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1. OPTIMAL AND SUBOPTIMAL DECOUPLING CONTROLLERS 

prof. Ing. Vladimír Kučera, DrSc., dr.h.c. 

The problem of decoupling a linear system by dynamic compensation into multi-
input multi-output subsystems is studied. The set of all controllers that decouple 
and stabilize the system is determined in a parametric form. Optimal and 
suboptimal decoupling controllers are then obtained by an appropriate selection 
of the parameters.  

1.1. Introduction 

Consider a linear, time-invariant, differential system that is governed by the 
input-output relation 

 ,uSy y=  (1) 

where u is the q-vector input, y is the p-vector output and Sy is the transfer 
matrix of the system. It is assumed that Sy is a proper real rational matrix. 

Let p1, ..., pk be given positive integers that satisfy 

 ppk

i i =∑ =1 . 

System (1) is said to be decoupled, or more specifically (p1, ..., pk)-decoupled, if 
there exist positive integers q1, ..., qk satisfying 

 qqk

i i =∑ =1  

such that Sy has the block diagonal form 
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where Si is pi × qi. 

This is not a generic property of the system, but it can be achieved by a 
suitable compensation [2], [3], [5]. To this effect, let z denote the m-vector 
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output of the system that is available for measurement and let it be related with 
the input by the equation 

 uSz z= , (2) 

 where Sz is a proper real rational matrix. 

 The most suitable linear, time-invariant, differential controller can then be 
described by the equation 

 zKvKu zv += ,  (3) 

where  v  is  an   external   reference   input   of   appropriate 

 

 

 

 
 
 

Fig. 1.1. Control system 
 

dimension, say r. As it is seen in Fig. 1.1, (3) is a two-degree-of-freedom 
controller. We assume that both Kv and Kz are proper real rational matrices. 

The decoupling problem is then to find matrices Kv and Kz such that the 
transfer matrix 

 vzzy KSKIST 1)( −−=   

from v to y be suitably block diagonal. 

Obviously, unless additional provisions are made, the decoupling problem is 
trivial as it could be solved by Kv = 0. Thus it is necessary to impose certain 
admissibility condition on the decoupling controller in order to make the 
problem meaningful, for example 

 yST rank  rank =   

over R(s), the field of rational functions.  
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Another requirement, frequently imposed on the decoupled system in 
practice, is that of stability. This requirement means that the states of the system 
go to zero from any initial values. 

1.2. Decoupling and stability 

A stable system gives rise to a proper and stable transfer function. In order to 
study stability of the decoupled system it is convenient to express the transfer 
matrices in (1), (2), and (3) in the following fractional form 

 

1: −
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 (6) 

 [ ] [ ]RQPKK vz −= −1: , (7) 

where 

 








C
B

A,
 

are proper stable rational matrices that are right coprime and 

 [ ]RQP −,  

are proper and stable rational matrices that are left coprime. 

The overall system transfer function then reads 

 RQBPACT 1)( −+= . (8) 

Based on the partition (p1, ..., pk), write 
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, (9) 

where Ci is a pi × q submatrix.  
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We suppose that the given system as well as the controller is a jointly 
stabilizable and detectable system. Under this assumption, the following 
solvability condition is proved  in [5]. 

Theorem 1. Given system (1), (2) in fractional form (6) and partition (9), there 
exists an admissible controller (3) such that the overall system is 

(i) stable if and only if   
 A and B are right coprime, (10) 

(ii) decoupled if and only if 

 ∑ =
=k

i i CC1 rank rank . (11) 

The interpretation of these solvability conditions is as follows. Condition 
(10) means that the given system is detectable from the measured output z. 
Condition (11) calls for the linear independence of any two outputs of the given 
system that belong to different blocks. 

1.3. Controller parameterization 

When a decoupling and stabilizing controller exists, we shall parameterize the 
class of all such controllers using the Youla-Kučera parameterization [3], [8]. 

Suppose (10) holds. Let QP ,  be any proper and stable rational matrix 
solution pair of the equation  

 IQBPA =+ . (12) 

Then the solution class of (12) is given by 

 AWQQBWPP −=+= , , (13) 

where A and B are left coprime, proper and stable rational matrices such that 

 11 −− = BABA  (14) 

and W is an arbitrary proper and stable rational matrix parameter. 

The class of all stabilizing proper rational Kz is then obtained in the form 

 )()( 11 AWQBWPQPK z −+−=−= −−
, 
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where the parameter W is constrained so that the inverse of BWP + exists and is 
proper rational.  

Denote 

 kiCr ii ...,,1,rank : == . 

Let  Ui  be a  pi × pi  unimodular  proper  and  stable  rational 

matrix such that 
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,  

where the rows of iC′are linearly independent over R(s). If (11) holds, then 
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have linearly independent rows over R(s). Let U ′be a q × q unimodular proper 
and stable rational matrix such that 
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, (15) 

where Di is a ri × ri diagonal, proper stable rational matrix. 

Partition the q × q unimodular matrix U ′defined in (15) as 

 [ ]rqr UUU −′′=′ , 

where rU ′has r columns with r defined by 

 ∑=
= k

i irr
1

: . 

The class of all decoupling proper rational Kv is then given by RPKv
1−= with P 

determined in (13) and  
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where Vi is an arbitrary non-singular ri × ri proper and stable rational matrix 
parameter. The matrices V1, ..., Vk in turn parameterize the class of achievable 
block-diagonal transfer matrices (8) as follows 
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 (17) 

The parameterization of decoupling stabilizing controllers reveals that 
decoupling and stabilization are two independent issues [1], [5]. 

1.4. Asymptotic tracking 

The decoupling constraint can deteriorate system’s performance. The bonus of 
having a parameterized solution set is that the lost performance can easily be 
controlled by an appropriate choice of the parameters V1, ..., Vk and W.  

Suppose that the control objective is for each block of outputs yi to 
asymptotically track the corresponding block of reference inputs vi. Thus 
suppose that pi = ri for i = 1, ..., k, i.e., there are as many reference inputs as 
controlled outputs in each block. The tracking error for each block is 

 iiiii vHyve =−=: . 

Suppose that the reference input is given by 

 iii gGv 1−=  , (18) 

where Gi is a fixed proper and stable rational matrix and gi is an unspecified 

proper and stable rational vector that captures the effect of initial conditions. 

Thus (18) defines a class of references with a specified dynamics. 
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Asymptotic tracking means that 

 iiii gGHe 1−=  

is a proper and stable rational vector. Thus Gi must be absorbed in Hi . In view of 
(17), Hi has the generic form 

 iii VFIH −= , 

where Fi := Ui Di and Vi are proper and stable rational matrices with Fi fixed and 
Vi an arbitrary parameter to be specified. Therefore, asymptotic tracking is 
possible if and only if there exists a proper and stable rational matrix Zi 
satisfying 

 IGZVF iiii =+ . (19) 

Let 
ii ZV , be any solution pair of equation (19). Then the solution class of 

(19) is given by 

 iiiiiiii NFZZGNVV −=+= , ,  

where Ni is an arbitrary proper and stable rational matrix parameter. Thus, the 
set of reference-to-error transfer functions that achieve asymptotic reference 
tracking in a decoupled system is 

 iiiiii GNFGZH −= . (20) 

1.5. Optimal controllers 

The benefits of controller parameterization will now be demonstrated in the case 
of H2 control design [5], [6], [7]. 

Suppose that for each block, the reference-to-error transfer function Hi 
parameterized in (20) is to have least H2 norm with respect to Ni. So as to 
achieve this task, determine the inner-outer factorization of Fi , 

 iOiIi FFF =: , 
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where FiI is inner and FiO is outer. Note that Gi is outer for typical references 
such as steps, ramps, or harmonic signals. 

As FiI is inner, premultiplication by 1−
iIF preserves the H2 norm, 

 iiiOiiiIiiIi GNFGZFHFH −== −− 11

.  (21) 

Write 

 iiiIiiiI LKFGZF += −− 11
, 

where Ki, Li are proper and stable rational matrices with Ki strictly proper. Note 
that 1−

iIF has poles only in Res > 0. Then 

221212 )( iiiOiiiIiiiOiiiIi GNFLKFGNFLKFH −+=−+= −− because the 

cross terms contribute nothing to the norm. This is a complete square in which 
only the second term depends 
on Ni . Therefore, a unique Ni that attains the minimum of the norm for 
subsystem i is  

 
11 −−= iiiOi GLFN  (22) 

provided Ni is proper and stable rational matrix. 

1.6. Suboptimal controllers 

Unfortunately, matrix (22) is generically unstable for typical references due to 
the presence of jω-zeros in Gi. This impasse can be obviated by sacrificing the 
optimality and focusing on suboptimal controllers. 

Select proper and stable rational matrices Mi, Ni so that 

 iiiOii GNFML +=  (23) 

holds with Mi strictly proper and having a small H2 norm; in fact, as small as 
desired. Then, using (21), 

 
2212

iiiIi MKFH += −

 (24) 
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and the parameter Mi defines a suboptimal controller, for which the resulting 
H2 norm of Hi is only an incremental addition to the unattainable infimum. 

1.7. Example 

Consider a system defined by (1), (2) with transfer matrices 
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Thus the measurement output z is different from the output y to be decoupled 
in that it involves a non-unity feedback sensor. 

The task is to determine a two-degree-of-freedom controller (3) that (1, 1)-
decouples and stabilizes the system. 

The first step is to obtain a proper and stable fractional representation (6) for 
the system. Standard calculations yield 
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Now apply Theorem 1. Since (10) holds, a stabilizing controller exists. Since 
(11) holds as well, also an admissible decoupling controller exists. 

All stabilizing and decoupling controllers will be parameterized using the 
fractional representation (7). To obtain the feedback part of the controller, we 
consider any particular solution of equation (12), for example 
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The solution class (13) of equation (12) is 
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where use has been made of (14). 

To obtain the feedforward part of the controller, note that U1 = U2 = 1 and the 
unimodular matrix defined in (15) is 
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Thus (16) yields 
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. (27) 

The matrices P, Q in (25), (26) and R in (27) define the class of all 
controllers that solve the decoupling problem. The parameters V1, V2 are free 
non-zero proper and stable rational functions and W is permitted to range over 
proper and stable rational 2 × 2 matrices so that the inverse of P exists and is 
proper.  

The decoupled transfer matrices that can be achieved in this example are 
given by (17) as 
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Suppose that the decoupled outputs are to follow any step references and that 
the transients are to be optimized in terms of the H2 norm. Thus, put  

121 +
==

s
sGG  

and solve equation (19) channel by channel. Clearly V1 = 1, Z1 = 0 is an optimal 
solution that yields H1 = 0. On the other hand,  
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and the inner-outer factorization of 
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Thus, from (22), 
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and the infimum of 2H  cannot be attained. 

To obtain a suboptimal controller, choose 

 ε
ε

ε
ε

+
−

=
+

=
s

N
s

M 24,2
22  

with ε > 0 arbitrarily small, in order to satisfy (22). Then 
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and it follows from (24) that 
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is arbitrarily close to the infimum value of 2 



 

12 

 

It follows from (27) that a suboptimal R is  
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and the overall system has the transfer function 
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2. MODELOVÁNÍ A FYZIKA BUDOV 

Ing. Lukáš Ferkl, Ph.D. 

V této kapitole se seznámíme s problematikou termodynamiky budov, ukážeme si 
základní fyzikální principy, na kterých budovy fungují, a připravíme si 
východiska pro identifikaci budov. 
 

2.1. Motivace 

Podle dostupných zdrojů spotřebují budovy celosvětově 20-40 % veškeré 
energie, navíc v rozvinutých zemích tento podíl stoupá o 0,5-5 % ročně. 
Například v USA v roce 2010 spotřebovaly budovy 41 % primární energie 
(průmysl 31 % a doprava 28 %). Přestože se efektivita používaných systémů 
vytápění, ventilace a klimatizace v budovách v posledních letech výrazně 
zlepšila, stále je zde prostor pro úspory v oblasti algoritmizace řízení, jak si 
v této kapitole ukážeme. 

Se svojí relativně vysokou spotřebou jsou tedy budovy vhodným objektem 
k úsporám energií. V současné době se úspory energií v budovách řeší řadou 
různých způsobů, mezi něž patří například: 

• Zateplení fasády 

• Dobrá okna 

• Snížení vnitřní teploty 

• Alternativní zdroje energie 

• Lepší regulace 

Je zřejmé, že zatímco prvně uvedené možnosti opravdu snižují energetickou 
náročnost budovy, ovšem za cenu vysokých vstupních nákladů a dlouhé 
návratnosti, lepší regulace „pouze“ lépe využívá energetické možnosti dané 
stávajícím technickým stavem budovy. Lepší regulace tedy nešetří v pravém 
slova smyslu, ale zabraňuje plýtvání. 

V současnosti se pro regulaci vytápění (ale i chlazení a klimatizace) používají 
v zásadě následující metody: 
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• Termostat 
Jedná se o asi nejstarší regulaci vůbec. Už pravěký člověk si prostě 
přiložil na oheň, když mu byla zima – moderní nástěnné termostaty 
s hysterezí, případně učícími se algoritmy, jsou pouze pokračovatelem 
této tradice. Nicméně termostat funguje velmi spolehlivě, zachovává 
zpětnou vazbu od místnosti, ale nedokáže reagovat na rychlé, dynamické 
děje dané například prudkou změnou počasí. 

• Ekvitermní regulace 
Na základě venkovní teploty nastavuje ekvitermní regulace teplotu topné 
vody, která pak jde do jednotlivých místností – jedná se tedy o 
přímovazební regulátor. Ekvitermní regulace je velmi robustní, ale 
postrádá zpětnou vazbu od místností a není dynamická. 

• Regulace podle referenční místnosti (např. PID) 
Zpětnovazební, dynamický regulátor řídí teplotu topné vody podle teploty 
v referenční místnosti. Postrádá však informace o počasí a je citlivý na 
lokální poruchy (např. na otevřené okno). 

• Podmínkové řízení – Rule Based Control (RBC) 
Řízení typu if-then-else je velmi rozšířené zvláště u velkých budov, 
protože dokáže zkombinovat údaje z mnoha senzorů a budovu řídit 
komplexně. Návrh takové regulace je nicméně velmi složitý a vyžaduje 
velkou inženýrskou zkušenost. 

• MPC 
V posledních několika letech se experimentuje s prediktivním 
regulátorem, který by byl vhodný pro velké budovy, byl by dynamický, 
robustní a bral v úvahu předpovědi počasí.  

Obecně řečeno mám dvě možnosti – buď zvolím klasickou metody regulace, 
nebo se rozhodnu pro sofistikovanou regulaci komplexního systému. V tom 
případě však musím vědět, že se mi nákladná investice do nového řídicího 
systému s dosaženými úsporami vrátí. My budeme předpokládat, že ano, a 
v dalším textu ukážeme, jak moderní regulaci budovy navrhnout. 
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2.2. Koncepce regulace 

 

Obrázek 2.1 Nějaký obrázek, s číslováním podle kapitol 

Na obrázku výše je schéma postupu tvorby regulace. Nejprve si musím vymezit 
svůj systém a oddělit jej od zbytku světa. Na základě své znalosti si pak zvolím 
strukturu modelu, společně s naměřenými daty potom identifikuji neznámé 
parametry a získám skutečný model. Ten potom použiji jako prediktor, resp. 
vstup pro optimalizaci výsledného regulátoru. 

Z hlediska řízení tedy nejprve najdu model systému 

 𝑦 = 𝑃(𝑢, 𝑥, 𝑡) (2.1) 
a potom hledám takové optimální vstupy do systému, které splňují optimalizační 
požadavek 

 𝑢𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = arg minu 𝐽(𝑃(𝑢, 𝑥, 𝑡),𝑢, 𝑡) (2.2) 

2.3. Budova jako systém 

V budově uvažujeme typicky následující fyzikální děje: 
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• Přenos tepla 
• Tepelná rovnováha 
• Tepelná pohoda 
• Energetická spotřeba 
• Okrajové podmínky 

Tyto děje si nyní ve stručnosti představíme. 

2.3.1. Přenos tepla 
Teplo se šíří vedením, prouděním a zářením. Na následujícím obrázku je 
znázorněno, jak situace přenosů tepla v budově vypadá. 

 

Obrázek 2.2 Tepelné přenosy v budově 

Je zřejmé, že obrázek je velmi zjednodušený – přenosů v budově je celá řada, 
neboť dochází k různým odrazům, ztrátám, akumulacím atd.  

2.3.2. Tepelná rovnováha 
Tepelnou rovnováhou budovy rozumíme v ustáleném stavu stav popsaný rovnicí  

 ∑𝑄 = 0 (2.3) 
resp. v dynamickém tvaru 

 ∑𝑄 = 𝐶 𝑑𝑡
𝑑𝜏

 (2.4) 
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kde 𝜏 je čas a 𝑡 je teplota. Situaci si opět můžeme ukázat na následujím obrázku. 

 

Obrázek 2.3 Tepelná rovnováha místnosti 

Pro tuto situaci musí platit: 

 𝑔.𝐸𝑆𝑇 + 𝑄𝑝𝑒𝑜𝑝𝑙𝑒 + 𝑄𝑉 + 𝑄𝐻 = ∑ 𝑈𝑖𝐴𝑖𝛥𝑡𝑖  (2.5) 
tedy zisky ze slunce, vnitřní zisky, ventilační teplo a teplo ze systému vytápění 
se musí rovnat ztrátám skrz zdi. 

2.3.3. Tepelná pohoda 
V současnosti je velmi populární tzv. PMV (Predicted Mean Vote). Vychází se z 
toho, že tepelná pohoda člověka závisí na několika různých vlivech – na teplotě 
vzduchu, teplotě záření okolních předmětů, relativní vlhkosti vzduchu, rychlosti 
proudění vzduchu v místnosti, ale také na rychlosti metabolismu člověka a na 
jeho oblečení. Pro numerický výpočet PMV se používají velmi sofistikované 
rovnice vycházející z empirických měření na statisticky významném vzorku 
populace, nicméně princip PMV je jednoduchý a lze jej ilustrovat následujím 
obrázkem. 
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Obrázek 2.4 Predicted Mean Vote 

Zkratka PPD znamená Predicted Percentage of Dissatisfaction, tj. podíl lidí, 
kteří budou v budově nespokojeni s tepelnou pohodou. Je zřejmé, že i když 
budova bude odpovídat kategorii PMV=0, bude uvnitř stále cca 5 % lidí 
nespokojených. Z hlediska praxe je důležité, aby PMV leželo v intervalu <-0,5; 
0,5>. 

2.3.4. Energetická spotřeba 
Energetickou spotřebou se z hlediska termodynamiky rozumí teplo dodané do 
budovy, zatímco jako uživatele nás zajímá spíše teplo účtované dodavatelem, 
ovšem může náš zajímat i primární energie. Situaci si můžeme znázornit 
následující tabulkou: 
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Teplo dodané budově  
 účinnost předání tepla 
Teplo dodané do otopného systému  
 ztráty na vedení 
 účinnost řídicího systému 
Teplo dodané budově  
 účinnost předávky tepla 
 účinnost pomocných zařízení 

(čerpadla, ventily, ...) 
Energie dodaná budově  
 ztráty distribuční sítě 
Vyrobená energie  
 účinnost výroby 
Primární energie  
Okrajové podmínky 

Mezi okrajové podmínky patří například: 

• Venkovní teplota 
• Sluneční svit 
• Rozptýlená dlouhovlnná radiace 
• Vítr (síla, směr) 
• Vlhkost vzduchu 
• Srážky 
• Zastínění (stromy, okolními budovami) 
• Orientace (S-J-V-Z) 
• Geologické podloží 
• atd. 

2.4. Přechod k modelování budovy 

Na základě znalostí o budově a její fyzice mohu nyní přistoupit k návrhu 
koncepce modelu. Model bude sloužit jako součást MPC regulátoru a s ohledem 
na tuto skutečnost jej budu navrhovat.  

Budu tedy hledat lineární, časově invariantní, stochastický model ve tvaru 

 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑣(𝑡)  (2.6) 
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Jak jsme viděli v předchozí části, fyzikální principy, na kterých budovy fungují, 
jsou velmi složité a budovu nelze modelovat přísně deterministicky. Zatímco do 
deterministické části modelu se budu snažit začlenit hlavně zdroje tepla, ztráty, 
dynamiku stavby, její akumulaci a některé okrajové podmínky (hlavně vliv 
slunečního záření a okolní teploty), do stochastické části ponechám fenomény 
jako kolísání obsazenosti budovy, náhodné děje typu otevírání oken a dveří, 
vnitřní regulační smyčky, individuální geometrii místností apod. 

Ke struktuře modelu mohu přistoupit třemi různými způsoby. 

Buď zvolím white-box model, tj. napíšu si všechny rovnice, které budovu 
popisují, a identifikuji jednotlivé parametry. Tento přístup je velmi 
komplikovaný a pro modely pro řízení se v případě budov nepoužívá. Další 
možností je použít gray-box model, v našem případě například ekvivalentní RC 
síť a identifikovat její fiktivní parametry („kapacitu“ a „odpor“). Tento přístup 
může být velmi úspěšný, ale není předmětem tohoto kurzu. Poslední možností je 
black-box model, tj. identifikujeme pomocí statistických identifikací parametry 
systémových matic. 

Obrázek 2.5 Gray-box model – ekvivalentní RC síť 

Zvláštním případem identifikace white-box modelu je subspace identifikace, 
která bude tématem následující kapitoly. 
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Poslední, co nám ke spuštění identifikace chybí, jsou identifikační data. Ta lze 
získat dvojím způsobem. Buď mohu použít data, která jsou měřená přímo na 
budově. Data pro identifikaci však musí být dostatečně pestrá a majitel budovy 
nemusí souhlasit s prováděním „identifikačních experimentů“. Proto je 
alternativou namodelovat budovy ve specializovaném SW (TRNSYS, Energy 
Plus apod.). Je však třeba upozornit, že tyto softwary vznikly z požadavku 
stavebních inženýrů a nejsou primárně určeny pro tvorbu modelů vhodných 
k regulaci. Je možné je použít jako podpůrný nástroj, z větší části však 
zůstaneme závislí na reálných datech. 

2.5. Shrnutí kapitoly 

Závěry této kapitoly lze v podstatě shrnout do následujících bodů: 

• Chceme ušetřit energii v budovách pomocí pokročilé regulace 
• Regulace bude založená na modelu budovy 
• Jako systém je budova velmi komplexní 
• Její model bude mít deterministickou a stochastickou část 
• Model může mít gray-box nebo black-box strukturu 
• My se v dalších kapitolách zaměříme na subspace identifikace black-box 

struktury modelu 
 



Kapitola 3

Subspace Identification

Ing. Lukáš Ferkl, Ph.D.

The family of methods called Subspace State Space Systems IDentification

(4SID) are used for the identification of Linear Time Invariant (LTI) state
space models directly from the input-output data. They are an alternative to

the famous Prediction Error Methods (PEM).
Subspace identification algorithms are based on concepts from system theory,

linear algebra and statistics. As the most of the real-life system are multiple
input multiple output (MIMO) system and as 4SID methods provide state

space model of the system, which is probably the most natural expression of

the MIMO systems, the 4SID methods appear to be very suitable candidate
for identification of MIMO systems.

3.1 Motivation, Introduction

Why should anybody use subspace identification? What is it good for? Is it
yet another identification method? Why is it so popular recently? What do
you learn, when you complete this lecture? We will try to answer these and
other questions in the following.
Well, every control engineer knows, that before any actions taken for control
itself, much has to be done. In some methods less, e.g. many “classical” control
concepts such as PID come out from the control of the error (as a difference
between requested and actual values of the manipulated variable), thus the
model of the process is not necessary; on the other hand there are some
modern approaches which heavily depend on the good model of the system,
such as predictive control. Therefore we should realize, that a good dynamic
model at our disposal is oftentimes absolutely crucial for the following control.
And as the system to control become more and more complex, we need a
suitable identification method to handle these ever more difficult to handle
systems. One such a method, or better said a family of methods, which are
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capable of handling the multiple input multiple output (MIMO) systems is
a family of subspace state-space system identification (4SID).
In the following we will try to provide you with information, that should help
you with understanding how the 4SID works, their pros and cons, etc.
First, let us enumerate some characteristics of the subspace identification:

X numerical algorithm resulting to the estimate of the state space model
using input-output data

X “subspace” expresses the way of obtaining the state sequence: using mathe-
matical tools the state sequence can be recovered from the subspace of
some matrices constructed only from input-output data

X minimum required number of parameters: uses does not need to estimate
the system structure (black-box model). The only parameters to set are
size of the block Hankel matrix, and order of the system - which estimate
is provided within the 4SID identification procedure

X No iterations, which means that there are no problems with convergence
or finding the global optimum.

X Numerically robust mathematical tools such as SVD or QR

✗ Basic version can not handle cases, where the input is correlated with
output (e.g. closed loop measurements). In these cases the estimate is
heavily biased.

✗ Difficult recursive implementation

3.2 Mathematical Tools

Before we start with the description of the tools utilized in 4SID, let us
explain the basic difference in the classical and subspace identification con-
cepts. Let us have a look at Fig. 3.1. In the classical identification concept
one always tries to estimate system matrices directly, or most often interme-
diary via estimation of some coefficients of the chosen polynomials or more
complex functions. Only then, the system states are estimated using Kalman
filtering. In sharp contrast, the 4SID methods forms some matrices using
only measured input-output data, and then, utilizing concepts of algebra
and geometry a state sequence is estimated. Then a problem of classical le-
ast squares is formulated wherein the system matrices stand for unknown
estimated parameters.
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Obrázek 3.1: Comparison between classical and subspace identification methods
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Obrázek 3.2: Orthogonal projection principle

Let us now turn to the promised mathematical tools. We will explain the
following

• Orthogonal projection of the row space of the matrix A onto the row
space of the matrix B is denoted as A/B, which is equal to the following

A/B = AΠB = ABT (BBT )†B, (3.1)

where † is a Moore-Penrose pseudo-inverse. This means, that the result
lies in the row space of B and has the same number or row vectors as
did A. Then we have an orthogonal projection onto the complement of
the row space of the matrix B denoted as

A/B⊥ = AΠ⊥
B = I − ΠB (3.2)

The orthogonal projection is demonstrated at Fig. 3.2, or a a short ani-
mation available at http://www.youtube.com/watch?v=0ABUhoDzMxU&NR=
1. (3.1) and (3.2) mean, that A can be decomposed as a sum of linear
combinations of the rows of B and B⊥.

• Oblique projection has a bit different interpretation. Instead of decom-
posing A as linear combination of two orthogonal matrices, it can be
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Obrázek 3.3: Oblique projection principle

decomposed as a linear combination of non-orthogonal matrices B and
C and of the orthogonal complement of B and C, which can be written
as

A = A/
C

B + A/
B

C + A/

(

B

C

)⊥

. (3.3)

For better understanding, please refer to Fig. 3.3.

• Matrix row space is the set of all possible linear combinations of its row
vectors. The dimension of the row space is called the rank of the matrix.
The idea is depicted in Fig. 3.4. Rephrasing the statement in words of
math, when A is m×n matrix, with r1 . . . rm rows, the set of all possible
linear combinations, i.e. c1r1 + c2r2 + . . . cmrm is called a row space of
the matrix.

Obrázek 3.4: Matrix row space [1]

• Hankel matrix is a square matrix with constant skew-diagonals. In the
context of 4SID algorithm, where the Hankel matrix is constructed using
input-output data, the interpretation is quite straightforward. Each co-
lumn is only a time shift of the previous one.

• SVD decomposition or the singular value decomposition is a factorization
of a real or complex matrix, where a m× n real or complex matrix X is
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decomposed intro three matrices as depicted in Fig. 3.5. U is an m ×m
real or complex unitary matrix, S is an m × n diagonal matrix with
nonnegative real numbers on the diagonal (singular values), and V ∗ (the
conjugate transpose of V) is an n × n real or complex unitary matrix.
The m columns of U and the n columns of V are called the left and
right singular vectors of X, respectively. The SVD is utilized in solving
of many such as pseudoinverse, least squares, determining the rank, etc.

Obrázek 3.5: Principle of SVD

• QR decomposition is a decomposition of a matrix A into a product A =
QR, where matrix Q is orthogonal and matrix R is an upper triangular.
One of the most often problems solved by QR decomposition is linear
least squares (LS)problem. If A has n linearly independent columns, then
the first n columns of Q form an orthonormal basis for the column space
of A. In general we can write

A = QR = Q

(

R1

0

)

= (Q1 Q2)

(

R1

0

)

= Q1R1, (3.4)

with R1 being upper triangular n× n matrix, Q1 being m× n (same as
the original size of A).

Obrázek 3.6: Principle of QR
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3.3 Identification Procedure

3.3.1 Problem Statement

The objective of the subspace algorithm is to find a linear, time invariant,
discrete time model in an innovative form

x(k + 1) = Ax(k) +Bu(k) +Ke(k)

y(k) = Cx(k) +Du(k) + e(k), (3.5)

based on given measurements of the input u(k) ∈ R
m and the output y(k) ∈

R
l generated by an unknown stochastic system of order n, which is equivalent

to the well-known stochastic model as defined in e.g. [3, 2]. Loosely speaking,
the objective of the algorithm is to determine the system order n and to find
the matrices A, B, C, D and K.

3.3.2 Algorithm

The entry point to the algorithm are input-output equations as follows:

Yp = ΓiX
d
p +Hd

i Up + Y s
p

Yf = ΓiX
d
f +Hd

i Uf + Y s
f

Xd
f = AiXd

p +∆d
iUp, (3.6)

where Yp and Yf are the Hankel matrices of past and future outputs, Up and
Uf are the Hankel matrices of past and future inputs, Xd

p and Xd
f are the

deterministic Kalman state sequences, Y s
p and Y s

f are the stochastic Hankel
matrices of past and future outputs, Hd

i is the lower block triangular Toeplitz
matrix for the deterministic subsystem (which contains system matrices),
Γi is the extended system observability matrix (which contains matrices A

and C) and ∆d
i is the deterministic reversed extended controllability matrix

(which contains matrices A and B). Detailed construction of state matrices
can is provided later in the text. It is quite straightforward that following
holds:

[

X̂i+1

Yi|i

]

=

[

A B

C D

] [

X̂i

Ui|i

]

+

[

ρw
ρv

]

(3.7)

X̂i denotes estimate of state sequence, ρw and ρv are Kalman filter residuals.
State sequence estimates are determined as follows:

X̂i = Γ†
i

[

Zi −Hd
i Uf

]

X̂i+1 = Γ†
i−1

[

Zi+1 −Hd
i+1U

−
f

]

, (3.8)
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with Zi and Zi+1 defined as oblique projections (see e.g. [4])

Zi = Yf /
Uf

Wp

Zi+1 = Y −
f /

U−

f

W+

p , (3.9)

where Wp is a lumped data matrix containing Up and Yp. Solving (3.7) using
least squares methods, we get the state space system description of the sys-
tem, namely the system in the innovation form (3.5).
Finally, given the estimates of the system matrices A, B, C, D the Kal-
man gain matrix K can be computed. If an estimate of a state sequence
X is known, the problem can be solved by computing the Algebraic Riccati
Equation (ARE) in which the covariance matrices are determined from the
residuals as follows:

[

W

V

]

=

[

Xk+1

Yk

]

−

[

Â B̂

Ĉ D̂

] [

Xk

Uk

]

, (3.10)

where
[

Q S
ST R

]

=
1

N

([

W
V

]

[

W T V T
]

)

. (3.11)

3.3.3 Matrices Used in Subspace Algorithm

Notation and building-up of the matrices as follows further on were adopted
as in [4]. Upper index d and s denotes deterministic and stochastic subsys-
tems, respectively.

Data Matrices

Input block Hankel matrix is built-up from input data as follows:

U0|2i−1 =



















u0 u1 u2 · · · uj−1

... ... ... . . . ...
ui−1 ui ui+1 · · · ui+j−2

ui ui+1 ui+2 · · · ui+j−1

... ... ... . . . ...
u2i−1 u2i u2i+1 · · · u2i+j−2



















. (3.12)

Input and output Hankel matrices can be grouped as follows:

Wp =

(

Up

Yp

)

, W+

p =

(

U+
p

Y +
p

)

, (3.13)
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where U0|i−1 = Up and Ui|2i−1 = Uf with Up and Uf denoting the past and
future inputs, respectively. The same logic holds for outputs y(k) and noise
e(k). Change of indices results in U0|i = U+

p and Ui+1|2i−1 = U−
f , respectively.

System Related Matrices

Extended (i > n) observability (Γi) and reversed extended controllability
(∆i) matrices for deterministic and stochastic subsystems, respectively are
defined as follows:

Γi =
(

CT (CA)T . . . (CAi−1)T
)T

(3.14)

∆d
i =

(

Ai−1B Ai−2B . . . AB B
)

(3.15)

∆s
i =

(

Ai−1K Ai−2K . . . AK K
)

(3.16)

The lower block triangular Toeplitz matrix for deterministic and stochastic
subsystem, respectively are defined as

Hd
i =











D 0 . . . 0
CB D . . . 0

... ... . . . ...
CAi−2B CAi−3B . . . D











, (3.17)

Hs
i =











I 0 . . . 0
CK I . . . 0

... ... . . . ...
CAi−2K CAi−3K . . . I











. (3.18)
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Chapter 4

Predictive Control for Buildings

Ing. Jiří Cigler

4.1 Introduction

4.1.1 Motivation

In recent years, there has been a growing concern to achieve energy savings.
This has been demonstrated by the governments of many developed coun-
tries. For instance, the European Union (EU) presented targets concerning
energy cuts defining goals until 2020 [47]: i) Reduction in EU greenhouse
gas emissions at least 20 % below the 1990 levels, ii) 20 % of EU energy con-
sumption to come from renewable resources, iii) 20 % reduction in primary
energy use compared to projected levels to be achieved by improving energy
efficiency. The similar goals, in some cases even more restrictive, have been
stated by the U.S. government with minor differences on the level of each
state [6].
As the buildings account for about 40 % of total final energy consumption
[33] and more than half is consumed in HVAC (Heating, Ventilation and Air
Conditioning) systems, an efficient building climate control can significantly
contribute to reduction of the power demands and lower thus the greenhouse
gas emissions.
In addition, for instance in the U.S., there are about one to 2 million buildings
being newly constructed every year. However, there are approximately 110
million existing buildings consuming much more energy per se than new
buildings constructed according to current standards. Even when each of the
new buildings would use net-zero-energy technology, it will take a long time
to achieve significant difference on the overall energy bill [37]. Therefore, a
much more productive approach for achieving the strict energy cuts would
be to focus on the retrofitting of the existing buildings or by improvements
of Building Automation Systems (BAS) and their algorithms that can be
achieved with minimal additional cost. In this paper, we restrict ourselves
only to improvements in BAS algorithms. The effort to implement advanced
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control algorithms in buildings has been shown by the activity of the leading
academic and industrial teams in the area of HVAC control [8, 21, 43, 22, 11].

4.1.2 State-of-the-art in advanced control of HVAC
systems

Recently, there have emerged two main research trends in the field of ad-
vanced HVAC control i) learning based approaches like artificial inteligence;
neural networks; fuzzy and adaptive fuzzy neural networks etc. ii) Model
based Predictive Control (MPC) techniques that stand on the principles of
the classical control.
The approaches from the former group are used in HVAC systems for their
capability in dealing with nonlinearities as well as their capabilities to han-
dle Multi-Input Multi-Output (MIMO) systems. These approaches can be
for instance used to cut down the time needed for tuning the supervisory
controller [45], to control cooling system with several types of cooling strate-
gies [42] or to optimize occupants’ thermal comfort making use of ventilation
control [11].
The latter technique can handle MIMO systems from its very nature and usu-
ally relies on the physically based mathematical model of the HVAC system
and building dynamics. The aim of MPC is to design control inputs that min-
imize the energy consumption while guaranteeing that comfort requirements
are met. A comprehensive and up-to-date overview of the literature related
to the predictive control of buildings can be found on the website of the
OptiControl project (www.opticontrol.ethz.ch). From the wide variety
of results, a few instances can be listed. The controller i) takes disturbance
predictions (occupancy, weather etc.) into account, thus it adjusts control
actions appropriately [46, 30], ii) can utilize the thermal mass of a building
in a better way compared to the conventional control strategies (e.g PID,
weather compensated or rule based control) [4, 3], iii) is able to deal with
variable energy price that can be easily included into the formulation of the
optimization problem [2, 23], iv) can handle minimization of the energy peaks
and thus shift energy loads within certain time frame [21, 41, 14, 31] (benefi-
cial because of both the possibility of tariff selection and lowering operational
costs), v) can take into account stochastic properties of random disturbance
variables (e.g. weather forecast, occupancy profiles); convex approximation
of a stochastic model predictive control problem for buildings is given in [32],
vi) can be formulated in a distributed manner and thus the computational
load can be split among several solvers [44, 27, 17]. There have also been
reported some experimental setups of MPC which have shown the energy
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savings potential [21, 46, 24, 35](15–30 % compared to conventional control
strategies).
The increased popularity of MPC usage for building control in recent years
is indisputable, however, most of the results are based on the simulations or
short time experiments. In this manuscript, we provide a detailed description
of an MPC implementation on a real building and we analyze results from
two months of operation.
The text is further organized as follows. The predictive control strategy is
presented in Section 4.2. Section 4.3 is devoted to modeling. Case-study is
discussed in Section 4.4. Finally, the text is concluded by Section 4.5 .

4.2 Model predictive control

The Building Automation System (BAS) aims at controlling heating, cooling,
ventilation, blind positioning, and electric lighting, of a building such that
the temperature, CO2 and luminance levels in rooms or building zones stay
within the desired comfort ranges. One typically divides the control hierarchy
into two levels: the low-level controller which typically operates at the room-
level and is used to track a specified setpoint, and a high-level controller
which is done for the whole building and determines the setpoints for the
low-level controllers. The article focuses on the usage of Model Predictive
Control (MPC), which is used as high-level controller.

4.2.1 MPC strategy

MPC is a method for constrained control which originated in the late seven-
ties and early eighties in the process industries (oil refineries, chemical plants,
etc.) (see e.g. [39, 34, 40, 16]). MPC is not a single strategy, but a class of
control methods with the model of the process explicitly expressed in order to
obtain a control signal by minimizing an objective function subject to some
constraints. In building control one would aim at optimizing the energy use
or cost subject to comfort constraints.
MPC is a very simple and satisfyingly intuitive approach to constrained con-
trol. During each sampling interval, a finite horizon optimal control problem
is formulated and solved over a finite future window. The result is a trajectory
of inputs and states into the future satisfying the dynamics and constraints
of the building while optimizing some given criteria. In terms of building
control, this means that at the current point in time, a heating/cooling etc.
plan is formulated for the next several hours to days, based on predictions
of the upcoming weather conditions. Predictions of any other disturbances
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(e.g., internal gains), time-dependencies of the control costs (e.g., dynamic
electricity prices), or of the constraints (e.g., thermal comfort range) can be
readily included in the optimization.
The first step of the control plan is applied to the building, setting all the
heating, cooling and ventilation elements, then the process moves one step
forward and the procedure is repeated at the next time instant. This receding
horizon approach is what introduces feedback into the system, since the new
optimal control problem solved at the beginning of the next time interval
will be a function of the new state at that point in time and hence of any
disturbances that have acted on the building.

Cost function

Constraints

MPC controller

Comfort criteria

Energy price

Dynamics /

Building model

Weather prediction

Occupancy prediction

Weather Occupancy

O
p
tim
iz
a
tio
n

Building

Current state

Time varying design parameters

Figure 4.1: Basic principle of Model Predictive Control for Buildings.

Fig. 4.1 summarizes the basic MPC control scheme. As time-varying design
parameters, the energy price, the comfort criteria, as well as predictions of
the weather and occupancy are input to the MPC controller. One can see
that the modeling and design effort consist of specifying a dynamic model
of the building, as well as constraints of the control problem and a cost
function that encapsulates the desired behavior. In each sampling interval,
these components are combined and converted into an optimization problem
depending on the MPC framework chosen. A generic framework is given by
the following finite-horizon optimization problem:
Problem 1:

min
u0,...,uN−1

N−1
∑

k=0

lk(xk, uk) Cost function (4.1)

subject to
x0 = x Current state (4.2)

xk+1 = f(xk, uk) Dynamics (4.3)
(xk, uk) ∈ Xk × Uk Constraints (4.4)

where xk ∈ R
n is the state, uk ∈ R

m is the control input, k is the time step,
Xk and Uk denote the constraints sets of the state and inputs respectively
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and are explained below. We now detail each of the four components in
the above MPC formulation and discuss how they affect the system and the
resulting optimization problem. Please note that this is not a comprehensive
overview of MPC formulations, but rather a collection of formulations, which
are frequently used or reasonable in the field of building control. For a more
comprehensive overview on MPC formulations, the reader is referred e.g. to
[25].

Cost function

The cost function generally describes stability and performance targets. The
cost is generally, but not always, used to specify a preference for one behavior
over another, e.g., minimum energy or maximum comfort.
Generally, the main goal is to minimize energy cost while respecting comfort
constraints, which can be formalized by the following cost function:

lk(xk, uk) = (yk − yr,k)
TQk(yk − yr,k) +Rkuk, (4.5)

where Qk and Rk are time varying matrices of appropriate size and yr,k
the reference signal at time k. The trade-off between precision of reference
tracking and energy consumption is expressed by proportion of the matrices
Qk and Rk. The reference tracking is expressed as a quadratic form because
it significantly penalizes larger deviations from the reference. The energy bill
is usually an affine function of a total amount of consumed energy. Therefore,
the control cost is weighted linearly.

Current state

The system model is initialized to the measured/estimated current state of
the building and all future (control) predictions begin from this initial state
x. Depending on what the state of the building is describing, it might not be
possible to measure everything directly. In this case, a Kalman filter can be
used to estimate the current state of the building and the estimate is used
as initial state.

Dynamics

The controller model, i.e. the mathematical description of the building dy-
namics is a critical piece of the MPC controller. For the work presented in
this paper we restrict ourselves to linear dynamics. This is the most common
model type and the only one that will result in a convex and easily solvable
optimization problem.
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Constraints

The ability to specify constraints in the MPC formulation and to have the
optimization routine handle them directly is the key strength of the MPC
approach. There can be constraints on the states or the output, as well as
on the input. When explaining different forms of constraints in the following
we will do it for input constraints only, but everything applies for state and
output constraints alike. Linear constraints are the most common type of
constraint, which are used to place upper/lower bounds on system variables

umin,k ≤ uk ≤ umax,k, (4.6)

or generally formulated as

Gkuk ≤ gk. (4.7)

The constraints can be constant, given by physical or logical limitations. For
instance, valve cannot be open more that 100% or temperature of heating
water cannot exceed some predefined level. The constraints can be also time-
varying, e.g. to account for different comfort constraints during day-time
and night-time. In general case, the constraints can be a function of state
variables or inputs.. This class of constraints can also be used to approximate
any convex constraint to an arbitrary degree of accuracy. Linear constraints
also result in the simplest optimization problems. Furthermore, one might
want to constrain the rate of change, which is done by imposing a constraint
of the form

|uk − uk−1| ≤ ∆umax
. (4.8)

4.2.2 Optimal control formulations for buildings

In the following discussion we restrict ourselves on the deterministic central-
ized MPC formulations because such formulations are the most widely used
one in practice and moreover stochastic or distributed MPC would only bring
some additional complexity.
We also assume that models of the buildings are linear time invariant (LTI)
and that they have heat fluxes as the system inputs while the zone temper-
atures are system outputs. The models have following form:

xk+1 = Axk +Buk + V vk, (4.9)
yk = Cxk +Duk +Wvk. (4.10)

vk ∈ R
s is a vector of disturbances, yk ∈ R

p is a vector of system outputs.
Matrices A,B,C,D, V,W are so called system matrices and are of appropri-
ate dimensions.
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We will start from the formulations that have appeared in the literature.
Pros and cons for each of the formulation will be given. Each formulation
eliminates some drawbacks of the previous one and the last one is hopefully

the most suitable formulation for buildings (both from the point of view of
the quantities being optimized and practical viewpoint).

Minimization of delivered energy and satisfaction of the constraints

This formulation was reported by [10]. The cost function contains only a
term standing for the minimization of the delivered energy while the thermal
comfort is guaranteed by means of hard constraints on the system outputs,
i.e. zone temperatures.

min
u

Nu−1
∑

k=0

|Rkuk|1

subject to:
Fkxk +Gkuk ≤ h

xk+1 = Axk +Buk + V vk k = 1 . . . Ny

yk = Cxk +Duk +Wvk k = 1 . . . Ny

x0 = xinit

rk ≤ yk ≤ rk k = 1 . . . Ny

Fk, Gk, hk define time varying polytopic constraints on system inputs and
states, while rk and rk stand for the time varying reference trajectory for the
system outputs. Initial state xinit is a parameter of the optimization and is
provided by means of Kalman filter or full state measurement at each control
timestep.
Although the presented control strategy was presented as a new control strat-

egy suitable for MPC for buildings, such a optimal control problem formu-
lation cannot be used in the practice. At least from the one reason: if the
initial state implies any comfort violation then such an optimization prob-
lem will be infeasible and the controller cannot work anymore. Feasibility
issues are usually handled with the aid of so called slack variables on system
states and system outputs. Hard constraints are imposed only on the system
inputs, i.e. decision variables. More details on this topic are given in the
following subsection.
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Trade-off between energy consumption and comfort violations

Slack variables are additional decision variables that are being weighted only
in situations when some quantity, which the slack variable is imposed on,
reaches certain bound. They are usefull especially in situations when the
objective is to keep system outputs within a certain range – only violation
of the range is penalized.

min
u

Nu−1
∑

k=0

|Rkuk|1 +

Ny−1
∑

k=0

|Qk(yk − zk)|
2

2

subject to:
Fkxk +Gkuk ≤ h

xk+1 = Axk +Buk + V vk k = 1 . . . Ny

yk = Cxk +Duk +Wvk k = 1 . . . Ny

x0 = xinit

rk ≤ zk ≤ rk k = 1 . . . Ny

In this optimal control problem setup zk ∈ R
p is the slack variable on the

zone temperature.

The advantages of such a formulation has already been discussed, however,
one norm weighting the system inputs belong among the biggest disadvan-
tages. As it is well known, the solution of a linear program lies in some of
the vertex of the polytopic constraints. If the constraints are not very tight
the control results into either idle (no energy is delivered) or deadbeat con-
trol (maximum value of the energy is supplied). This behavior causes issues
especially in closed loop performance. If there is some model mismatch, then
the control actions might result in a very oscillatory behavior. Unpleasant
oscilations can be suppressed by introducing hard constraints on the maxi-
mum rate of change of the input signals. But what if, accidentally, there is
a strong need to heat up the building and to use the maximum capacity of
the heating system immediately? Therefore soft constraints on the rate of
change are chosen. Details are given in the following subsection.
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Practical aspects motivated formulation

The formulation with the soft constraints on the maximum rate of change of
the input signal is as follows:

min
u

Nu−1
∑

k=0

(

|Rkuk|1 + δ |uk − uk−1 − pk|
2

2

)

+

Ny−1
∑

k=0

|Qk(yk − zk)|
2

2

subject to:
Fkxk +Gkuk ≤ hk

xk+1 = Axk +Buk + V vk k = 1 . . . Ny

yk = Cxk +Duk +Wvk k = 1 . . . Ny

u−1 = ulast

x0 = xinit

rk ≤ zk ≤ rk k = 1 . . . Ny

∆u ≤ pk ≤ ∆u k = 1 . . . Nu

∆u,∆u are minimum/maximum values allowed for the input change not
to be penalized, whilst ulast is the system input from the previous control
timestep.

4.3 Modeling

Modeling of the building requires insight both into control engineering as well
as into HVAC engineering. Moreover, it is also the most time demanding part
of designing the MPC setup.
Three approaches to building modeling are outlined in this section. Two
of them come from so-called RC modeling, the other one is purely black
box technique called Subspace identification method. The aim is to provide
insight into these techniques with emphasis on their applicability for MPC.
Largely used computer aided modeling tools (e.g. TRNSYS, EnergyPlus,
ESP-r etc.) are not considered here, as they result in complex models which
cannot be readily used for control purposes.
When large measurement data sets are available, a purely statistical approach
for creation of a building model is preferred. A large number of System
Identification methods exists (a survey is listed in e.g. [20]), however, only a
few of them have the capability of identification of multiple-input multiple-
output (MIMO) systems, which are considered in case of building control. For
identification of linear MIMO models, subspace identification methods are
often used [20, 49, 48] and have been suggested for identification of building
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models as in [36].
Alternatively to the statistical approach, especially if there is a lack of data
or some knowledge of building physics is present, the RC modeling can be
used.

4.3.1 RC modeling

The principle of the thermal dynamics modeling can easily be described by
a small example as given in Fig. 4.2. The room can be thought of as a
network of first-order systems, where the nodes are the system states and
these represent the room temperature or the temperatures in the walls, floor
or ceiling. Then the heat transfer rate is given by

dQ

dt
= Kie · (ϑe − ϑi)

⇒
dQ

dϑi
︸︷︷︸

Ci

·
dϑi

dt
= Kie · (ϑe − ϑi),

(4.11)

where t denotes the time, ϑi and ϑe are the temperatures in nodes i and e

respectively, Q is thermal energy, and Ci denotes the thermal capacitance of
node i. The total heat transmission coefficient Kie is computed as

1

Kie

=
1

Ki

+
1

Ke

, (4.12)

where the heat transmission coefficients Ki and Ke depend on the materials
of i and e as well as on the cross sectional area of the heat transmission.
For each node, i.e. state, such a differential equation as in Eq. (4.11) is
formulated. The actuators are direct inputs to the node, which means that
their input is added. The modeling of illumination and CO2 concentration
is omitted here for brevity, for more details on RC modeling see [9].
The model parameters (e.g. Kie or Ci in Eq. (4.11)) can be determined in
two ways: by reading from construction plans or by statistical estimation,
which is described in the next sections.

Construction plan

Thermal capacities, resistances and other unknown parameters are deter-
mined from the construction plan according to the materials used and their
tabular values. Simulations of the acquired model are then required to vali-
date the model accuracy. If the model does not correspond to the measured
data, parameter adjustment is necessary.
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Figure 4.2: RC modeling is based on the description of heat transmission between nodes that are repre-
senting temperatures. The figure captures example with two rooms where, ϑR1 and ϑR2 are the temper-
atures in the room R1 and R2, respectively, ϑ0 is the outside temperature, ϑSW is the temperature of
the supply water used for floor heating, CR1 denotes the thermal capacity of the room R1. Resistances
are representing the thermal resistances between the nodes.

Statistical estimation

Having described the physics of the building by a set of differential equa-
tions, the estimation problem is formulated in the continuous time. Most of
the mathematical tools, however, work with the discrete-time counterparts,
therefore the original continuous-time problem must be reformulated to the
discrete world, e.g. as

A = eAcTs = I + AcTs +
A2

cT
2
s

2
+ . . . ≈ I + AcTs,

B =

∫ Ts

0

eAcτdτ ≈

∫ Ts

0

IdτBc = TsBc,

where Ac, Bc and A,B are model matrices of continuous- and discrete-time
models, respectively. Ts stands for sampling time. This corresponds to the
Euler’s discretization, thus can be applied for non-linear systems as well.
Then the state equation can be written as

XN
1 = AXN−1

0 +BUN−1

0 + EN−1

0 = (4.13)

=
[

A B
]

[

XN−1

0

UN−1

0

]

+ EN−1

0

with N + 1 being the number of samples and

XN−1

0 =
[

x(0), x(1), . . . , x(N − 1)
]

,

UN−1

0 =
[

u(0), u(1), . . . , u(N − 1)
]

,

EN−1

0 =
[

e(0), e(1), . . . , e(N − 1)
]

.
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For standard optimization using OLS, Eq. (4.13) is rewritten as

vecXN
1 =

([

XN−1

0

UN−1

0

]

⊗ In

)T

vec
[

A B
]

+ vecEN−1

0 (4.14)

with In being n × n identity matrix, n represents system order, (vec •) is
vectorization of a matrix and (•⊗ •) is a Kronecker product. Extra lines for
the structure preservation of A and B as well as other required constraints
can be added into the regressor matrix and left-hand side matrix. Then, the
unknown parameters are estimated using weighted least squares technique.

4.3.2 Subspace identification algorithm

One of the most powerful contributors to the quality of the predictive control
is a well identified model. There are several completely different approaches
to the system identification including physical modeling (e.g. computational
fluid dynamics (CFD) modeling [28]) or statistical identification. As tradi-
tional methods are, for buildings, rather time consuming, and do not posses
the capability of proper handling of MIMO systems, we have turned towards
statistical identification methods, and more specifically, towards subspace
methods [20, 49, 13].
The objective of the subspace algorithm is to find a linear, time invariant,
discrete time model in an innovation form

xk+1 = Axk +Buk +Kek

yk = Cxk +Duk + ek, (4.15)

where A, B, C, and D are system matrices, K is Kalman gain – derived
from the Algebraic Riccati Equation (ARE) ([15]), and e is a white noise
sequence. This model is equivalent to the well-known stochastic model as
defined in e.g. [18, 12]. The objective of the algorithm is to determine the
system order n and to find the system as well as state and measurement
noise covariance matrices given the sequence of input u(k) and output y(k)
measurements.
The main difference between classical and subspace identification is, given
the input and output data, as follows:

• Classical approach. Find the system matrices, then estimate the sys-
tem states, which often leads to high order models that have to be re-
duced thereafter.

• Subspace approach. Use orthogonal and oblique projections to find
Kalman state sequence (see [15]), then obtain the system matrices using
least squares method.
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The entry point to the algorithm are input-output equations as follows:

Yp = ΓiX
d
p +Hd

i Up + Y s
p

Yf = ΓiX
d
f +Hd

i Uf + Y s
f

Xd
f = AiXd

p +∆d
iUp, (4.16)

where Yp and Yf are the Hankel matrices of past and future outputs, Up and
Uf are the Hankel matrices of past and future inputs, Xd

p and Xd
f are the

deterministic Kalman state sequences, Y s
p and Y s

f are the stochastic Hankel
matrices of past and future outputs, Hd

i is the lower block triangular Toeplitz
matrix for the deterministic subsystem (which contains system matrices),
Γi is the extended system observability matrix (which contains matrices A
and C) and ∆d

i is the deterministic reversed extended controllability matrix
(which contains matrices A and B). Detailed construction of state matrices
can be found in [20, 49]. It is quite straightforward that following holds:

[

X̂i+1

Yi|i

]

=

[

A B

C D

] [

X̂i

Ui|i

]

+

[

ρw
ρv

]

(4.17)

X̂i denotes estimate of state sequence, ρw and ρv are Kalman filter residuals.
State sequence estimates are determined as follows:

X̂i = Γ†
i

[

Zi −Hd
i Uf

]

X̂i+1 = Γ†
i−1

[

Zi+1 −Hd
i+1U

−
f

]

, (4.18)

with Zi and Zi+1 defined as oblique projections ([49])

Zi = Yf /
Uf

Wp

Zi+1 = Y −
f /

U−

f

W+

p . (4.19)

Solving Eq. (4.17) using least squares methods, we get the state space sys-
tem description of the system, namely the system in the innovation form
(Eq. (4.15)).
The essential condition for optimal filter run is knowledge of the noise covari-
ance matrices Q and R (state and measurement noise covariance matrices1).
These two matrices are used for calculation of Kalman gain K. In early 70s’
Mehra’s publications on covariance matrices estimation were published [26].
Then, for a large period, the estimation of covariance matrices was largely
overviewed and only in 2006 Odelson’s article [29] was published that offered

1S can be considered zero, because any non-zero S can be easily transformed to zero
matrix [19]
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Table 4.1: Comparison of the identification/modeling approaches.

Building
simulation
software
modeling

RC modeling
– tabular
data driven

RC modeling
– statistical
estimation

Statistical
Identifica-
tion

Planing data from architects and
engineers need

yes yes no no

Operation data need no no yes yes

HVAC engineering background
needed

yes yes no no

Result is achieved in defined time yes yes no no

Use of prior information about
building

yes yes yes no

Continuous model update no no yes no

MPC applicable no yes yes yes

Figure 4.3: The building of the Czech Technical University in Prague that was used for MPC application

a new method for Q and R estimation called Autocovariance Least-Squares
(ALS) technique ([29]). A few more modifications of this method can be
found in [38, 1]. Kalman gain matrix K is computed in a standard way using
state and noise covariance matrices computed using ALS as described in [29].

4.3.3 Comparison of the identification approaches

Finally, Table 4.1 summarizes the MPC applicability of above mentioned
approaches.

4.4 Case study

The presented MPC scheme of Problem 1 was applied to the building heating
system of the Czech Technical University (CTU) in Prague, see Fig. 4.3.
MPC was applied there from January 2010 and was operational until the
end of heating season in mid-March 2010.
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Figure 4.4: Simplified scheme of the ceiling radiant heating system

4.4.1 Description of the building

The building of the CTU uses Crittall [5] type ceiling radiant heating and
cooling system. In this system, the heating (or cooling) beams are embedded
into the concrete ceiling. A simplified scheme of the ceiling radiant heating
system is illustrated in Fig. 4.4. The source of heat is a vapor-liquid heat
exchanger, which supplies the heating water to the water container. A mixing
occurs here, and the water is supplied to the respective heating circuits. An
accurate temperature control of the heating water for respective circuits is
achieved by a three-port valve with a servo drive. The heating water is then
supplied to the respective ceiling beams. There is one measurement point
in a reference room for every circuit. The set-point of the control valve is
therefore the control variable for the ceiling radiant heating system in each
circuit.

Modeling of the building block

The ceiling radiant heating system was modeled by a discrete-time linear
time invariant stochastic model. We can consider this model as a Kalman
filter giving an estimates of the state and the output denoted as x̂k and ŷk.

Outside temperature prediction2 and heating water temperatures were used
as the model inputs. The prediction of outside temperature is composed of
two values, Tmax and Tmin, defining a confidence interval. The outputs of
the model are estimates of the inside temperature T̂in and the temperature

2Acquired from National Oceanic and Atmospheric Administration (NOAA),
http://www.noaa.gov
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of the return water3 T̂rw. This can be formalized as

x̂k+1=Ax̂k + B





Tmin,k

Tmax,k

Thw,k



+Kek

[

T̂in,k

T̂rw,k

]

=Cx̂k +D





Tmin,k

Tmax,k

Thw,k



 , (4.20)

where Thw is a temperature of the heating water and Tin denotes the inside
temperature, ek = yk −Cx̂k −Duk with yk denoting real output (comprises
temperature of the room and temperature of the return water) and xk denot-
ing system state. System matrices A, B, C and D are to be identified using
subspace methods. The state x̂k has no physical interpretation, when identi-
fied by means of the subspace identification. System order is determined by
the identification algorithm as well. Modeling of the heating system of the
CTU building is discussed in detail in [7].

4.4.2 Control objectives

There are several requirements to be fulfilled:

Reference tracking

The reference trajectory yr,k, room temperature in our case, is known prior,
as a schedule. The major advantage of MPC is the ability of computing the
outputs and corresponding input signals in advance, that is, it is possible
to avoid sudden changes in control signal and undesired effects of delays in
system response.
Our aim of the control is that the room temperature should adhere the upper
desired value from its beginning to its end, whilst the lower reference level
is not important until the room temperature approaches significantly to it.
Then the lower level should be tracked too. This behavior will be achieved
by means of slack variables on the system outputs, i.e. zone temperatures.

Minimization of energy consumption

As the return water circulates in the heating system (see Fig. 4.4), energy
consumed by the heating-up of the building is linearly depended on the pos-

3It is crucial to model return water as an output because it gives a significant informa-
tion about energy accumulated in the building, moreover it represents the interconnection
between heating water and room temperature. Omitting the return water would lead to
significant lost of information.
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itive difference between heating Thw and return water Trw temperatures en-
tering/exiting the three port valve in Fig. 4.4. Thus, the 1-norm of weighted
inputs is to be minimized.
It is worthy to note, that the deterministic formulation of MPC was used,
although the model given by subspace identification algorithm was stochastic.
Since the noise ek in Eq. (4.15) is supposed to be zero mean, one can take
only deterministic part of the model defined by Eq. (4.15) for computation
of optimal system input.

4.4.3 MPC problem formulation

At first, the deterministic part of the given system from Section 4.3.2 is
partitioned as follows:

xk+1 = Axk +Buk
y1,k = C1xk +D1uk
y2,k = C2xk +D2uk,

where y1,k stands for outputs with reference signal (e.g. Tin,k), whilst y2,k
represents the input-output differences – in our case y2,k = Thw,k − Trw,k.
The requirements (see Section 4.4.2) for the weighting of the particular vari-
ables can be carried out by adding slack variables a(k) ∈ dim y1,k and
bk ∈ dim y2,k. The resulting optimization problem can be written as follows:

J = min
ak,bk,uk

N−1
∑

k=0

‖Q1ak‖
2

2 + ‖Q2bk‖1

yr,k − y1,k − ak ≤ 0, a ≥ 0

y2,k − bk ≤ 0, b ≥ 0 (4.21)
umin ≤ uk ≤ umax

|uk − uk−1| ≤ ∆umax

y1,k = C1A
k−1x0 +

k−1
∑

i=0

C1A
k−i−1Bui +D1uk

y2,k = C2A
k−1x0 +

k−1
∑

i=0

C2A
k−i−1Bui +D2uk.

Q1 and Q2 stand for weighting matrices of appropriate dimension, umin and
umax represent lower and upper bounds of the input signals and ∆umax

is
maximum rate of change of the input signal.
Eq. (4.21) can be readily rewritten into quadratic programming (QP) prob-
lem and solved using any QP solver.
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Figure 4.5: Different control strategies: comparison of weather-compensated (WC) and predictive control
(MPC) of heating water temperature and the room temperature controlled by MPC.

4.4.4 Results

Two nearly identical blocks of the CTU building were used for testing. The
first block was controlled by weather-compensated controller, while the sec-
ond one by the predictive controller. Three month of real operation were used
for investigation of controllers’ performance and savings, nine days segment of
the period is depicted in Fig. 4.5. The upper part shows outside temperature,
whilst the lower compares reference tracking for weather-compensated and
predictive controllers. It can be seen, that the predictive controller heats in
advance in order to perform optimal reference tracking, that is, inside com-
fort, and minimum energy consumption. Two last subfigures compare the
efficiency of control measured by energy consumption.
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Table 4.2: Comparison of heating curve (HC) and model predictive control (MPC) strategies using similar
building blocks B1 and B2.

B1 B2

mean ϑo [◦C] control mean ϑs, ϑn [◦C] control mean ϑs, ϑn [◦C] MPC savings

1st week -3.4 HC 21.4 MPC 21.1 15.54 %

2nd week -1.3 MPC 21.4 HC 20.9 16.94 %

Evaluation of MPC energy savings

Evaluation of the energy savings achieved by different control strategies is a
complicated task. The weather conditions change all the time, as well as the
number and behavior of the building occupants. Single comparisons of results
are affected by these disturbances, therefore one independent comparison of
the real building experiment will be presented.
The comparison denoted as cross comparison uses almost similar building
blocks B1 and B2. The cross comparison had two phases, each lasted for a
week. In the first week, block B1 was controlled by the heating curve and
block B2 by MPC. The other week, the control strategies were switched.
The advantage of the cross comparison is compensation of the majority of
disturbances because both building blocks are exposed to the same weather
conditions.
The cross comparison results are summarized in Table 4.2. According to this
comparison, MPC saved approximately 16% of energy in both weeks.
The efficiency of the predictive control was superior to the weather-compensated
controller, even if the active heating was necessary. In fact, the costs were
about 16% lower in case of predictive controller. The main reasons of the
savings is the ability of predictive controller to fully employ the thermal ca-
pacitance of a building and that the character of an optimal input is not
so aggressive in comparison to conventional control strategy. Predictive con-
troller circumspect strategy of the input signal shaping reduces the maximum
peak of the heating water as well. Consequently, the less expensive tariff of
a primary energy source could also contribute to further savings.

4.5 Conclusions

Predictive control has a great potential in the area of building control espe-
cially in case of buildings with great heat accumulation capabilities. Testing
confirmed our empirical experiences and the efficiency of the predictive con-
troller in comparison to weather-compensated controller.
MPC implementation, and foremost the modeling effort presents, presents
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the most time consuming part of MPC integration into a building automation
systems. In contrast to the current building control techniques, MPC is
based on a non trivial mathematical background that complicates its usage
in practice. But its contribution to reduction of a building operation cost is
so significant that it is expected that it will become a common solution for
so-called intelligent buildings in a few years.
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Chapter 5

Stochastic model predictive control

Ing. Jiří Cigler

In the previous chapter, the basics of the modeling and optimal control prob-
lem formulation were proposed in a deterministic fashion. However, distur-

bances acting on the system may have a stochastic nature. For instance,
weather forecast has a predefined level of uncertainty [14], occupancy profiles

are not exactly known in advance but can be considered as a random variables
with known distribution [20], etc. Moreover, probability of thermal comfort

constraints satisfaction belongs among the requirements defined by ISO 7730
norm (concerning thermal comfort in buildings [12]). These facts motivate

researchers to investigate more the stochastic model predictive formulation
that can be afterwards applied to building climate control. In the following

text, a convex approximation to one norm stochastic model predictive control
problem will be presented. This algorithm can be readily used for small-scale

building problems.

5.1 Introduction

Stochastic control is a relatively mature field, yet there is still a consider-
able number of unresolved problems mostly due to the notorious inherent
intractability of the vast majority of them. Only a handful of stochastic
optimal control problems (e.g. the linear quadratic control) can be solved
optimally, whereas the remainder has to be tackled by various approximation
techniques most frequently arising from the dynamic programming paradigm
[1], [17].
Recent advances in computation and mathematical optimization techniques
have, however, opened new ways of dealing with these problems. One of the
simplest, yet in most practical applications very effective approach, is the
certainty equivalent model predictive control (CE-MPC) [2], [1] that solves
a deterministic optimization problem with stochastic disturbances replaced
by their estimates based upon the information available at the time, and
proceeds in a receding horizon fashion. Another popular class of control
strategies is the affine disturbance feedback policy which turns out to be



equivalent to the affine state feedback policy via a nonlinear transformation
similar to the classical Q-design or Youla-Kučera parametrization [18], [19].
However convenient the paradigm of affine disturbance feedback may be,
its use is prohibitive whenever unbounded stochastic disturbances enter the
system in the presence of hard control input bounds since then the linear
part necessarily vanishes, which, in effect, renders the policy open loop. One
way to overcome this problem is to use a saturated nonlinear disturbance
feedback as in [10], where this approach was developed for the quadratic
cost. In this article we follow up on this work and develop a methodology
for solving this problem in the 1-norm with the additional assumption of the
disturbances being jointly Gaussian (but not necessarily independent).
Another branch of approximation techniques bounds the disturbances a priori
and solves a robust MPC problem, while guaranteeing an open loop proba-
bilistic bound on the performance [4]. This approach, however, tends to be
very conservative, and thus the idea of bounding the disturbances a priori
based on their distribution appears more often in the context of chance con-
straints, see e.g. [15]. For different approaches to chance constraints handling
see [5], [13].
The very important, though much neglected, question of stability and re-
cursive feasibility of stochastic receding horizon schemes is addressed in a
series of papers [7], [8], [9] and [16]. These papers, however, assume either
compactly supported disturbances or only probabilistic input and state con-
straints, whereas [10] and [11] deal exclusively with stability in the presence
of hard input constraints. In this paper we prove in a much simpler way a
slight generalization of one of their stability results.

5.1.1 Notation

Throughout the article R denotes the set of reals, N and Nc denote the
prediction and control horizons, respectively. The positive integers m and
n denote the number of control inputs and the state-space dimension. The
function satr(·) denotes the standard elementwise saturation of the compo-
nents of a vector to r, and ||·||∞ denotes the induced infinity norm of a matrix
(in particular not the maximum absolute value if the matrix is a row vector).
ρ(·) and tr(·) denote the spectral radius and the trace of a square matrix.
E(·) denotes the expectation of a random variable, and X ∼ N (µ,Σ) indi-
cates that X is a Gaussian random variable with the expectation µ and the
covariance matrix Σ. The symbols vec(·) and ⊗ denote the vectorization and
the Kronecker product respectively. Finally, Hess(·) and Jac(·) denote the
Hessian and the Jacobian of a function.
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5.2 Problem statement

This article deals with the problem of minimizing the cost function

J := E

{

||QNxN ||1 +
N−1
∑

k=0

||Qkxk||1 + ||Rkuk||1

}

(5.1)

subject to the discrete-time system dynamics

xk+1 = Axk +Buk + wk, (5.2)

xk ∈ R
n, uk ∈ R

m, and hard input constraints

||uk||∞ ≤ Umax, k = 0, . . . , N − 1, (5.3)

where Qk ∈ R
nq×n, Rk ∈ R

nr×m are weighting matrices. All the results de-
rived here generalize with only minor modifications to the case with different
bounds on individual control inputs and/or time varying bounds. The dis-
turbances w = [wT

0 , . . . , w
T
N−1

]T are assumed to be jointly Gaussian with the
covariance matrix Σ.
The minimization to be carried out is over all Borel measurable causal dis-
turbance feedback policies

uk = φk(x0, w0, . . . , wk−1), k = 0, . . . , N − 1. (5.4)

This problem is, however, in general intractable and various approximation
techniques exist, see e.g. [1]. For a rigorous treatment of measurability
issues in the context of stochastic control see [3]. In this paper, we adopt the
approach of [10] where the authors propose to search over a class of causal
policies affine in certain nonlinear functions of the disturbances, i.e.

u = η +Ke(w) =





η0
...

ηN−1



+











0 0 . . . 0
K1,1 0 . . . 0

... . . . . . .
KN−1,1 . . . KN−1,N−1 0











e(w), (5.5)

where u = [uT0 , . . . , u
T
N−1

]T . η ∈ R
mN with blocks in R

m and strictly lower
block triangular K ∈ R

mN×nN with blocks in R
m×n are optimization vari-

ables. The choice of the function e : RnN → R
nN is discussed later, although

it certainly must be bounded should the hard input constraints be satisfied.
The bound on ||e(w)||∞ is denoted ε throughout the article.
One of the main goals of the article is therefore to solve (at least approxi-
mately) the optimization problem
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minimize
η,K

E

{

||QNxN ||1 +
N−1
∑

k=0

||Qkxk||1 + ||Rkuk||1

}

subject to u = η +Ke(w)

xk+1 = Axk +Buk + wk

K is strictly block lower triangular

constraints on η,K such that (5.3) is satisfied.

(5.6)

5.3 Main results

The optimization problem (5.6) is, to our knowledge, intractable owing to
the 1-norm and the nonlinear function e(w). We therefore propose to solve a
relaxed problem where u = η+Ke(w) in (5.6) is replaced with u = η+Kw

while keeping constraints on η, K such that the hard input constraints are
satisfied when the original control policy is used. The relaxed problem must
be convex since the objective is convex for each disturbance realization [6]. In
the sequel, we show that the relaxed optimization problem is not only convex
but also tractable. To this end, we need an expression for the expectation of
the absolute value of a Gaussian random variable.

5.3.1 Convexity and tractability of the proposed ap-
proach

Lemma 1. If X ∼ N (µ, σ2) then

g(µ, σ) := E|X| =
1

√
2π

(

2 σ e−
µ2

2σ2 + µ
√
2π erf

(

µ

σ
√
2

))

(5.7)

Proof. Follows by a straightforward integration from the definition of the
expectation of a continuously distributed random variable

E|X| =
1

σ
√
2π

(∫

0

−∞

−xe
−(x−µ)2

2σ2 dx+

∫ ∞

0

xe
−(x−µ)2

2σ2 dx

)

, (5.8)

and by using the definition of the error function erf(x) = 2√
π

∫ x

0
e−t2 dt.

Next, we show that the continuous extension (to cater for the σ = 0 case) of
the Gaussian variable modulus expectation is convex under a certain com-
position and also provide an expression for its gradient and Hessian.

Lemma 2. If X ∼ N (µ, σ2) for σ > 0, X = µ for σ = 0, and µ(η, k) =
µ0 + bTη, σ(η, k) = ||a + Ck||2 then the function f(η, k) = (E|X|)(η, k) is
jointly convex in (η, k).
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Proof. The proof proceeds directly by computing the Hessian of f for σ > 0
and then a continuity argument is used to complete the proof. For σ > 0,
f(η, k) coincides with g(µ(η, k), σ(η, k)) and the gradient is

∇f(µ, σ) =
∂f

∂µ
∇µ+

∂f

∂σ
∇σ = erf

(

µ

σ
√
2

)

∇µ+

√

2

π
e−

µ2

2σ2∇σ (5.9)

with

∇µ =

[

b

0

]

, ∇σ =

[

0
CT a+Ck

σ

]

. (5.10)

The expression for ∇σ follows from the fact that ∇||x||2 = x
||x||2

and the
multivariate form of the chain rule. Now since Hess(f) = Jac(∇f) and
Jac(hg̃) = g̃(∇h)T + hJac(g̃) for real-valued function h and multivariate g̃,
it follows that

Hess(f) =

[

b
0

]{

∇erf

(

µ

σ
√
2

)}T

(5.11)

+

[

0

CT a+Ck
σ

]

{

∇

(

√

2

π
e−

µ2

2σ2

)}T

+

√

2

π
e−

µ2

2σ2 Jac(∇σ)

with

Jac(∇σ) =

[

0 0

0 1

||x||2
CT
(

I − xxT

||x||2
2

)

C

]

≥ 0, (5.12)

where x = a+ Ck since, again by the chain rule,

Jack ∇σ = CT Jac
a+ Ck

||a+ Ck||2
= CT

[

Jac

(

y

||y||2

)

◦ (a+ Ck)

]

C, (5.13)

where ◦ denotes the standard function composition. The remaining two terms
in (5.11) are

∇erf

(

µ

σ
√
2

)

=

[

b

0

]

1

σ

√

2

π
e−

µ2

2σ2 −

[

0
CT a+Ck

σ

]

√

2

π

µ

σ2
e−

µ2

2σ2 , (5.14)

∇

(

√

2

π
e−

µ2

2σ2

)

= −

[

b

0

]

√

2

π

µ

σ2
e−

µ2

2σ2 +

[

0

CT a+Ck
σ

]

√

2

π

µ2

σ3
e−

µ2

2σ2 . (5.15)

Rewriting the Hessian with

q :=

[

0
CT a+Ck

σ

]

(5.16)

then yields

Hess(f) =

√

2

π
e−

µ2

2σ2

(

1

σ

[

b
−qµ

σ

] [

b
−qµ

σ

]T

+ Jac(∇σ)

)

≥ 0. (5.17)
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It is easily seen that f(η, k) is continuous and that the sequence of smoothed

functions fn(η, k) = g
(

µ(η, k),
√

1

n
+
∑

i x
2
i

)

converges pointwise to f . The
functions fn are readily shown to be convex by computing their respective
Hessians in the same fashion as above. The function f(η, k) is therefore
convex since it is a limit of convex functions.

Theorem 1. The optimization problem

minimize
η,K

E

{

||QNxN ||1 +
N−1
∑

k=0

||Qkxk||1 + ||Rkuk||1

}

subject to u = η +Kw

xk+1 = Axk +Buk + wk

K is strictly block lower triangular

|ηi|+ ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN

(5.18)

with w ∼ N (0,Σ) is convex and tractable in the variables (η,K). Further-
more the hard input constraints (5.3) are satisfied under the control policy

u = η +Ke(w) if ||e(w)||∞ ≤ ε. Here Ki denotes the i-th row of K.

Proof. The objective function is a sum of terms of the form E|qTjkxk| or
E|rTjkuk|, where qjk, rjk denote the j-th rows of Qk, Rk respectively. De-
note also

Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0]F,

where Σ = FF T , and observe that

qTjkxk = qTjk(A
kx0 + Bku+ Ckw̃)

= qTjkA
kx0 + qTjkBkη + qTjk(Ck + BkKF )w̃

with w̃ ∼ N (0, I). It is clear that qTjkxk is Gaussian with the expectation

µ(η, k) = E(qTjkxk) = qTjkA
kx0 + qTjkBkη, (5.19)

and standard deviation

σ(η, k) = ||qTjk(Ck + BkKF )||2 = ||CT
k qjk + (F T ⊗ qTjkBk)Sk||2, (5.20)

where Sk = vec(K) with S being a certain matrix of zeros and ones, and k
containing only the nonzero elements of K. Similarly

rTjkuk = rTjkvkη + rTjkvkKFw̃,

where vk is a vector that selects k-th block row of the size m. Consequently,
the expectation and standard deviation become

µ(η, k) = rTjkvkη, σ(η, k) = ||(F T ⊗ rTjkvk)Sk||2. (5.21)
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Application of Lemma 2, in the proof of which the gradient and Hessian were
computed, now completes the convexity and tractability part of the proof.
Satisfaction of the input constraints follows immediately from the definition
of the induced infinity norm and from the assumption that ||e(w)||∞ ≤ ε.

5.3.2 Bound on suboptimality

In this section we provide a bound on the suboptimality in (5.6) (with the
same constraints on η, K as in (5.18)) of the solution to the relaxed problem
problem (5.18). The idea is to bound the difference of the costs under the
policies u = η + Kw and u = η + Ke(w) for given η, K, which in effect
bounds the difference of the respective optima. For ease of notation, the
result is derived with time invariant weights, i.e. Qk := Q, Rk := R (and
thus qjk := qj, rjk := rj) for all k, but generalizes immediately to the time
varying case.

Lemma 3. The cost Je incurred under the policy u = η + Ke(w) and the

cost Jw incurred under the policy u = η +Kw differ not more then

(nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w)− w||∞||K||∞ (5.22)

Proof. We have

|Je − Jw| ≤
N
∑

k=0

nq
∑

j=1

|E(|qTj x
e
k| − |qTj x

w
k |)| (5.23)

+
N−1
∑

k=0

nr
∑

j

|E(|rTj u
e
k| − |rTj u

w
k |)|.

Next, by Jensen’s inequality,

|E(|qTj x
e
k| − |qTj x

w
k |)| ≤ E

∣

∣|qTj x
e
k| − |qTj x

w
k |
∣

∣ (5.24)

≤ E(|qTj x
e
k − qTj x

w
k |) = E|qTj BkK(e(w)− w)|,

where

xek = Akx0 + Bkη + BkKe(w) + Ckw, xwk = Akx0 + Bkη + BkKw + Ckw.

Furthermore

E|qTj BkK(e(w)− w)| ≤ ||qTj BkK||∞E||e(w)− w||∞ (5.25)

≤ ||qTj Bk||∞||K||∞E||e(w)− w||∞

≤ ||Q||∞||BN ||∞||K||∞E||e(w)− w||∞.
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Similar procedure can be carried out for control inputs to yield

|E(|rTj u
e
k| − |rTj u

w
k |)| ≤ ||R||∞||K||∞E||e(w)− w||∞.

Summing up all terms in (5.23) now leads to the desired result

|Je − Jw| ≤ (nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w)− w||∞||K||∞,

which completes the proof.

Now it is rather straightforward to derive the suboptimality bound. Denote
J∗
e the optimal value of (5.6) and the corresponding minimizer K∗

e , η
∗
e . Denote

also J∗
w the optimal value of (5.18) and the corresponding optimal solution

K∗
w, η∗w. Finally denote Je the cost J under the control policy u = η∗w +

K∗
we(w) and Jw the cost J under the policy u = η∗e +K∗

ew.

Theorem 2. The solution η∗w, K∗
w of (5.18) is not more than

β := 2(nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w)− w||∞
Umax

ε
(5.26)

suboptimal in (5.6).

Proof. It follows from Lemma 3 that

|Je − J∗
w| ≤

β

2
, |Jw − J∗

e | ≤
β

2

since ||K∗
e ||∞ ≤ Umax/ε, ||K∗

w||∞ ≤ Umax/ε because of the constraint on K

and η in both optimization problems:

|ηi|+ ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN

implies ||K||∞ ≤ Umax/ε.
Now since J∗

e ≤ Je and J∗
w ≤ Jw the bound immediately follows

0 ≤ Je − J∗
e ≤ Je − J∗

w + Jw − J∗
e = |Je − J∗

w + Jw − J∗
e | ≤ β,

which completes the proof.

The term E||e(w) − w||∞ in (5.26) can be computed to virtually arbitrary
precision by means of a Monte Carlo simulation. The bound also provides
an intuitively obvious guide to selecting the function e(w) in such a way
that e(w) and w do not differ very much with high probability. For instance
with the choice of e(w) as the elementwise saturation ei(wi) = satr(wi) with
r & 4

√

ρ(Σ) it is highly likely that the bound will be close to zero and,
consequently, the solution to the relaxed problem will be almost optimal in
the original one. Note also that this fairly crude bound can be significantly
improved by terminating one inequality earlier in (5.25) at the cost of a
slightly more complicated expression.
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5.3.3 Receding horizon stability

In this section we provide a slight generalization and a much simplified proof
of a result that already appeared in [10].

Theorem 3. Let uk, wk be two stochastic processes defined on the same

probabilistic space with ||uk||∞ ≤ Umax a.s. and supi,j ||E{wiw
T
j }|| < ∞.

The state of the system xk+1 = Axk + Buk + wk then stays mean-square

bounded (i.e. supk E||xk||
2
2 < ∞) provided that E||x0||

2
2 < ∞ and ρ(A) < 1.

Proof. E||xk||
2
2 = tr(E{xkx

T
k }) and consequently it suffices to show that

E{xkx
T
k } is bounded in any norm because of the norm equivalence on finite

dimensional vector spaces and the fact that tr(·) coincides with the nuclear
norm on the space of positive semidefinite matrices. The proof proceeds by
direct evaluation:

E(xkx
T
k ) = E{(Akx0 + BkUk + CkWk)(A

kx0 + BkUk + CkWk)
T} (5.27)

= AkP0(A
k)T + Ak

E{x0U
T
k }B

T
k + BkE{Ukx

T
0 }(A

k)T

+ BkE{UkU
T
k }B

T
k + BkE{UkW

T
k }C

T
k + CkE{WkU

T
k }B

T
k

+ CkE{WkW
T
k }C

T
k ,

where
Uk = [uT0 , . . . , u

T
k−1]

T , Wk = [wT
0 , . . . , w

T
k−1]

T ,

Bk =
[

Ak−1B, . . . , B
]

, Ck =
[

Ak−1, . . . , I
]

.

The boundedness of the first term is obvious, the boundedness of the second
and third terms follows from the fact that ||E{x0UT

k }||2 ≤ Umax

√

mkE||x0||22
(this follows directly by Jensen’s and Cauchy-Schwarz inequalities). The
boundedness of Bk is obvious by the assumption that ρ(A) < 1, and therefore
the second and third terms actually go to zero. Consider now any ∆ < ∞
bounded family of matrices Mrq, i.e. ||Mrq|| ≤ ∆ for all r, q. For such a
family we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k−1
∑

i=0

k−1
∑

j=0

AiMrqA
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
k−1
∑

i=0

k−1
∑

j=0

||Ai||||Mrq||||A
j|| (5.28)

≤ ∆
k−1
∑

i=0

k−1
∑

j=0

||Ai||||Aj||.

The first term in (5.28) is therefore bounded since the last series is convergent
by the assumption that ρ(A) < 1 (for instance by taking the Jordan form
of the matrices and choosing a suitable norm, e.g. the Frobenius norm).
Here || · || can be any submultiplicative norm. The theorem then follows
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since the last four terms in (5.27) can be casted in the stated form with
r = k − i− 1, q = k − j − 1 and Mrq componentwise bounded (by Cauchy-
Schwarz inequality and the assumptions on uk, wk) and hence || · || bounded
due to the norm equivalence.

Corollary 1. The receding horizon implementation of the control policy de-

fined by solving the optimization problem (5.18) every Nc ≤ N steps and
applying the first Nc control inputs generated by the policy u = η +Ke(w)
renders the state xk mean-square bounded provided that ρ(A) < 1.

Proof. Follows directly from Theorem 3 since the constraints in (5.18) ensure
that the inputs stay bounded.

In the case of ρ(A) = 1 with the deterministic part of the system (5.2) Lya-
punov stable, the sole assumption of bounded control inputs is insufficient,
and another constraint must be embedded into (5.18) in order to ensure the
mean-square boundedness of the state. See [11] for details.

5.4 Numerical examples

We present two numerical examples that compares our method to other con-
trol strategies. With the gradient and Hessian on hand, the problem (5.18)
can be solved by a nonlinear solver with guaranteed convergence because of
convexity or by a general purpose convex solver. For our small scale ex-
amples we managed with the Matlab nonlinear solver implemented in the
fmincon function with the ‘interior-point’ option as well as with a custom
interior-point solver. Nondifferentiability of the objective is not a problem
in our case since the the optimization path and the solution itself lie outside
the nondifferentiable region. If this were not the case, which can happen if
the penalty on control effort is large leading to zero mean and zero variance
of a particular control input, various techniques for nodifferentiable convex
optimization can be employed.
In the first example we consider a fixed horizon stochastic control problem.
For the the system matrices and the noise covariance matrix we chose

A =

[

1 −0.4
0.1 1

]

, B =

[

0.6
0.4

]

, Σ = I ⊗

[

8 5
5 6

]

with wk zero-mean jointly Gaussian. We set Q = I, R = 0.1I, and the
input constraints to Umax = 30. The optimization horizon is T = 12, the
initial state x0 = [1, −1]T . The function e(w) was chosen as suggested
above to be the elementwise saturation that saturates the disturbances to
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4
√

ρ(Σ) = 13.9. We compared our method (with Nc = N = T ) with
the standard certainty equivalent MPC (Nc = 1, N = T ) and with the
shrinking horizon CE-MPC (Nc = 1, N(k) = T − k, k = 0, . . . , T − 1).
Furthermore, we tried out the proposed method with K = 0 against the
certainty equivalent open loop control (i.e. CE-MPC with Nc = N = T ).
For the sake of completeness we tried out our method in the shrinking horizon
mode with Nc = 2, N(k) = T −k as well. The respective objective functions
were evaluated using 2000 Monte Carlo runs. The results are summarized
in Table 5.1, which shows that our method (without shrinking) outperforms
the others by a significant margin except perhaps for SH-MPC where the
difference is smaller and, naturally, our method in the shrinking horizon
regime. On the other hand, unlike with MPC strategies, there is no need for
online optimization with our method in this setting. It is also worth noting
that our method with K = 0 (i.e. an open loop policy) slightly outperforms
the certainty equivalent open loop control, which is in contrast with the
quadratic cost case where this strategy is optimal in the class of open loop
policies. Figure 5.1 shows histograms of the proposed policy and the two
MPC policies. Finally, we evaluate the bound (5.26) which yields β = 0.005
showing that the solution found by (5.18) is in this case basically optimal in
(5.6).

Table 5.1: Comparison of control policies over the optimization horizon T =
12.

Policy SH-(5.18) (5.18) SH-MPC MPC (5.18),K = 0 OL
J 86.8 92.1 98.3 119.2 140.4 143.9

Our second example compares the proposed method with the certainty equiv-
alent MPC in a receding horizon regime. In this example we consider the
respective matrices

A =

[

1 1
−0.5 0

]

, B =

[

0
1

]

, E{wiw
T
j } =

[

8 5
5 6

]

δij

with wk zero-mean Gaussian and independent, where δij denotes the Kro-
necker delta. The weighting matrices were set to Q = I and R = 0.1I,
the input constraints to Umax = 10, and the initial state to x0 = [1, −1]T .
We compared our control policy with N = 12, Nc = 4 against CE-MPC
with N = 12, Nc = 1 in a receding horizon fashion over the simulation time
T = 100. Again, we used the 4-sigma rule to get ε = 13.9. Figure 5.2 shows
the accumulation of the cost over the simulation time, while Figure 5.3 de-
picts the evolution of the state’s 2-norm-square expectation suggesting its
boundedness, which was to be expected since ρ(A) =

√
2/2. 100 Monte
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Carlo runs were used to evaluate the expectations in the costs.

5.5 Conclusion

In spite of the natural requirement of bounded control inputs, surprisingly
little research effort in the field tackles this problem directly in the presence
of unbounded stochastic disturbances.
In this article, we dealt exclusively with the expectation of the 1-norm
stochastic control problem for which we developed an approximate solution
technique ensuring bounded control inputs in the presence of Gaussian distur-
bances. Moreover, we constructed a suboptimality bound of our method in
a certain class of nonlinear disturbance feedback control policies. Finally, we
provided a simple proof of receding horizon stability of the proposed policy,
and demonstrated our results by means of two numerical examples.
Since Gaussian random variables are assumed, it is straightforward to in-
clude individual chance constraints leading to additional second-order-cone
constraints. If joint chance constraints were of interest, it is possible to adopt
the methodology of [5] resulting in a non-convex problem, which can, how-
ever, be solved by simple sequential convex programming, providing promis-
ing results.
Furthermore, the question of the mean-square boundedness of Lyapunov un-
stable systems with the system matrix of spectral radius one remains, at
least to our knowledge, open. Finally, it would be interesting to develop a
tractable way of obtaining a global lower bound on the optimal value of the
infinite horizon 1-norm stochastic control problem using the approach of [21].
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(a) Proposed policy (5.18) in the
shrinking horizon regime with
Nc = 2, N(k) = T − k
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(b) Proposed policy (5.18) with
Nc = N = T
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(c) Shrinking horizon CE-MPC
(Nc = 1, N(k) = T − k)
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Figure 5.1: Histograms of the costs of different control policies over 2000
Monte Carlo runs on the optimization horizon T = 12.
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Figure 5.3: Evolution of E||x||22 under our receding horizon control policy
with N = 12, Nc = 4 and CE-MPC control policy with N = 12, Nc = 1.
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