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Chapter 1

Introduction

The goal of this paper is to build a mathematical formalism needed to model
and analyze an infinite platoon of vehicles following their leader, and demon-
strate the elegance of the approach by solving a few classical platooning
problems. Even though a platoon with an infinite number of vehicles consti-
tutes an unrealistic model of reality, it can be used to infer the asymptotic
properties of long but finite platoons. This approximation was proposed in
1970s by [18] and [3] and then reexamined three decades later by [10].
The problem of controlling a long platoon (also called string) of vehicles
was intensively studied as early as in 1960s. Probably the first treatment
was from the viewpoint of optimal control theory as reported by [16], which
consisted in straightforward application of conventional LQ-optimal control
design techniques for a MIMO state-space system having as state variables
the deviations of inter-vehicular distances and vehicle velocities from some
required values. The optimality criterion included not only the terms corre-
sponding to the two types of state variables but also a term corresponding
the deviations of the effective forces from a nominal value. [20] extended this
optimality criterion by adding a term that corresponds to deviation of the
vehicle absolute position from its scheduled value and another term corre-
sponding to jerk (rate of change of the force) which is related to a passenger
comfort. [17] defines the error variable in the state space model slightly differ-
ently compared to [16], the state variables corresponding to position are just
deviations from the scheduled absolute positions. Provisions for weighting
the distance between two vehicles are made by having the weighting matrix
bidiagonal. Then they explore the structure of the LQ problem to provide
a closed-form solution, breaking the problem down to solution of decoupled
scalar second order problems.
The same problem was also approached by [18] approximating the long but
finite string of vehicles by an infinitely long string. Invoking twosided z-
transform, with the z variable corresponding to a shift in the index of the
vehicle, the design problem of a conventional LQ-optimal state feedback ap-
pears in a modified form wherein the matrices appearing in the constituent



Riccati equations are no longer constant but rather polynomial matrices in
the z variable. The optimal state feedback controller that is to be run in-
dependently at every vehicle then turns out to require information from all
the vehicles in the string, even though the mutual influence of vehicles is
diminishing as their distance (measured in the number of vehicles between
them) is increasing. The necessity to have the global information about the
string of vehicles makes this solution far from amenable to practical imple-
mentation. [3] elaborated on the same problem within the same setting of
a bilateral z-transform but with some enforced various spatial constraint on
the distributed controller. For instance they show that with just measure-
ments of the distance from the vehicle ahead and the absolute (self)velocity
of the vehicle, it is impossible to guarantee stability of the platoon. Basic
reference on various stability concepts for vehicular platoons are given later
in Chapter 6.
We were inspired by the critical analysis of [9] who show that the problem
of distributed control of a string of vehicles as cast in the original papers
by is ill-conditioned, that is, as the number of vehicles in the string grows,
the string becomes more and more difficult to stabilize (and impossible to
stabilize in the infinite case). Quite surprising that this issue went unnoticed
for so long with these often cited papers.
Our approach is based on so called spatially invariant systems. This type
of systems was studied in the late 1960s and early 1970s within a broader
class of systems whose coefficients are functions of parameters. The right
mathematical concept appeared to be that of linear systems over rings, be-
cause the coefficients in the state-space matrices and the coefficients in the
transfer functions are elements of a ring. This broader class of systems also
includes systems with delays or systems over integers. Among the pioneers
in the area of linear systems over (commutative) rings were Kalman and his
doctoral student [21] and [14]. Readable surveys were given by [23] and [11].
Specialization of these general results to spatially distributed systems was
given in another survey paper by [12]. A few papers followed in the early
1980s such as [13] and Khargonekar [15], but the interest of the community
into this field faded away towards the end of 1980s and throughout 1990s.
Surprisingly, the field was revived around the beginning of the new millen-
nium, through the papers by [1], [6],[25], [10] and [24], to name just a few,
demanded by new technologies such as MEMS, adaptive optics, networked
systems, low cost UAVs or mobile robots.
Distinguished feature of this paper is that while majority of the mentioned
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papers including [9] rely on state-space formalism, here the preference is
given to input-output description, that is, models are given in the form of
a fraction of two bivariate polynomials. This approach was first sketched in
[8]. Major justification for this preference is availability of some promising
analytical and numerical tools from multidimensional system theory, some of
which were developed by the authors of this paper, for instance [4], [29], [32].
Another feature of this paper is that the platoon is assumed to have a leader,
that is, the cars are indexed by natural numbers. Joint unilateral Laplace
and z-transform, formally denoted here as LZ1-transform, is used to model
the problem at hand by a fraction of bivariate polynomials. This brings the
platooning problem on the same ground as numerous problems in the broad
and well studied domain of 2-D signals and systems.
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Chapter 2

Platoon description

Semi-infinite one-dimensional platoon studied in the paper is shown in Fig.
2.1. The leading vehicle is labeled by 0 and the follow-up cars are numbered
by 1, 2, . . .. The vehicles keep their original indices even when exchanging
their positions. The leader is driven externally while the followers are con-
trolled by the algorithms discussed in the paper.

2 1 0

x2(t)

x1(t)

x0(t)

v2(t) v1(t) v0(t)

Figure 2.1: Platoon of vehicles with a leader.

Variables in the platoon, such as positions and velocities are described by
spatial sequences of time functions

{f(t, k)} = f(t, 0), f(t, 1), f(t, 2), . . . , t ∈ [0,∞),

corresponding to the equally indexed vehicles.



Chapter 3

LZ1-transform and its properties

To prepare the ground, a joint unilateral Laplace and (shifted) unilateral
z-transform denoted LZ1 is defined as

LZ1 {f(t, k)} =

∫ ∞

0−

(
∞∑

k=1

f(t, k)z−k

)

e−st dt. (3.1)

In contrast to the common z-transform definition, the discrete-space part of
the LZ1-transform “starts” with the vehicle indexed by k = 1. This keeps
the leader outside the support allowing the LZ1 - transform to describe just
the controlled vehicles. The movement of the leading vehicle then becomes
a boundary condition.
The LZ1-transform of the sequence {f(t, k)} expands1 into

f(s, z) = f(s, 1)
︸ ︷︷ ︸

f1(s)

z−1 + f(s, 2)
︸ ︷︷ ︸

f2(s)

z−2 + . . . (3.2)

which is a formal power series in z−1 having polynomials or fractions in s as
its coefficients.
A couple of LZ1-transform properties are listed here that are used in the
paper. Their proofs are sketched in the Appendix.

Theorem 1 (LZ1-transform of time derivatives).
Given spatial sequence of time functions f(t, k) and its LZ1-transform f(s, z),
then

LZ1

{
∂f

∂t

}

= sf (s, z)− f0− (z) , (3.3)

LZ1

{
∂2f

∂t2

}

= s2f (s, z)− sf0− (z)− ḟ0− (z) , (3.4)

1We are rather careless with the notation here as both the original spatiotemporal
signal and its transform are labeled with the same letter, being distinguished only by
their arguments (t, k) vs. (s, z).



assuming that the derivatives exist. Here

f0−(z) =
∞∑

k=1

f(0−, k)z−k, (3.5)

ḟ0−(z) =
∞∑

k=1

ḟ(0−, k)z−k, (3.6)

are Z1-transforms of the spatial sequences of (pre)initial conditions f(0−, k)
and ḟ(0−, k), respectively.

Theorem 2 (LZ1-transform of space shift).
Given spatial sequence of time functions f(t, k) and its LZ1-transform f(s, z),
then

LZ1 {f(t, k − 1)} = z−1f(s, z) + z−1f0(s), (3.7)

where

f0(s) =

∫ ∞

0−
f(t, 0)e−stdt (3.8)

is the L-transform of the function related to the leader.
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Chapter 4

Platoon as a general 2-D System

Platoons and their controls are modeled here in a compact general form using
fractions of real bivariate polynomials. The two variables are denoted as s

and z, corresponding to time and the spatial index of the vehicle, respectively.
A variety of platoons is described by the general 2-D plant

a(s, z)y(s, z) = b(s, z)u(s, z) + c(s, z). (4.1)

Here y(s, z) and u(s, z) stand for LZ1-transforms of the plant output and
input, respectively. Writing them as formal power series in z−1 with rational
coefficients in s

y(s, z) = y1(s)z
−1 + y2(s)z

−2 + . . . , (4.2)
u(s, z) = u1(s)z

−1 + u2(s)z
−2 + . . . , (4.3)

nicely reveals that particular coefficients yk(s) and uk(s) represent the local
output and local input at the position number k.
Furthermore, a(s, z) and b(s, z) are 2-D polynomials encountered in the plant
transfer function, while c(s, z) is a 2-D polynomial or fraction incorporating
the information about the initial and boundary conditions in the plant. Their
roles become evident from rewriting (4.1) into

y(s, z) =
b(s, z)

a(s, z)
u(s, z) +

c(s, z)

a(s, z)
. (4.4)

Correspondingly, a general 2-D controller

p(s, z)u(s, z) = q(s, z)e(s, z) + d(s, z), (4.5)

which is driven by error signal

e(s, z) = yref(s, z)− y(s, z), (4.6)

covers a miscellany of control schemes. The role of the polynomials p(s, z),
q(s, z) and d(s, z) is clear1 from

u(s, z) =
q(s, z)

p(s, z)
e(s, z) +

d(s, z)

p(s, z)
. (4.7)

1Throughout the paper, the influence of initial and boundary conditions in the con-
troller is usually neglected, which sets d(s, z) = 0.



Use of these general 2-D models is now demonstrated on typical control
policies.
Example 1: Predecessor Following Control. Consider a platoon of
identical vehicles, each governed by a simple double integrator equation,
where for every vehicle the distance to its predecessor is measured and used
for control. In time and space, such a platoon is modeled by the equations
(for t ∈ [0,∞], k = 1, 2, 3, . . .)

ẍ(t, k) =
1

m
u(t, k),

r(t, k) = x(t, k − 1)− x(t, k),
(4.8)

where the quantities x(t, k), u(t, k) and r(t, k) stand for the position of the
k-th vehicle, its control input (driving force) and its distance from the (k −

1)-th vehicle, its predecessor, respectively. Naturally, the whole sequences
{x(t, k)}, {u(t, k)} and {r(t, k)} describe the positions of all the vehicles, all
the driving forces (local inputs) and all the distances between the neighboring
vehicles, respectively.
To complete the model, some initial as well as boundary conditions must be
known. These are the initial positions x(0−, k) = x0−(k) and the velocities
ẋ(0−, k) = ẋ0−(k) for all k = 1, 2 . . . as well as the leader’s position x(t, 0) =
x0(t) for all t ∈ [0,∞).
The LZ1-transform turns (4.8) into

x(s, z) =
1

ms2
u(s, z) +

1

s
x0−(z) +

1

s2
ẋ0−(z),

r(s, z) = (z−1 − 1)x(s.z) + z−1x0(s).
(4.9)

Putting this together yields

ms2r(s, z) = (z−1 − 1)u(s, z) +ms(z−1 − 1)x0−(z)

+m(z−1 − 1)ẋ0−(z) +ms2z−1x0(s),

which matches the general format of (4.1) with the output y(s, z) = r(s, z)
and the corresponding polynomials

a(s, z) = ms2,

b(s, z) = (z−1 − 1),

c(s, z) = ms(z−1 − 1)x0−(z)+

+m(z−1 − 1)ẋ0−(z) +ms2z−1x0(s).

(4.10)

A natural strategy is to control each vehicle locally by a controller operating
on the error of the distance to the predecessor from its desired reference value.
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When all the local controllers are identical, the L-transform yields

p(s)uk(s) = q(s) (rref,k(s)− rk(s)) , (4.11)

where the role of initial conditions is neglected. Global controller, which can
be viewed as a sequence of local controllers, fits into general 2-D format (7.5)
with

e(s, z) = rref,k(s)− rk(s),

p(s, z) = p(s), q(s, z) = q(s), d(s, z) = 0.
(4.12)

Example 2: Leader Following Control. As another example, consider
again the platoon above, where now for every vehicle its distance to the
leader is measured and used for control. Such a platoon is described by the
equations (for t ∈ [0,∞], k = 1, 2, 3, . . .)

ẍ(t, k) =
1

m
u(t, k),

w(t, k) = x(t, 0)− x(t, k),
(4.13)

where w(t, k) stands for the distance between the k-th and the leading (0th)
vehicle. The initial and the boundary conditions are as above. Using LZ1-
transform, (4.13) becomes

x(s, z) =
1

ms2
u(s, z) +

1

s
x0−(z) +

1

s2
ẋ0−(z), (4.14)

w(s, z) =
z−1

1− z−1
x0(s)− x(s, z), (4.15)

from which finally

− (z−1 − 1)ms2w(s, z) = (z−1 − 1)u(s, z)+

ms(z−1 − 1)x0−(z) +m(z−1 − 1)ẋ0−(z)ms2z−1x0(s).

Matching this to (4.1) with the output y(s, z) = w(s, z) gives

a(s, z) = (1− z−1)ms2,

b(s, z) = (z−1 − 1),

c(s, z) = ms(z−1 − 1)x0−(z)

+m(z−1 − 1)ẋ0−(z) +ms2z−1x0(s).

(4.16)

When every vehicle controller is fed by the deviation of its distance to the
leader from the desired distance and their dynamics are identical, they are
driven by

p(s)uk(s) = q(s)(wref,k(s)− wk(s)), (4.17)
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where the role of initial conditions is again ignored. Global controller then
fits into the general 2-D format (7.5) with

e(s, z) = wref,k(s)− wk(s),

p(s, z) = p(s), q(s, z) = q(s), d(s, z) = 0.
(4.18)

Example 3: Constant Time-Headway Policy. Yet another example
requires not only the measurements of the inter-vehicular distances but also
the absolute velocities because the desired spacing is now depending on the
velocity via

rref(t, k) = r̄0 + r̄ẋ(t, k). (4.19)

This requirement is called the constant time-headway policy. After LZ1-
transform, (4.19) turns into

rref(s, z) =
z−1

1− z−1

r̄0
s
+ r̄sx(s, z)− r̄x0−(z). (4.20)

The platoon is then described (for t ∈ [0,∞], k = 1, 2, 3, . . .) by

ẍ(t, k) =
1

m
u(t, k),

ȳ(t, k) = x(t, k − 1)− x(t, k)− r̄ẋ(t, k),
(4.21)

with the “output” ȳ(t, k) standing for the inter-vehicular distance reduced
by the velocity-dependent factor. The initial and boundary conditions are as
above and the LZ1-transform produces

x(s, z) =
1

ms2
u(s, z) +

1

s
x0−(z) +

1

s2
ẋ0−(z),

ȳ(s, z) = (z−1 − 1− r̄s)x(s, z) + z−1x0(s) + r̄x0−(z),

and simple algebra gives rise to the single equation

ms2y(s, z) =
(
z−1 − r̄s− 1

)
u(s, z)

+ms(z−1 − 1)x0−(z)

+m(z−1 − 1)ẋ0−(z) +ms2z−1x0(s).

Once again, the equation matches the general format (4.1), now with y(s, z) =
ȳ(s, z) and

a(s, z) = ms2,

b(s, z) =
(
z−1 − r̄s− 1

)
,

c(s, z) = ms(z−1 − 1)x0−(z)

+m(z−1 − 1)ẋ0−(z) +ms2z−1x0(s).

(4.21)
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A convenient controller is here

p(s)u(s, z) = q(s) (ȳref(s, z)− ȳ(s, z)) , (4.22)

where

ȳref(s, z) =
z−1

1− z−1

r̄0
s
. (4.23)

It is actually driven by the regulation error as

e(s, z) = ȳref(s, z)− ȳ(s, z)

=
z−1

1− z−1

r̄0
s
−
(
z−1 − 1− r̄s

)
x(s, z)

− z−1x0(s)− r̄x0−(z)

=
z−1

1− z−1

r̄0
s
+ r̄sx(s, z)− r̄x0−(z)

− (z−1 − 1)x(s, z)− z−1x0(s)

= rref(s, z)− r(s, z).

(4.24)

Such a controller is, of course, again just a particular case of the general 2-D
controller (7.5) with

p(s, z) = p(s), q(s, z) = q(s), d(s, z) = 0. (4.25)
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Chapter 5

Control for a general 2-D system

This paper investigates how the distributed control schemes aimed at fol-
lowing the leader and/or other reference commands scale with the growing
number of vehicles. In the input-output setting, this goal is usually rephrased
as a stability requirement for certain transfer functions.
Putting together the general 2-D plant and a 2-D controller equations (4.1)
and (4.5), they implicitly relate certain variables that are “given” or “supplied
from outside” to other variables that are to be controlled or at least taken into
account. The “given” variables include the reference command yref(t, k) as
well as the initial and boundary conditions in the plant. The conditions are
x(0−, k) = x0−(k), ẋ(0−, k) = ẋ0−(k) and x(t, 0) = x0(t) and are included
in c(s, z) through

c(s, z) = c1 (s, z) x0− (z) + c2 (s, z) ẋ0− (z) + c3 (s, z) x0 (s) .

The initial and boundary conditions of the controller, expressed similarly by
d(s, z), are also part of the game.
The controlled or otherwise notable variables1 naturally comprise the error
e(s, z) as the measure of quality, the plant output y(s, z), as well as the plant
input u(s, z). Their explicit expressions, assuming d(s, z) = 0, are

e(s, z) =
a(s, z)p(s, z)

m̄(s, z)
yref(s, z)−

p(s, z)

m̄(s, z)
c(s, z), (5.1)

y(s, z) =
b(s, z)q(s, z)

m̄(s, z)
yref(s, z) +

p(s, z)

m̄(s, z)
c(s, z), (5.2)

u(s, z) =
a(s, z)q(s, z)

m̄(s, z)
yref(s, z) +

q(s, z)

m̄(s, z)
c(s, z), (5.3)

where we have denoted the common denominator by

a(s, z)p(s, z) + b(s, z)q(s, z) = m̄(s, z). (5.4)
1Notable variables not appearing in (4.1) and (4.5) can be computed from the particular

platoon equations. So in Example 1, one gets the positions x(s, z) from r(s, z) via (4.8),
etc.



The relations (5.1-5.3) consist of all the closed-loop transfer functions from
the given variables to the controlled or notable variables.
Common denominator of all the transfer functions – the polynomial m̄(s, z) –
arises from (5.4). Given the plant, i.e. a(s, z) and b(s, z), various right hand
sides can be achieved by choosing the controller, i.e. p(s, z) and q(s, z).
Reversely, given the plant and the polynomial m̄(s, z), (5.4) can be solved as
a 2-D polynomial equation.
The right-hand side must vanish at all common zeros of the left-hand side
polynomials a(s, z) and b(s, z). If the common zeros are stable, a stable
polynomial m̄(s, z) can be achieved. If they are unstable, so is every m̄(s, z).
See [27, 28, 30] or [31] for more on 2-D polynomial equations.
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Chapter 6

2-D BIBO stability and string stability

Two concepts of stability appear in the platooning literature: 2-D BIBO
stability and string stability.
According to [12](Theorem 4.3, pp. 126), a spatially distributed 2-D system
with a coprime transfer f(s, z) = b(s, z)/a(s, z) is BIBO stable if

a(s, ejω) 6= 0

∀s ∈ C, ω ∈ R : ℜ(s) ≤ 0, ω ∈ [0, 2π]
(6.1)

In other words, if it is a stable polynomial in s after substituting for z any
complex number from the unit circle.
Note that the stability condition above is not necessary. The stability can
sometimes be saved by nonessential singularities of the second kind at the
distinguished stability boundary (see [7]). To avoid this subtlety, all relevant
coprime transfer functions are required to have a stable denominator (not
vanishing on the distinguished boundary of the stability domain). Every
polynomial satisfying (6.1) is called 2-D stable.
All the transfer functions in (5.1)-(5.3) have the same denominator m̄(s, z).
If it is stable, then all the transfer functions are BIBO stable. Even if m̄(s, z)
is not stable, its unstable factor may happen to cancel in relevant transfer
functions. In some experiments, also the denominators of yref(s, z) or c(s, z)
can be unstable.
Most papers that appeared in this domain were from the early days based
on the concept of a string stability, which was introduced by [5] under the
name asymptotic stability and essentially means that spacing errors between
neighboring vehicles (induced by disturbances, noises or changes in the ref-
erence signals) are not amplified when propagated down the platoon. When
the ℓ2 norm is used to measure the error signals, the necessary condition is∥
∥
∥

êi(s)
êi−(s)

∥
∥
∥
∞

≤ 1. This concept was later extended for nonlinear systems by

[26], who actually coined the term string stability, and derived sufficiency
conditions as well. One of the early interesting results referring to this no-
tion of stability is by [19] who shows that it is impossible to achieve string
stability when only measurements of relative distance from the vehicle ahead



are measured and PID controller is used locally. [22] later argues that not
only PID but every linear controller is incapable of string-stabilizing a pla-
toon with such a measurement configuration simply because the achievable
H∞ norm is always above 1. (Interestingly enough, when the relative dis-
tance from the vehicle ahead is measured as well as the absolute velocity of
the vehicle, string stability can be achieved with proportional distance and
velocity controllers). One last work that needs to be cited is a submitted
paper by [2] which relates string stability describing microscopic behavior of
the platoon and coherence (or rigidity) that is best viewed as a macroscopic
property.
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Chapter 7

Simulation Experiment

To compare different control strategies, a simulation experiment is conducted.
At the beginning, the platoon is traveling at a constant speed ẋ0− with the
vehicles evenly spaced by r0−. These initial conditions are described by

x0− (z) = −r0−
z−1

(1− z−1)2
= −100

z−1

(1− z−1)2
,

ẋ0− (z) = ẋ0−
z−1

1− z−1
= 30

z−1

1− z−1
.

(7.1)

The vehicles should maintain their original intervals rref = r0−, which is
expressed by the reference command

rref (s, z) = rref (s)
z−1

1− z−1
=

100

s

z−1

1− z−1
. (7.2)

Besides, the vehicles should follow their leader. At the beginning, the leading
vehicle is moving at the same constant speed, but then it slows down for a
while and finally returns to its original velocity. This maneuver, serving as
boundary condition, is described by

x0 (s) =
30

s2
−

10

s2
e−10s +

10

s2
e−15s. (7.3)

and visualized in Fig. 7.1.

7.1 Predecessor Following Control

In the predecessor following control, the plant and the controller are given
as in Example 1 and (5.1)-(5.3) read



Figure 7.1: Leader’s maneuver x0(t) to be followed.

e (s, z) =
ms2p (s)

m̄ (s, z)
rref (s, z)−

p (s)ms2z−1

m̄ (s, z)
x0 (s)

−
p (s)ms

(
z−1 − 1

)

m̄ (s, z)
x0− (z)

−
p (s)m

(
z−1 − 1

)

m̄ (s, z)
ẋ0− (z) ,

r (s, z) =

(
z−1 − 1

)
q (s)

m̄ (s, z)
rref (s, z) +

p (s)ms2z−1

m̄ (s, z)
x0 (s)

+
p (s)ms

(
z−1 − 1

)

m̄ (s, z)
x0− (z)

+
p (s)m

(
z−1 − 1

)

m̄ (s, z)
ẋ0− (z) ,

u (s, z) =
ms2q (s)

m̄ (s, z)
rref (s, z)−

q (s)ms2z−1

m̄ (s, z)
x0 (s)

−
q (s)ms

(
z−1 − 1

)

m̄ (s, z)
x0− (z)

−
q (s)m

(
z−1 − 1

)

m̄ (s, z)
ẋ0− (z) .
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The common closed-loop denominator

m̄ (s, z) = ms2p (s, z) +
(
z−1 − 1

)
q (s, z) (7.4)

is clearly unstable as seen by substituting z = 1. In fact, this is caused by
the unstable common zero (s, z) = (0, 1) in the plant transfer function. Even
worse, no “unstable part” can be factored out of m̄ (s, z) so that one cannot
hope to cancel it. This results went unnoticed by [18] so that three decades
later [10] show that the original scheme actually did not provide a stabilizing
solution. It should be emphasized at this point that the concept of string
stability used in most papers on strings or platoons of vehicles is different
from the concept of 2-D BIBO stability considered here, since the latter
admits spatial steps in reference signals whereas the former only assumes
spatial impulses. In other words, the BIBO stability assumes bounded but
persistent spatiotemporal signals whereas the string stability assumes local
disturbance and studies how it propagates downstream.

Continued Example 1: Predecessor Following. When substituting
particular experiment conditions, the above relations can be expanded into
formal power series in z−1. Particular terms of the series then describe be-
haviors of the corresponding vehicles. The terms are polynomial fractions in
s which for increasing powers of z−1 can be shown to have increasing powers
of the polynomial m̄ (s, 0) = ms2p (s)−q (s) in their denominators. Running
the experiment with m = 1 and with a PD controller

q (s)

p (s)
= −0.2− s (7.5)

results in the distances r(t, k) and positions x(t, k) shown in Fig. 7.2 and
Fig. 7.3, respectively. The polynomial m̄ (s, 0) = s2 + s + 0.2 is stable
so that each vehicle behaves locally well. Yet the spatial propagation of the
behavior is rather ugly. This is a demonstration of string instability. Note
that by increasing the damping of the system (by increasing the coefficient at
the first power of s in the denominator polynomial), this nasty propagation
can be attenuated. Yet the polynomial m̄ (s, z) remains 2-D unstable, which
demonstrates that the system is not BIBO stable and the platoon response
will not scale well for a large number of vehicles.
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Figure 7.2: Distances r(t, k) in predecessor following.

7.2 Leader Following Control

Leader following control described in Example 2 gives rise, via (5.4), to closed-
loop common denominator polynomial

m̄ (s, z) =
(
1− z−1

)
ms2p (s) +

(
z−1 − 1

)
q (s) . (7.6)

Even though m̄ (s, z) is again 2-D unstable, it is factorable into the product
of an unstable factor

(
1− z−1

)
with another factor

¯̄m (s) = ms2p (s)− q (s) . (7.7)

The unstable factor
(
1− z−1

)
cancels in all the terms of e(s, z) and r(s, z)

but unfortunately not in u(s, z).
Continued Example 2: Leader Following. With the same experi-
ment and local controller design (7.5), the results are quite different. Inter-
vehicular distances r(t, k) are identical for all vehicles and hence overlapping
in Fig. 7.4. No amplifying propagation is observed in positions x(t, k) shown
in Fig. 7.5. And yet the system is not 2-D BIBO stable when the control
variable is considered.
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Figure 7.3: Positions x(t, k) in predecessor following.

7.3 Constant Time-Headway Policy

With the constant time-headway policy (Example 3), the desired distances
between the vehicles result from the policy parameters r̄0, r̄ in (4.19). The
common closed-loop denominator (5.4)

m̄ (s, z) = ms2p (s) +
(
z−1 − r̄s− 1

)
q (s) , (7.8)

is again 2-D unstable as putting z = 1 makes it m̄ (s, 1) = s (msp (s)− r̄q (s)),
a 1-D unstable polynomial.
Continued Example 3: Constant time-headway. For the policy param-
eters r̄0 = 10, r̄ = 3, resulting inter-vehicular distances r(t, k) and positions
x(t, k) are shown in Fig. 7.6 and Fig. 7.7, respectively.

7.4 Spatial IIR controller

All the controllers mentioned so far were of local nature having p(s, z) =
p (s) , q(s, z) = q (s) free of the space operator z−1. Now consider a controller
governed by

(uk (s)− uk−1 (s)) p (s) = q (s) ek (s) .
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Figure 7.4: Leader following: distances r(t, k).

Its transform
(
1− z−1

)
p (s) u (s, z) = q (s) e (s, z) + z−1p (s) u0 (s)

clearly matches (7.5) for

p (s, z) =
(
1− z−1

)
p (s) , q (s, z) = q (s) ,

d (s, z) = z−1u0 (s) .
(7.9)

This controller possesses a spatially (semi-)infinite impulse response (IIR),
that is, all the local controller instances use the outcomes of the predecessors.
The resulting closed-loop common denominator reads as (7.6)

m̄ (s, z) =
(
1− z−1

)
ms2p (s) +

(
z−1 − 1

)
q (s) . (7.10)

Hence it is 2-D unstable but factorable into the product of unstable and
stable factors

m̄ (s, z) =
(
1− z−1

) (
ms2p (s) + q (s)

)
(7.11)

Not only that this denominator is identical to (7.6) but also its unstable part
cancels in some closed-loop transfer functions but not in the one relating the
references (and disturbances) and the control variables (outputs of the con-
trollers). The the overall performance then closely resemble leader following
control.
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Figure 7.5: Leader following: positions x(t, k).

Figure 7.6: Constant time-headway policy: distances r(t, k).
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Figure 7.7: Constant time-headway policy: positions x(t, k).
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Chapter 8

Conclusions

The paper introduces a new formalism to the control of semi-infinite platoons
of vehicles following their leader and it demonstrates its elegance by solving
a few classical platooning problems. It is based on 2-D polynomials and their
fractions resulting from a joint unilateral Laplace and z-transform – named
here LZ1-transform. This makes it possible to model variety of platoons and
controllers in a unified manner as well as to apply diverse control policies such
as predecessor and leader following, constant time-headway etc. It was shown
that both the string instability and 2-D BIBO instability can be detected in
the proposed framework. The tools developed here are now ready for use in
further research.



Appendix: Proofs of LZ1-Transform
Properties

Proof of Theorem 1:

Swapping integration with summation in the LZ1-transform definition (3.1)
yields

LZ1

{
∂f

∂t

}

=

∞∫

0−

(
∞∑

k=1

∂f (t, k)

∂t
z−k

)

e−stdt

=
∞∑

k=1





∞∫

0−

∂f (t, k)

∂t
e−stdt



 z−k

Applying integration per partes with the fact that (e−st)
′
= −se−st gives rise

to

∞∫

0−

∂f (t, k)

∂t
e−stdt =

[
f (t, k) e−st

]∞

0−

−

∞∫

0−

f (t, k)
(
−se−st

)
dt

= −f
(
0−, k

)
+ s

∞∫

0−

f (t, k) e−stdt



Hence,

LZ1

{
∂f (t, k)

∂t

}

=

=
∞∑

k=1





∞∫

0−

∂f (t, k)

∂t
e−stdt



 z−k

=
∞∑

k=1



−f
(
0−, k

)
+ s

∞∫

0−

f (t, k) e−stdt



 z−k

= s

∞∫

0−

(
∞∑

i=0

f (t, k) z−k

)

e−stdt−

∞∑

k=1

f
(
0−, k

)
z−k

= sf (s, z)− f0− (z)

The second derivative case can be proven alike by repeating the procedure
of integration per partes.

Proof of Theorem 2:

By the LZ1-transform definition

LZ1 {f (t, k − 1)} =

∞∫

0−

(
∞∑

k=1

f (t, k − 1) z−k

)

e−stdt

When substituting i = k−1 and hence k = i+1 into the integrand, we have

∞∑

k=1

f (t, k − 1) z−k =
∞∑

i=0

f (t, i) z−i−1

= z−1
∞∑

i=0

f (t, i) z−i

= z−1

(

f (t, 0) +
∞∑

i=1

f (t, i) z−i

)

= z−1f (t, 0) + z−1
∞∑

i=0

f (t, i) z−i

Finally
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LZ1 {f (t, k − 1)} =

=

∞∫

0−

(
∞∑

k=1

f (t, k − 1) z−k

)

e−stdt

=

∞∫

0−

z−1

(

f (t, 0) +
∞∑

i=0

f (t, i) z−i

)

e−stdt

= z−1

∞∫

0−

f (t, 0) e−stdt

+ z−1

∞∫

0−

(
∞∑

i=1

f (t, i) z−i

)

e−stdt

= z−1f0 (s) + z−1f (s, z)

which proves the theorem.
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