) ∈ Ω ,49



Figure 3.2: Timing diagram for real-time optimizationsThe 
ost fun
tion at time interval t ∈ (ti, ti+1) is equal to
Li (xi(ti), u(ti), ti) =

ti+1∫

ti

L (xi(τ), u(τ), τ) dτ (3.12)and xi(ti+1) is solution of the nonlinear system at time ti+1 with initial 
on-dition xi(ti). The resulting nonlinear programming problem (3.11) 
an besolved, for example, by a suitable SQP framework [24℄.The model based predi
tive 
ontrol algorithms are usually formulated withre
eding horizon where the optimization problem is re-
al
ulated in ea
h sam-pling period and only the �rst 
ontrol a
tion is applied to the system. A verye�
ient s
heme has been proposed in [16℄. The timing s
heme of this ap-proa
h is depi
ted on Fig. 3.2. There are two main phases: preparation phaseand feedba
k phase. During the preparation phase, the algorithm 
al
ulatesas mu
h as it is possible without knowledge of data that will be available atthe beginning of the next sampling period. The feedba
k phase takes newmeasurement and 
al
ulates the 
ontrol a
tion that 
an be immediately sentto the system.
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