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1. OPTIMAL AND SUBOPTIMAL DECOUPLING CONTROLLERS

prof. Ing. Vladimir Kucera, DrSc., dr.h.c.

The problem of decoupling a linear system by dynamic compensation into multi-
input multi-output subsystems is studied. The set of all controllers that decouple
and stabilize the system is determined in a parametric form. Optimal and
suboptimal decoupling controllers are then obtained by an appropriate selection
of the parameters.

1.1. Introduction

Consider a linear, time-invariant, differential system that is governed by the
input-output relation

y=5S,u (1)

where u is the g-vector input, y is the p-vector output and S, is the transfer
matrix of the system. It is assumed that S is a proper real rational matrix.

Let py, ..., Pk be given positive integers that satisfy

k
Zizl Pi = p.

System (1) is said to be decoupled, or more specifically (py, ..., px)-decoupled, if
there exist positive integers q, ..., gk satisfying

>0 =1

such that S, has the block diagonal form

where S; is p; X Q.

This is not a generic property of the system, but it can be achieved by a
suitable compensation [2], [3], [5]. To this effect, let z denote the m-vector
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output of the system that is available for measurement and let it be related with
the input by the equation

7 =
Sz u ’ (2)
where S, is a proper real rational matrix.

The most suitable linear, time-invariant, differential controller can then be
described by the equation

UZKVV+KZZ’ (3)

where v is an external reference input of appropriate

v
N
g

Fig. 1.1. Control system

dimension, say r. As it is seen in Fig. 1.1, (3) is a two-degree-of-freedom
controller. We assume that both K, and K, are proper real rational matrices.

The decoupling problem is then to find matrices K, and K, such that the
transfer matrix

-1
T=S,(1-K,S,)"K,

from v to y be suitably block diagonal.

Obviously, unless additional provisions are made, the decoupling problem is
trivial as it could be solved by K, = 0. Thus it is necessary to impose certain
admissibility condition on the decoupling controller in order to make the
problem meaningful, for example

rank T =rank Sy

over R(s), the field of rational functions.
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Another requirement, frequently imposed on the decoupled system in
practice, is that of stability. This requirement means that the states of the system
go to zero from any initial values.

1.2. Decoupling and stability

A stable system gives rise to a proper and stable transfer function. In order to
study stability of the decoupled system it is convenient to express the transfer
matrices in (1), (2), and (3) in the following fractional form

m ) EA ©)

K, K,]=P*[-Q R]’ 0

B
A,
are proper stable rational matrices that are right coprime and

P.[-Q R]

are proper and stable rational matrices that are left coprime.

where

The overall system transfer function then reads
T =C(PA+QB)'R ©8)

Based on the partition (py, ..., Px), Write

, 9)

where C; is a p; X q submatrix.



We suppose that the given system as well as the controller is a jointly
stabilizable and detectable system. Under this assumption, the following
solvability condition is proved in [5].

Theorem 1. Given system (1), (2) in fractional form (6) and partition (9), there
exists an admissible controller (3) such that the overall system is

(i) stable if and only if
A and B are right coprime, (10)

(if)decoupled if and only if
k
Y. rankC; = rank C- 1)

The interpretation of these solvability conditions is as follows. Condition
(10) means that the given system is detectable from the measured output z.
Condition (11) calls for the linear independence of any two outputs of the given
system that belong to different blocks.

1.3. Controller parameterization

When a decoupling and stabilizing controller exists, we shall parameterize the
class of all such controllers using the Youla-Kucera parameterization [3], [8].

Suppose (10) holds. Let P, Q be any proper and stable rational matrix
solution pair of the equation

PA+QB=1 (12)
Then the solution class of (12) is given by
P=P+WB, Q=Q-WA (13)
where Aand Bare left coprime, proper and stable rational matrices such that
A'B=BA! (14)
and W is an arbitrary proper and stable rational matrix parameter.
The class of all stabilizing proper rational K, is then obtained in the form
K,=-PQ=—(P +WB)*@Q -WA)
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where the parameter W is constrained so that the inverse of P +ws exists and is
proper rational.

Denote

r..=rankC,, i=1..,k

Let U; bea p; x p; unimodular proper and stable rational

matrix such that

where the rows of c;are linearly independent over R(s). If (11) holds, then
C
C'=| :
Cy
have linearly independent rows over R(s). Let u'be a g x g unimodular proper
and stable rational matrix such that
D, 0
CU'= ' :
where D;j is a r; % r; diagonal, proper stable rational matrix.

Partition the g < g unimodular matrix u’defined in (15) as

U'= lUr’ Ugr J
where u’has r columns with r defined by
r= Z:‘Zl r

The class of all decoupling proper rational K, is then given by k, =p*rwith P
determined in (13) and



Vl
R=U/

Vil (16)

where V; is an arbitrary non-singular r; % r; proper and stable rational matrix
parameter. The matrices Vi, ..., Vi In turn parameterize the class of achievable
block-diagonal transfer matrices (8) as follows

, P v,

o Rl v i

The parameterization of decoupling stabilizing controllers reveals that
decoupling and stabilization are two independent issues [1], [5].

1.4. Asymptotic tracking

The decoupling constraint can deteriorate system’s performance. The bonus of
having a parameterized solution set is that the lost performance can easily be
controlled by an appropriate choice of the parameters Vy, ..., Vi and W.

Suppose that the control objective is for each block of outputs y; to
asymptotically track the corresponding block of reference inputs v;. Thus
suppose that p; = r; for i = 1, ..., k, i.e., there are as many reference inputs as
controlled outputs in each block. The tracking error for each block is

€& =Vi—Y; :Hivi_

Suppose that the reference input is given by

-1
v, =G, , (18)
where G; is a fixed proper and stable rational matrix and g; is an unspecified
proper and stable rational vector that captures the effect of initial conditions.

Thus (18) defines a class of references with a specified dynamics.



Asymptotic tracking means that

€ = HiGi_lgi
Is a proper and stable rational vector. Thus G; must be absorbed in H;. In view of
(17), H; has the generic form

H.=1-FV,
where F; ;= U; D; and V; are proper and stable rational matrices with F; fixed and
V; an arbitrary parameter to be specified. Therefore, asymptotic tracking is

possible if and only if there exists a proper and stable rational matrix Z;
satisfying

FiVi +ZiGi = I ) (19)
Let v, Z,be any solution pair of equation (19). Then the solution class of

(19) is given by

V, =V, +N,G, Z,=Z,~FN,

where N; is an arbitrary proper and stable rational matrix parameter. Thus, the
set of reference-to-error transfer functions that achieve asymptotic reference
tracking in a decoupled system is

Hi :Z_iGi_FiNiGi. (20)

1.5. Optimal controllers

The benefits of controller parameterization will now be demonstrated in the case
of H, control design [5], [6], [7].

Suppose that for each block, the reference-to-error transfer function H;
parameterized in (20) is to have least H, norm with respect to N;. So as to
achieve this task, determine the inner-outer factorization of F;,

Fi = Fil FiO



where F; is inner and Fjo is outer. Note that G; is outer for typical references
such as steps, ramps, or harmonic signals.

As F; is inner, premultiplication by r,* preserves the H, norm,

[Hil =|FiH | =R Z6, - FonG | (21)

Write
Fil_lz_iGi = Fn—lKi +L

where K;, L; are proper and stable rational matrices with K; strictly proper. Note
that F,*has poles only in Res > 0. Then

[HI* =|FK, + (L~ FoNG)| =[|FiK [ +] L ~ FoN,G/[*because  the

cross terms contribute nothing to the norm. This is a complete square in which
only the second term depends

on N; . Therefore, a unique N; that attains the minimum of the norm for
subsystem i is

1y ol
N; =Fo LG, (22)

provided N; is proper and stable rational matrix.

1.6. Suboptimal controllers

Unfortunately, matrix (22) is generically unstable for typical references due to
the presence of jw-zeros in G;. This impasse can be obviated by sacrificing the
optimality and focusing on suboptimal controllers.

Select proper and stable rational matrices M;, N; so that
Li :Mi +FiONiGi (23)

holds with M; strictly proper and having a small H, norm; in fact, as small as
desired. Then, using (21),

HHiHZ :H Fil_lKiHZ +H MiH2 (24)



and the parameter M; defines a suboptimal controller, for which the resulting
H, norm of H; is only an incremental addition to the unattainable infimum.

1.7. Example

Consider a system defined by (1), (2) with transfer matrices

1 S+2 2s+1 3s
g — s—-1 g —|s+2 s-1}
y _ ! z _
s—-1 5 s—-1 5
S+2 S+2

Thus the measurement output z is different from the output y to be decoupled
In that it involves a non-unity feedback sensor.

The task is to determine a two-degree-of-freedom controller (3) that (1, 1)-
decouples and stabilizes the system.

The first step is to obtain a proper and stable fractional representation (6) for
the system. Standard calculations yield

2s+1 3s
1 0 1 1
A= s—1|B=|S+2 s+2 |c_|s-1 _s-1
0 —— s—1 s—1 2
S+2 2 S+2 S+2
+2 S+ 2

Now apply Theorem 1. Since (10) holds, a stabilizing controller exists. Since
(11) holds as well, also an admissible decoupling controller exists.

All stabilizing and decoupling controllers will be parameterized using the
fractional representation (7). To obtain the feedback part of the controller, we
consider any particular solution of equation (12), for example

1 0
S+2 10

The solution class (13) of equation (12) is
s—1

L 0 S+2 2
P= —25+21 2"V s-p@s+1)  3s
S+ - -
(s+2)° s+2] (25)
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0 0 [ 0 1]
Q{ }—W _572
10 S+ 2 0

where use has been made of (14).

, (26)

To obtain the feedforward part of the controller, note that U; =U, =1 and the
unimodular matrix defined in (15) is

o4 ]

Thus (16) yields

{ 2 —1}{% 0}
R =

The matrices P, Q in (25), (26) and R in (27) define the class of all
controllers that solve the decoupling problem. The parameters V,, V, are free
non-zero proper and stable rational functions and W is permitted to range over

proper and stable rational 2 x 2 matrices so that the inverse of P exists and is
proper.

The decoupled transfer matrices that can be achieved in this example are
given by (17) as

Suppose that the decoupled outputs are to follow any step references and that
the transients are to be optimized in terms of the H, norm. Thus, put

S
G, =6G,=—
. 2 s+1
and solve equation (19) channel by channel. Clearly V; = 1, Z; = 0 is an optimal
solution that yields H; = 0. On the other hand,
s—2 S 6 s—-1

V,=2"%uN, >z, = 3TN
> 541 Zs+1" % s42 s+2 ¢

10



and the inner-outer factorization of

F2::3—1
S+2
IS seen to be
s—-1 s+1
F,=—, F.=——
S )
Then
I:“,12-2(32:3+1 6 S :s+1 2 N 4
s—-1s+2s+1 s-1s+1 s+2
so that
Y
s+1 S+2

and the infimum of |H, | cannot be attained.

To obtain a suboptimal controller, choose

M, = 28’ N2:4—28
S+ ¢& S+ ¢&

with & > 0 arbitrarily small, in order to satisfy (22). Then

S+2S—¢ 2+2¢ 2+2¢ S
2:——’ 22:—’ H2:
s+1s+¢ S+¢& S+¢ S+1

and it follows from (24) that

2

2| =2+2¢

s+1\

25|

2
+
S+¢

LA

Is arbitrarily close to the infimum value of 2

11



It follows from (27) that a suboptimal R is
S+2s—-¢

R = s+ls+¢

1 S+2S—¢
S+1s+¢

and the overall system has the transfer function
1 0
T=ly S -1ls-¢
S+1s+¢
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2. MODELOVANI A FYZIKA BUDOV

Ing. Lukas Ferkl, Ph.D.

V této kapitole se seznamime s problematikou termodynamiky budov, ukaZeme si
zakladni  fyzikalni principy, na kterych budovy funguji, a pripravime si
vychodiska pro identifikaci budov.

2.1. Motivace

Podle dostupnych zdroji spotiebuji budovy celosvétové 20-40 % veSkere
energie, navic v rozvinutych zemich tento podil stoupd o 0,5-5% rocné.
Naptiklad v USA v roce 2010 spotiebovaly budovy 41 % primarni energie
(pramysl 31 % a doprava 28 %). Prestoze se efektivita pouzivanych systémi
vytapéni, ventilace a klimatizace v budovach v poslednich letech vyrazné
zlepsila, stale je zde prostor pro Uspory v oblasti algoritmizace fizeni, jak si
v této kapitole ukazeme.

Se svoji relativné vysokou spotiebou jsou tedy budovy vhodnym objektem
k Gspordm energii. V soucasné dobé se tspory energii v budovach fesi fadou
riznych zplisobil, mezi néz patii naptiklad:

o Zatepleni fasady

» Dobra okna

* SniZeni vnitini teploty

» Alternativni zdroje energie
» Lepsi regulace

Je zfejmé, Ze zatimco prvné uvedené moznosti opravdu snizuji energetickou
naro¢nost budovy, ovSem za cenu vysokych vstupnich nakladi a dlouhé
navratnosti, lepsi regulace ,pouze” lépe vyuzZiva energetické moznosti dané
stavajicim technickym stavem budovy. LepSi regulace tedy neSetii v pravém
slova smyslu, ale zabraruje plytvani.

V soucasnosti se pro regulaci vytapéni (ale 1 chlazeni a klimatizace) pouzivaji
v zasad¢ nasledujici metody:

13



* Termostat
Jednéd se o asi nejstarSi regulaci vibec. Uz pravéky ¢lovék si prosté
piilozil na ohen, kdyZ mu byla zima — moderni nasténné termostaty
S hysterezi, pfipadné ulicimi se algoritmy, jsou pouze pokracovatelem
této tradice. Nicméné termostat funguje velmi spolehlivé, zachovava
zpétnou vazbu od mistnosti, ale nedokaze reagovat na rychlé, dynamickeé
dé¢je dané napiiklad prudkou zménou pocasi.

» Ekvitermni regulace
Na zakladé¢ venkovni teploty nastavuje ekvitermni regulace teplotu topné
vody, ktera pak jde do jednotlivych mistnosti — jednd se tedy o
ptimovazebni regulator. Ekvitermni regulace je velmi robustni, ale
postrada zpétnou vazbu od mistnosti a neni dynamicka.

» Regulace podle referenéni mistnosti (napi. PID)
Zpétnovazebni, dynamicky regulator tidi teplotu topné vody podle teploty
Vv referencéni mistnosti. Postrada vSak informace o pocasi a je citlivy na
lokalni poruchy (napf. na oteviené okno).

» Podminkove fizeni — Rule Based Control (RBC)
Rizeni typu if-then-else je velmi rozsifené zvlasté u velkych budov,
protoZze dokaze zkombinovat Udaje z mnoha senzoru a budovu fidit
komplexné. Navrh takové regulace je nicméné velmi slozity a vyzaduje
velkou inzenyrskou zkuSenost.

« MPC
V poslednich né€kolika letech se experimentuje s prediktivnim
regulatorem, ktery by byl vhodny pro velké budovy, byl by dynamicky,
robustni a bral v avahu predpovédi pocasi.

Obecné feCeno mam dvé moznosti — bud’ zvolim klasickou metody regulace,
nebo se rozhodnu pro sofistikovanou regulaci komplexniho systému. V tom
piipadé vSak musim védét, Ze se mi ndkladna investice do nového ftidiciho
systému s dosazenymi usporami vrati. My budeme piedpokladat, Ze ano, a
v dalSim textu ukézeme, jak moderni regulaci budovy navrhnout.

14



2.2. Koncepce regulace

Systém Zbytek svéta

y Genericka data

Zjednodus"en{ Relevance
Omezeni Neurcitosti

Struktura modelu Data pro identifikaci
Identifikace I‘/

v

Model

v

Prediktor
Vstupy pro optimalizace

» v
Heuristika —
T Rizeni

Obrazek 2.1 Néjaky obrazek, s Cislovanim podle kapitol

Na obrazku vyse je schéma postupu tvorby regulace. Nejprve si musim vymezit
svlj systém a odd¢lit jej od zbytku svéta. Na zakladé své znalosti si pak zvolim
strukturu modelu, spole¢né s naméfenymi daty potom identifikuji nezndmé

parametry a ziskam skutecny model. Ten potom pouZiji jako prediktor, resp.
vstup pro optimalizaci vysledného regulatoru.

Z hlediska fizeni tedy nejprve najdu model systému

y =P(u,x,t) (2.1)
a potom hleddm takoveé optimalni vstupy do systému, které spliuji optimaliza¢ni
pozadavek

Uoptimal = aT'g mlnu](P (u' X, t)! u, t) (22)
2.3. Budova jako systém
V budovée uvazujeme typicky nasledujici fyzikalni déje:
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Ptenos tepla
Tepelna rovnovéha
Tepelna pohoda
Energetickd spotteba
Okrajové podminky

Tyto dé&je si nyni ve strunosti predstavime.

2.3.1.  Prenos tepla

Teplo se S§ifi vedenim, proudénim a zafenim. Na nasledujicim obrazku je
zndzornéno, jak situace pienosl tepla v budové vypada.

', DlouhovInné zareni

Ztraty vedenim,
proudénim,

Akumulace zarenim

~

Tepelné

- S vodivosti,
.- S A |-, prehodové
_______ : Y odpory,

! [ Vnitrni skupenska
| Vytapéni ! isk Yo

1 Vytap ZIsky preména,

Obrazek 2.2 Tepelné prenosy v budové

Je zieymé, ze obrazek je velmi zjednoduSeny — pienosii v budové je celd tada,
nebot’ dochazi k riznym odraziim, ztratam, akumulacim atd.

2.3.2. Tepelna rovnovaha
Tepelnou rovnovahou budovy rozumime v ustaleném stavu stav popsany rovnici

2Q0=0 (2.3)

resp. v dynamickém tvaru

Y0 =C % (2.4)
16



kde 7 je Cas a t je teplota. Situaci si opet mizeme ukazat na nasledujim obrazku.

"‘q = Ul At

\ s q= Uit ventilace
~ — < —— qv = pcV At

g = Uy At

Qu

topeni

people

N
Obrazek 2.3 Tepelna rovnovaha mistnosti

Pro tuto situaci musi platit:

g-Esr + Qpeople + Qv + Qy = X, U;A;At (2.5)
tedy zisky ze slunce, vnitini zisky, ventila¢ni teplo a teplo ze systému vytapéni
se musi rovnat ztratam skrz zdi.

2.3.3. Tepelna pohoda

V soucasnosti je velmi popularni tzv. PMV (Predicted Mean Vote). Vychazi se z
toho, Ze tepelnd pohoda Clovéka zavisi na nékolika riznych vlivech — na teploté
vzduchu, teploté zafeni okolnich pfedméti, relativni vlhkosti vzduchu, rychlosti
proudéni vzduchu v mistnosti, ale také na rychlosti metabolismu ¢lovéka a na
jeho obleCeni. Pro numericky vypocet PMV se pouzivaji velmi sofistikované
rovnice vychazejici z empirickych méfeni na statisticky vyznamném vzorku
populace, nicméné princip PMV je jednoduchy a lze jej ilustrovat nésledujim
obrazkem.
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Permitted

PPD [%]

II' !- T T T T T 1
-3.0+—-20 -1.5 -10 -05 0 0.5 10 15 2.0—3.0

Cold Cool Slightly Neutral, Slightly Warm  Hot
cool optimal PMV warm

Obrazek 2.4 Predicted Mean Vote

Zkratka PPD znamena Predicted Percentage of Dissatisfaction, tj. podil lidi,
ktefi budou v budové nespokojeni s tepelnou pohodou. Je ziejmé, ze 1 kdyz
budova bude odpovidat kategorii PMV=0, bude uvniti stile cca 5 % lidi
nespokojenych. Z hlediska praxe je dilezité, aby PMV lezelo v intervalu <-0,5;
0,5>.

2.3.4. Energeticka spotieba

Energetickou spotiebou se z hlediska termodynamiky rozumi teplo dodané do
budovy, zatimco jako uzivatele nas zajima spise teplo uctované dodavatelem,
ovSem muze naS zajimat 1 primarni energie. Situaci si mizeme znéazornit
nésledujici tabulkou:
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Teplo dodané budové

ucinnost predani tepla

Teplo dodané do otopného systému

ztraty na vedeni

ucinnost fidiciho systému

Teplo dodané budové

ucinnost predavky tepla

ucinnost pomocnych zafizeni
(Cerpadla, ventily, ...)

Energie dodana budové

ztraty distribucni sité

Vyrobena energie

ucinnost vyroby

Primarni energie

Okrajove podminky
Mezi okrajové podminky patii naptiklad:

Venkovni teplota

Slunecni svit

Rozptylena dlouhovinna radiace

Vitr (sila, smér)

Vlhkost vzduchu

Srazky

Zastinéni (stromy, okolnimi budovami)
Orientace (S-J-V-2Z)

Geologické podlozi

atd.

2.4. Prechod k modelovani budovy

Na zakladé znalosti o budové a jeji fyzice mohu nyni pfistoupit k ndvrhu
koncepce modelu. Model bude slouzit jako sou¢ast MPC regulatoru a s ohledem
na tuto skutecnost jej budu navrhovat.

Budu tedy hledat linearni, asov€ invariantni, stochasticky model ve tvaru

x(t+ 1) =Ax(t) + Bu(t) + w(t) (2.6)
y(t) = Cx(t) + Du(t) + v(t)
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Jak jsme vidéli v pfedchozi €asti, fyzikalni principy, na kterych budovy funguyi,
jsou velmi slozité a budovu nelze modelovat ptisné deterministicky. Zatimco do
deterministické ¢asti modelu se budu snazit zaclenit hlavné zdroje tepla, ztraty,
dynamiku stavby, jeji akumulaci a nékteré okrajové podminky (hlavné vliv
slune¢niho zafeni a okolni teploty), do stochastické Casti ponechdm fenomény
jako kolisani obsazenosti budovy, ndhodné déje typu otevirani oken a dvefi,
vnitini regulac¢ni smycky, individudlni geometrii mistnosti apod.

Ke struktufe modelu mohu pftistoupit tfemi riznymi zplisoby.

Bud’ zvolim white-box model, tj. napiSu si vSechny rovnice, které budovu
popisuji, a identifikuji jednotlivé parametry. Tento pfistup je velmi
komplikovany a pro modely pro fizeni se v ptfipadé¢ budov nepouziva. Dalsi
moznosti je pouzit gray-box model, v nasem ptipadé napiiklad ekvivalentni RC
sit’ a identifikovat jeji fiktivni parametry (,.kapacitu® a ,,odpor). Tento ptistup
muze byt velmi Gspesny, ale neni pfedmétem tohoto kurzu. Posledni moZznosti je
black-box model, tj. identifikujeme pomoci statistickych identifikaci parametry
systémovych matic.

Facade

Ca  nner
walls
Lighting K
v5 + uzveg 2
Y2 &
Y5

Obrazek 2.5 Gray-box model — ekvivalentni RC sit

Zvlastnim pripadem identifikace white-box modelu je subspace identifikace,
ktera bude tématem nésledujici kapitoly.
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Posledni, co nam ke spusténi identifikace chybi, jsou identifika¢ni data. Ta lze
ziskat dvojim zpisobem. Bud’ mohu pouzit data, kterd jsou méfend piimo na
budové. Data pro identifikaci vS8ak musi byt dostatecné pestra a majitel budovy
nemusi souhlasit s provadénim ,,identifika¢nich experimenti®. Proto je
alternativou namodelovat budovy ve specializovaném SW (TRNSYS, Energy
Plus apod.). Je vSak tieba upozornit, ze tyto softwary vznikly z pozadavku
stavebnich inZenyri a nejsou primarné ureny pro tvorbu modelt vhodnych
k regulaci. Je mozné je pouzit jako podplrny nastroj, z vEétsi Casti vSak
zlistaneme zavisli na realnych datech.

2.5.  Shrnuti kapitoly

Zavery této kapitoly lze v podstaté shrnout do nésledujicich bodu:

Chceme usetfit energii v budovach pomoci pokrocilé regulace
Regulace bude zaloZzend na modelu budovy

Jako systém je budova velmi komplexni

Jeji model bude mit deterministickou a stochastickou ¢ast
Model miize mit gray-box nebo black-box strukturu

My se v dalSich kapitolach zaméfime na subspace identifikace black-box
struktury modelu

21



Kapitola 3

Subspace |Identification

Ing. Lukas Ferkl, Ph.D.

The family of methods called Subspace State Space Systems I[Dentification
(4SID) are used for the identification of Linear Time Invariant (LTI) state
space models directly from the input-output data. They are an alternative to
the famous Prediction Error Methods (PEM).

Subspace identification algorithms are based on concepts from system theory,
linear algebra and statistics. As the most of the real-life system are multiple
input multiple output (MIMO) system and as 4SID methods provide state
space model of the system, which is probably the most natural expression of
the MIMO systems, the 4SID methods appear to be very suitable candidate
for identification of MIMO systems.

3.1 Motivation, Introduction

Why should anybody use subspace identification? What is it good for? Is it
yet another identification method? Why is it so popular recently? What do
you learn, when you complete this lecture? We will try to answer these and
other questions in the following.

Well, every control engineer knows, that before any actions taken for control
itself, much has to be done. In some methods less, e.g. many “classical” control
concepts such as PID come out from the control of the error (as a difference
between requested and actual values of the manipulated variable), thus the
model of the process is not necessary; on the other hand there are some
modern approaches which heavily depend on the good model of the system,
such as predictive control. Therefore we should realize, that a good dynamic
model at our disposal is oftentimes absolutely crucial for the following control.
And as the system to control become more and more complex, we need a
suitable identification method to handle these ever more difficult to handle
systems. One such a method, or better said a family of methods, which are
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capable of handling the multiple input multiple output (MIMO) systems is
a family of subspace state-space system identification (4SID).

In the following we will try to provide you with information, that should help
you with understanding how the 4SID works, their pros and cons, etc.
First, let us enumerate some characteristics of the subspace identification:

v' numerical algorithm resulting to the estimate of the state space model
using input-output data

v “subspace” expresses the way of obtaining the state sequence: using mathe-
matical tools the state sequence can be recovered from the subspace of
some matrices constructed only from input-output data

v/ minimum required number of parameters: uses does not need to estimate
the system structure (black-box model). The only parameters to set are
size of the block Hankel matrix, and order of the system - which estimate
is provided within the 4SID identification procedure

v" No iterations, which means that there are no problems with convergence
or finding the global optimum.

v" Numerically robust mathematical tools such as SVD or QR

[1 Basic version can not handle cases, where the input is correlated with
output (e.g. closed loop measurements). In these cases the estimate is
heavily biased.

[] Difficult recursive implementation

3.2 Mathematical Tools

Before we start with the description of the tools utilized in 4SID, let us
explain the basic difference in the classical and subspace identification con-
cepts. Let us have a look at Fig. 3.1. In the classical identification concept
one always tries to estimate system matrices directly, or most often interme-
diary via estimation of some coefficients of the chosen polynomials or more
complex functions. Only then, the system states are estimated using Kalman
filtering. In sharp contrast, the 4SID methods forms some matrices using
only measured input-output data, and then, utilizing concepts of algebra
and geometry a state sequence is estimated. Then a problem of classical le-
ast squares is formulated wherein the system matrices stand for unknown
estimated parameters.
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10 sequences

Subspace Classic
State sequence A,B,C,D
* Least squares * Kalman filter
A,B,C,D,K Kalman states

Obrazek 3.1: Comparison between classical and subspace identification methods

A/B s A

> .

A/B B

Obrazek 3.2: Orthogonal projection principle

Let us now turn to the promised mathematical tools. We will explain the
following

e Orthogonal projection of the row space of the matrix A onto the row
space of the matrix B is denoted as A/ B, which is equal to the following

A/B = Ally = ABY(BB™)'B, (3.1)

where T is a Moore-Penrose pseudo-inverse. This means, that the result
lies in the row space of B and has the same number or row vectors as
did A. Then we have an orthogonal projection onto the complement of
the row space of the matrix B denoted as

A/Bt = Allz =1 —1Ip (3.2)

The orthogonal projection is demonstrated at Fig. 3.2, or a a short ani-
mation available at http://www.youtube. com/watch?v=0ABUhoDzMxU&NR=
1. (3.1) and (3.2) mean, that A can be decomposed as a sum of linear
combinations of the rows of B and B*.

e Oblique projection has a bit different interpretation. Instead of decom-
posing A as linear combination of two orthogonal matrices, it can be
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AcB C

Obrazek 3.3: Oblique projection principle

decomposed as a linear combination of non-orthogonal matrices B and
C and of the orthogonal complement of B and C, which can be written
as

B 1
A=A/B+A/C+ Al <C) . (3.3)

For better understanding, please refer to Fig. 3.3.

e Matrix row space is the set of all possible linear combinations of its row
vectors. The dimension of the row space is called the rank of the matrix.
The idea is depicted in Fig. 3.4. Rephrasing the statement in words of
math, when A is m x n matrix, with ry ...r,, rows, the set of all possible
linear combinations, i.e. c1ry + corg + ... CpTyy 1s called a row space of
the matrix.

(1 8 13 12]]
(14 11 2 7)
(4 5 16 9)
(15 10 3 6)

Obrazek 3.4: Matrix row space [1]

e Hankel matrix is a square matrix with constant skew-diagonals. In the
context of 45ID algorithm, where the Hankel matrix is constructed using
input-output data, the interpretation is quite straightforward. Each co-
lumn is only a time shift of the previous one.

e SVD decomposition or the singular value decomposition is a factorization
of a real or complex matrix, where a m X n real or complex matrix X is
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decomposed intro three matrices as depicted in Fig. 3.5. Uis an m X m
real or complex unitary matrix, S is an m x n diagonal matrix with
nonnegative real numbers on the diagonal (singular values), and V* (the
conjugate transpose of V) is an n X n real or complex unitary matrix.
The m columns of U and the n columns of V' are called the left and
right singular vectors of X, respectively. The SVD is utilized in solving
of many such as pseudoinverse, least squares, determining the rank, etc.

X=USr"

Singular
Value ; a’'

= -
U h’ﬂ

<

Obrazek 3.5: Principle of SVD

QR decomposition is a decomposition of a matrix A into a product A =
Q R, where matrix () is orthogonal and matrix R is an upper triangular.
One of the most often problems solved by QR decomposition is linear
least squares (LS)problem. If A has n linearly independent columns, then
the first n columns of () form an orthonormal basis for the column space
of A. In general we can write

A=QR=Q <}31) = (Q1 Q2) (%) = Q1 1y, (3.4)

with Ry being upper triangular n x n matrix, (J; being m X n (same as

b

Obrézek 3.6: Principle of QR

the original size of A).

| =
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3.3 Identification Procedure

3.3.1 Problem Statement

The objective of the subspace algorithm is to find a linear, time invariant,
discrete time model in an innovative form

x(k+1) = Ax(k)+ Bu(k) + Ke(k)
y(k) = Cuz(k)+ Du(k) + e(k), (3.5)
based on given measurements of the input u(k) € R™ and the output y(k) €
R! generated by an unknown stochastic system of order n, which is equivalent

to the well-known stochastic model as defined in e.g. [3, 2]. Loosely speaking,

the objective of the algorithm is to determine the system order n and to find
the matrices A, B, C, D and K.

3.3.2 Algorithm

The entry point to the algorithm are input-output equations as follows:
d d
Y, = X, + HU,+Y)
Yy = DiX¢+ HIU; + Y7}
X§ = AXJ+ AU, (3.6)
where Y}, and Y} are the Hankel matrices of past and future outputs, U, and
Uy are the Hankel matrices of past and future inputs, Xg and XJ‘Z are the

deterministic Kalman state sequences, Y’ and Y} are the stochastic Hankel
matrices of past and future outputs, H¢ is the lower block triangular Toeplitz
matrix for the deterministic subsystem (which contains system matrices),
['; is the extended system observability matrix (which contains matrices A
and C) and A? is the deterministic reversed extended controllability matrix
(which contains matrices A and B). Detailed construction of state matrices
can is provided later in the text. It is quite straightforward that following

holds:
Xi—i—l _|A B X Pw
[Ym}_[CD”Um]Jr[Pv] (37)

)AQ denotes estimate of state sequence, p,, and p, are Kalman filter residuals.
State sequence estimates are determined as follows:

X; = I7[3— HUj]
X = T [300 - B, U7 (3.8)
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with 3; and 3,41 defined as oblique projections (see e.g. [4])

i = Yf/Wp
Uy
Uy

where W), is a lumped data matrix containing U, and Y),. Solving (3.7) using
least squares methods, we get the state space system description of the sys-
tem, namely the system in the innovation form (3.5).

Finally, given the estimates of the system matrices A, B, C, D the Kal-
man gain matrix K can be computed. If an estimate of a state sequence
X is known, the problem can be solved by computing the Algebraic Riccati
Equation (ARE) in which the covariance matrices are determined from the
residuals as follows:

MEESREHIEE 3.10
where
[gg}z%qvx””ﬂ VT])- (3.11)

3.3.3 Matrices Used in Subspace Algorithm

Notation and building-up of the matrices as follows further on were adopted
as in |4]. Upper index d and s denotes deterministic and stochastic subsys-
tems, respectively.

Data Matrices

Input block Hankel matrix is built-up from input data as follows:

/ U U1 U2 s Uj—1 \

U()|2i—1 I I T e D . (3.12>
Ui Uip1 Uig2 - Uipj-1
\U2i—1 U2;  U2i+1 " U2i—|—j—2/
Input and output Hankel matrices can be grouped as follows:
U, Uy

w,=(-2) , Wwr=(-2L], 3.13
=) W% 019
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where Up;—1 = U, and Ujp;—y = Uy with U, and Uy denoting the past and
future inputs, respectively. The same logic holds for outputs y(k) and noise
e(k). Change of indices results in Uy; = US and Ui qppi—1 = U, , respectively.

System Related Matrices

Extended (i > n) observability (I';) and reversed extended controllability
(A;) matrices for deterministic and stochastic subsystems, respectively are
defined as follows:

I,=(CT (CAT ... (CAHYT )" (3.14)
Al = (A'B A2B ... AB B) (3.15)
Al =(AT'K AT?K ... AK K) (3.16)

The lower block triangular Toeplitz matrix for deterministic and stochastic
subsystem, respectively are defined as

D 0 00

CB D ... 0
H = _ _ R I (3.17)

\CA":”B CA;—3B D )

( I 0 0\
CK I .0

(3.18)

\OAZ':—ZK CAZ':‘?’K 1 /
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Chapter 4

Predictive Control for Buildings

Ing. Jiri Cigler

4.1 Introduction

4.1.1 Motivation

In recent years, there has been a growing concern to achieve energy savings.
This has been demonstrated by the governments of many developed coun-
tries. For instance, the European Union (EU) presented targets concerning
energy cuts defining goals until 2020 [47]: ¢) Reduction in EU greenhouse
gas emissions at least 20 % below the 1990 levels, i) 20 % of EU energy con-
sumption to come from renewable resources, 4ii) 20 % reduction in primary
energy use compared to projected levels to be achieved by improving energy
efficiency. The similar goals, in some cases even more restrictive, have been
stated by the U.S. government with minor differences on the level of each
state [6].

As the buildings account for about 40 % of total final energy consumption
[33] and more than half is consumed in HVAC (Heating, Ventilation and Air
Conditioning) systems, an efficient building climate control can significantly
contribute to reduction of the power demands and lower thus the greenhouse
gas emissions.

In addition, for instance in the U.S., there are about one to 2 million buildings
being newly constructed every year. However, there are approximately 110
million existing buildings consuming much more energy per se than new
buildings constructed according to current standards. Even when each of the
new buildings would use net-zero-energy technology, it will take a long time
to achieve significant difference on the overall energy bill [37]. Therefore, a
much more productive approach for achieving the strict energy cuts would
be to focus on the retrofitting of the existing buildings or by improvements
of Building Automation Systems (BAS) and their algorithms that can be
achieved with minimal additional cost. In this paper, we restrict ourselves
only to improvements in BAS algorithms. The effort to implement advanced
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control algorithms in buildings has been shown by the activity of the leading
academic and industrial teams in the area of HVAC control [8, 21, 43, 22, 11].

4.1.2 State-of-the-art in advanced control of HVAC
systems

Recently, there have emerged two main research trends in the field of ad-
vanced HVAC control i) learning based approaches like artificial inteligence;
neural networks; fuzzy and adaptive fuzzy neural networks etc. i) Model
based Predictive Control (MPC) techniques that stand on the principles of
the classical control.

The approaches from the former group are used in HVAC systems for their
capability in dealing with nonlinearities as well as their capabilities to han-
dle Multi-Input Multi-Output (MIMO) systems. These approaches can be
for instance used to cut down the time needed for tuning the supervisory
controller [45], to control cooling system with several types of cooling strate-
gies [42] or to optimize occupants’ thermal comfort making use of ventilation
control [11].

The latter technique can handle MIMO systems from its very nature and usu-
ally relies on the physically based mathematical model of the HVAC system
and building dynamics. The aim of MPC is to design control inputs that min-
imize the energy consumption while guaranteeing that comfort requirements
are met. A comprehensive and up-to-date overview of the literature related
to the predictive control of buildings can be found on the website of the
OptiControl project (www.opticontrol.ethz.ch). From the wide variety
of results, a few instances can be listed. The controller 7) takes disturbance
predictions (occupancy, weather etc.) into account, thus it adjusts control
actions appropriately [46, 30], i7) can utilize the thermal mass of a building
in a better way compared to the conventional control strategies (e.g PID,
weather compensated or rule based control) [4, 3|, 74) is able to deal with
variable energy price that can be easily included into the formulation of the
optimization problem |2, 23], 7v) can handle minimization of the energy peaks
and thus shift energy loads within certain time frame |21, 41, 14, 31| (benefi-
cial because of both the possibility of tariff selection and lowering operational
costs), v) can take into account stochastic properties of random disturbance
variables (e.g. weather forecast, occupancy profiles); convex approximation
of a stochastic model predictive control problem for buildings is given in [32],
vi) can be formulated in a distributed manner and thus the computational
load can be split among several solvers [44, 27, 17]. There have also been
reported some experimental setups of MPC which have shown the energy
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savings potential [21, 46, 24, 35|(15-30 % compared to conventional control
strategies).

The increased popularity of MPC usage for building control in recent years
is indisputable, however, most of the results are based on the simulations or
short time experiments. In this manuscript, we provide a detailed description
of an MPC implementation on a real building and we analyze results from
two months of operation.

The text is further organized as follows. The predictive control strategy is
presented in Section 4.2. Section 4.3 is devoted to modeling. Case-study is
discussed in Section 4.4. Finally, the text is concluded by Section 4.5 .

4.2 Model predictive control

The Building Automation System (BAS) aims at controlling heating, cooling,
ventilation, blind positioning, and electric lighting, of a building such that
the temperature, CO9 and luminance levels in rooms or building zones stay
within the desired comfort ranges. One typically divides the control hierarchy
into two levels: the low-level controller which typically operates at the room-
level and is used to track a specified setpoint, and a high-level controller
which is done for the whole building and determines the setpoints for the
low-level controllers. The article focuses on the usage of Model Predictive
Control (MPC), which is used as high-level controller.

4.2.1 MPC strategy

MPC is a method for constrained control which originated in the late seven-
ties and early eighties in the process industries (oil refineries, chemical plants,
etc.) (see e.g. [39, 34, 40, 16]). MPC is not a single strategy, but a class of
control methods with the model of the process explicitly expressed in order to
obtain a control signal by minimizing an objective function subject to some
constraints. In building control one would aim at optimizing the energy use
or cost subject to comfort constraints.

MPC is a very simple and satisfyingly intuitive approach to constrained con-
trol. During each sampling interval, a finite horizon optimal control problem
is formulated and solved over a finite future window. The result is a trajectory
of inputs and states into the future satisfying the dynamics and constraints
of the building while optimizing some given criteria. In terms of building
control, this means that at the current point in time, a heating/cooling etc.
plan is formulated for the next several hours to days, based on predictions
of the upcoming weather conditions. Predictions of any other disturbances
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(e.g., internal gains), time-dependencies of the control costs (e.g., dynamic
electricity prices), or of the constraints (e.g., thermal comfort range) can be
readily included in the optimization.

The first step of the control plan is applied to the building, setting all the
heating, cooling and ventilation elements, then the process moves one step
forward and the procedure is repeated at the next time instant. This receding
horizon approach is what introduces feedback into the system, since the new
optimal control problem solved at the beginning of the next time interval
will be a function of the new state at that point in time and hence of any
disturbances that have acted on the building.

-

/” Time varying design parameters', MPC controller Weather Occu\pancy

| Building

[ | ™
1 . 1 . & =
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Figure 4.1: Basic principle of Model Predictive Control for Buildings.

Fig. 4.1 summarizes the basic MPC control scheme. As time-varying design
parameters, the energy price, the comfort criteria, as well as predictions of
the weather and occupancy are input to the MPC controller. One can see
that the modeling and design effort consist of specifying a dynamic model
of the building, as well as constraints of the control problem and a cost
function that encapsulates the desired behavior. In each sampling interval,
these components are combined and converted into an optimization problem
depending on the MPC framework chosen. A generic framework is given by
the following finite-horizon optimization problem:

Problem 1:

N-1
min (g, ug) Cost function (4.1)

UQy--yUN—1 =0

subject to

g = T Current state (4.2)
Tp1 = f(og, ug) Dynamics (4.3)
(xp,ug) € X x Uy Constraints (4.4)

where zp € R" is the state, up € R™ is the control input, & is the time step,
X and U; denote the constraints sets of the state and inputs respectively
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and are explained below. We now detail each of the four components in
the above MPC formulation and discuss how they affect the system and the
resulting optimization problem. Please note that this is not a comprehensive
overview of MPC formulations, but rather a collection of formulations, which
are frequently used or reasonable in the field of building control. For a more
comprehensive overview on MPC formulations, the reader is referred e.g. to

[25].

Cost function

The cost function generally describes stability and performance targets. The
cost is generally, but not always, used to specify a preference for one behavior
over another, e.g., minimum energy or maximum comfort.

Generally, the main goal is to minimize energy cost while respecting comfort
constraints, which can be formalized by the following cost function:

Le(zr, ur) = (ke — Yrk) Qr(yr — Yrk) + Riup, (4.5)

where ) and Ry, are time varying matrices of appropriate size and vy, j
the reference signal at time k. The trade-off between precision of reference
tracking and energy consumption is expressed by proportion of the matrices
Q@ and Rjy. The reference tracking is expressed as a quadratic form because
it significantly penalizes larger deviations from the reference. The energy bill
is usually an affine function of a total amount of consumed energy. Therefore,
the control cost is weighted linearly.

Current state

The system model is initialized to the measured/estimated current state of
the building and all future (control) predictions begin from this initial state
x. Depending on what the state of the building is describing, it might not be
possible to measure everything directly. In this case, a Kalman filter can be
used to estimate the current state of the building and the estimate is used
as initial state.

Dynamics

The controller model, i.e. the mathematical description of the building dy-
namics is a critical piece of the MPC controller. For the work presented in
this paper we restrict ourselves to linear dynamics. This is the most common
model type and the only one that will result in a convex and easily solvable
optimization problem.
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Constraints

The ability to specify constraints in the MPC formulation and to have the
optimization routine handle them directly is the key strength of the MPC
approach. There can be constraints on the states or the output, as well as
on the input. When explaining different forms of constraints in the following
we will do it for input constraints only, but everything applies for state and
output constraints alike. Linear constraints are the most common type of
constraint, which are used to place upper/lower bounds on system variables

Umin,k < Ug < Umazx,k» (46>
or generally formulated as

The constraints can be constant, given by physical or logical limitations. For
instance, valve cannot be open more that 100% or temperature of heating
water cannot exceed some predefined level. The constraints can be also time-
varying, e.g. to account for different comfort constraints during day-time
and night-time. In general case, the constraints can be a function of state
variables or inputs.. This class of constraints can also be used to approximate
any convex constraint to an arbitrary degree of accuracy. Linear constraints
also result in the simplest optimization problems. Furthermore, one might
want to constrain the rate of change, which is done by imposing a constraint
of the form

lup — up—1| < A (4.8)

Umazx *

4.2.2 Optimal control formulations for buildings

In the following discussion we restrict ourselves on the deterministic central-
ized MPC formulations because such formulations are the most widely used
one in practice and moreover stochastic or distributed MPC would only bring
some additional complexity.

We also assume that models of the buildings are linear time invariant (LTT)
and that they have heat fluxes as the system inputs while the zone temper-
atures are system outputs. The models have following form:

Try1 = Azxp + Buy + Vg, (4.9)
yr = Cxy, + Duy, + W (4.10)

v € R? is a vector of disturbances, y, € RP is a vector of system outputs.
Matrices A, B, C, D, V, W are so called system matrices and are of appropri-
ate dimensions.
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We will start from the formulations that have appeared in the literature.
Pros and cons for each of the formulation will be given. Each formulation
eliminates some drawbacks of the previous one and the last one is hopefully
the most suitable formulation for buildings (both from the point of view of
the quantities being optimized and practical viewpoint).

Minimization of delivered energy and satisfaction of the constraints

This formulation was reported by [10]. The cost function contains only a
term standing for the minimization of the delivered energy while the thermal
comfort is guaranteed by means of hard constraints on the system outputs,
l.e. zone temperatures.

N,—1
muin Z | Riul
k=0
subject to:
Frap + Grup < h
Tpy1 = Axp + Bup + Vo, k= 1...Ny
yr = Cxp + Dup + W, k= 1...Ny

Ty = Tinit
r, <y < Ty /43:1...Ny

F}., G, hj, define time varying polytopic constraints on system inputs and
states, while r;, and 7 stand for the time varying reference trajectory for the
system outputs. Initial state x;,; is a parameter of the optimization and is
provided by means of Kalman filter or full state measurement at each control
timestep.

Although the presented control strategy was presented as a new control strat-
eqy suitable for MPC' for buildings, such a optimal control problem formu-
lation cannot be used in the practice. At least from the one reason: if the
initial state implies any comfort violation then such an optimization prob-
lem will be infeasible and the controller cannot work anymore. Feasibility
issues are usually handled with the aid of so called slack variables on system
states and system outputs. Hard constraints are imposed only on the system
inputs, i.e. decision variables. More details on this topic are given in the
following subsection.
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Trade-off between energy consumption and comfort violations

Slack variables are additional decision variables that are being weighted only
in situations when some quantity, which the slack variable is imposed on,
reaches certain bound. They are usefull especially in situations when the
objective is to keep system outputs within a certain range — only violation
of the range is penalized.

Ny—1

N,—1
mgn Z | Ripukl, + Z Qi(yr — 21) |5
k=0 k=0

subject to:
Frap + Grup < h
Try1 = Axp + Bup + Vg kZl...Ny
yr = Cxp + Dup + Wy ]43:1...Ny

Lo = Linit
r, < z2p ST k=1...Ny

In this optimal control problem setup z, € RP? is the slack variable on the
zone temperature.

The advantages of such a formulation has already been discussed, however,
one norm weighting the system inputs belong among the biggest disadvan-
tages. As it is well known, the solution of a linear program lies in some of
the vertex of the polytopic constraints. If the constraints are not very tight
the control results into either idle (no energy is delivered) or deadbeat con-
trol (maximum value of the energy is supplied). This behavior causes issues
especially in closed loop performance. If there is some model mismatch, then
the control actions might result in a very oscillatory behavior. Unpleasant
oscilations can be suppressed by introducing hard constraints on the maxi-
mum rate of change of the input signals. But what if, accidentally, there is
a strong need to heat up the building and to use the maximum capacity of
the heating system immediately? Therefore soft constraints on the rate of
change are chosen. Details are given in the following subsection.
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Practical aspects motivated formulation

The formulation with the soft constraints on the maximum rate of change of
the input signal is as follows:

N,—1 Ny—1
mgn Z <|Rkuk]1 + 0 Jup — up—1 — pk@) + Z |Qk(yr — 2[5
k=0 k=0

subject to:

Frxr 4+ Grue < hy,
Tpy1 = Az + Buy + Vv, k=1...N,
yr = Cxyp + Dug + Wy kZl...Ny
U1 = Ulgst
Lo = Linit
r, <z, <7, k=1...N,
Au<p,<Au k=1...N,

Au, Ay are minimum/maximum values allowed for the input change not
to be penalized, whilst ;. is the system input from the previous control
timestep.

4.3 Modeling

Modeling of the building requires insight both into control engineering as well
as into HVAC engineering. Moreover, it is also the most time demanding part
of designing the MPC setup.

Three approaches to building modeling are outlined in this section. Two
of them come from so-called RC modeling, the other one is purely black
box technique called Subspace identification method. The aim is to provide
insight into these techniques with emphasis on their applicability for MPC.
Largely used computer aided modeling tools (e.g. TRNSYS, EnergyPlus,
ESP-r etc.) are not considered here, as they result in complex models which
cannot be readily used for control purposes.

When large measurement data sets are available, a purely statistical approach
for creation of a building model is preferred. A large number of System
Identification methods exists (a survey is listed in e.g. [20]), however, only a
few of them have the capability of identification of multiple-input multiple-
output (MIMO) systems, which are considered in case of building control. For
identification of linear MIMO models, subspace identification methods are
often used |20, 49, 48] and have been suggested for identification of building
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models as in [36].

Alternatively to the statistical approach, especially if there is a lack of data
or some knowledge of building physics is present, the RC modeling can be
used.

4.3.1 RC modeling

The principle of the thermal dynamics modeling can easily be described by
a small example as given in Fig. 4.2. The room can be thought of as a
network of first-order systems, where the nodes are the system states and
these represent the room temperature or the temperatures in the walls, floor
or ceiling. Then the heat transfer rate is given by

d@)

5, :Kie' 196_/l9i

o ( )
dQ dv; (4.11)
d'&z : dt —Kze'(/ﬁe_ﬁz)a
~~~

Ci
where t denotes the time, 1¥; and ¥, are the temperatures in nodes 7 and e

respectively, () is thermal energy, and C; denotes the thermal capacitance of

node ¢. The total heat transmission coefficient K. is computed as
1 1 1

K. KK

where the heat transmission coefficients K; and K, depend on the materials

of 7 and e as well as on the cross sectional area of the heat transmission.

For each node, i.e. state, such a differential equation as in Eq. (4.11) is

formulated. The actuators are direct inputs to the node, which means that

their input is added. The modeling of illumination and COy concentration

is omitted here for brevity, for more details on RC modeling see [9].

The model parameters (e.g. Kj. or C; in Eq. (4.11)) can be determined in

two ways: by reading from construction plans or by statistical estimation,

which is described in the next sections.

(4.12)

Construction plan

Thermal capacities, resistances and other unknown parameters are deter-
mined from the construction plan according to the materials used and their
tabular values. Simulations of the acquired model are then required to vali-
date the model accuracy. If the model does not correspond to the measured
data, parameter adjustment is necessary.
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Figure 4.2: RC modeling is based on the description of heat transmission between nodes that are repre-
senting temperatures. The figure captures example with two rooms where, ¥, and Jgo are the temper-
atures in the room R1 and R2, respectively, ¥ is the outside temperature, Jsy is the temperature of
the supply water used for floor heating, C'r; denotes the thermal capacity of the room R1. Resistances
are representing the thermal resistances between the nodes.

Statistical estimation

Having described the physics of the building by a set of differential equa-
tions, the estimation problem is formulated in the continuous time. Most of
the mathematical tools, however, work with the discrete-time counterparts,
therefore the original continuous-time problem must be reformulated to the
discrete world, e.g. as

22
A=cdls = [+ AT, + ==

+...~ T+ AT,
T, T,

B = / e dr ~ / IdrB. = T, B.,
0 0

where A., B. and A, B are model matrices of continuous- and discrete-time
models, respectively. T stands for sampling time. This corresponds to the
Euler’s discretization, thus can be applied for non-linear systems as well.
Then the state equation can be written as

XN =AXY '+ BUN T+ BV = (4.13)

N-1
1[4 5] {)52“] e

with N + 1 being the number of samples and

Xo' = [2(0), 2(1), ..., x(N-1)],
Uyt = [u0), u(l), ..., u(N-1)],
EY 1 =e(0), e(1), ..., e(N —1)]



For standard optimization using OLS, Eq. (4.13) is rewritten as
XN—l T
vec X = ([ O ] ® In) vec [A B] + vecE) ! (4.14)

with I,, being n x n identity matrix, n represents system order, (vec e) is
vectorization of a matrix and (e @ e) is a Kronecker product. Extra lines for
the structure preservation of A and B as well as other required constraints
can be added into the regressor matrix and left-hand side matrix. Then, the
unknown parameters are estimated using weighted least squares technique.

4.3.2 Subspace identification algorithm

One of the most powerful contributors to the quality of the predictive control
is a well identified model. There are several completely different approaches
to the system identification including physical modeling (e.g. computational
fluid dynamics (CFD) modeling [28]) or statistical identification. As tradi-
tional methods are, for buildings, rather time consuming, and do not posses
the capability of proper handling of MIMO systems, we have turned towards
statistical identification methods, and more specifically, towards subspace
methods [20, 49, 13].

The objective of the subspace algorithm is to find a linear, time invariant,
discrete time model in an innovation form

Tre1 = Axp+ Buip + Keg
yr = Cuxp+ Dug + ey, (415)

where A, B, C, and D are system matrices, K is Kalman gain — derived
from the Algebraic Riccati Equation (ARE) ([15]), and e is a white noise
sequence. This model is equivalent to the well-known stochastic model as
defined in e.g. [18, 12]. The objective of the algorithm is to determine the
system order n and to find the system as well as state and measurement
noise covariance matrices given the sequence of input u(k) and output y(k)
measurements.

The main difference between classical and subspace identification is, given
the input and output data, as follows:

e Classical approach. Find the system matrices, then estimate the sys-
tem states, which often leads to high order models that have to be re-
duced thereafter.

e Subspace approach. Use orthogonal and oblique projections to find
Kalman state sequence (see [15]), then obtain the system matrices using
least squares method.
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The entry point to the algorithm are input-output equations as follows:
Y, = )X+ HU,+ Y}
Yy = DiX§+ HiUs+ Y7}
X§ = AX!+ AU, (4.16)

where Y), and Y} are the Hankel matrices of past and future outputs, U, and
Us are the Hankel matrices of past and future inputs, Xg and X}l are the
deterministic Kalman state sequences, Y7 and Y7 are the stochastic Hankel
matrices of past and future outputs, H¢ is the lower block triangular Toeplitz
matrix for the deterministic subsystem (which contains system matrices),
I['; is the extended system observability matrix (which contains matrices A
and C') and A? is the deterministic reversed extended controllability matrix
(which contains matrices A and B). Detailed construction of state matrices
can be found in |20, 49]. It is quite straightforward that following holds:

Xz‘ﬂ A B X@' Puw
— 4.17
[ Yii ] [ ¢ D A - Pv ( )
X, denotes estimate of state sequence, p,, and p, are Kalman filter residuals.
State sequence estimates are determined as follows:

A~

Xi = T} [3 - H{Uy]

X = FZT—1 [3i+1 - Hid+1Uf_} ; (4.18)
with 3; and 3,41 defined as oblique projections ([49])
3i = Y /W,
Uy
3 = Y, /W) (4.19)
Uy

Solving Eq. (4.17) using least squares methods, we get the state space sys-
tem description of the system, namely the system in the innovation form
(Eq. (4.15)).

The essential condition for optimal filter run is knowledge of the noise covari-
ance matrices Q and R (state and measurement noise covariance matrices?).
These two matrices are used for calculation of Kalman gain K. In early 70s’
Mehra’s publications on covariance matrices estimation were published [26].
Then, for a large period, the estimation of covariance matrices was largely
overviewed and only in 2006 Odelson’s article [29] was published that offered

1S can be considered zero, because any non-zero S can be easily transformed to zero
matrix [19]
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Table 4.1: Comparison of the identification/modeling approaches.

Building RC modeling RC modeling Statistical
simulation - tabular — statistical Identifica-
software data driven estimation tion
modeling

Planing data from architects and  yes yes no no

engineers need

Operation data need no no yes yes

HVAC engineering background yes yes no no

needed

Result is achieved in defined time  yes yes no no

Use of prior information about yes yes yes no

building

Continuous model update no no yes no

MPC applicable no yes yes yes

Figure 4.3: The building of the Czech Technical University in Prague that was used for MPC application

a new method for () and R estimation called Autocovariance Least-Squares
(ALS) technique (|29]). A few more modifications of this method can be
found in [38, 1]. Kalman gain matrix K is computed in a standard way using
state and noise covariance matrices computed using ALS as described in [29].

4.3.3 Comparison of the identification approaches

Finally, Table 4.1 summarizes the MPC applicability of above mentioned
approaches.

4.4 Case study

The presented MPC scheme of Problem 1 was applied to the building heating
system of the Czech Technical University (CTU) in Prague, see Fig. 4.3.
MPC was applied there from January 2010 and was operational until the
end of heating season in mid-March 2010.
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Figure 4.4: Simplified scheme of the ceiling radiant heating system

4.4.1 Description of the building

The building of the CTU uses Crittall [5] type ceiling radiant heating and
cooling system. In this system, the heating (or cooling) beams are embedded
into the concrete ceiling. A simplified scheme of the ceiling radiant heating
system is illustrated in Fig. 4.4. The source of heat is a vapor-liquid heat
exchanger, which supplies the heating water to the water container. A mixing
occurs here, and the water is supplied to the respective heating circuits. An
accurate temperature control of the heating water for respective circuits is
achieved by a three-port valve with a servo drive. The heating water is then
supplied to the respective ceiling beams. There is one measurement point
in a reference room for every circuit. The set-point of the control valve is
therefore the control variable for the ceiling radiant heating system in each
circuit.

Modeling of the building block

The ceiling radiant heating system was modeled by a discrete-time linear
time invariant stochastic model. We can consider this model as a Kalman
filter giving an estimates of the state and the output denoted as z; and .

Outside temperature prediction? and heating water temperatures were used
as the model inputs. The prediction of outside temperature is composed of
two values, T},.: and T},;,, defining a confidence interval. The outputs of
the model are estimates of the inside temperature T, and the temperature

2Acquired from National Oceanic and Atmospheric Administration (NOAA),
http:/ /www.noaa.gov

45



of the return water® T, w- This can be formalized as

Toin, e
Tr1=Az,+ B Tmaw,k + Key,
Thw i
T_ L Tmin,k
[ Tm’ ] =Cz.+ D Tmax,k , (420)
rw,k Thw,k

where T}, is a temperature of the heating water and T;,, denotes the inside
temperature, e, = yr — C2), — Duy, with y; denoting real output (comprises
temperature of the room and temperature of the return water) and xj, denot-
ing system state. System matrices A, B, C and D are to be identified using
subspace methods. The state Z; has no physical interpretation, when identi-
fied by means of the subspace identification. System order is determined by
the identification algorithm as well. Modeling of the heating system of the
CTU building is discussed in detail in |7].

4.4.2 Control objectives

There are several requirements to be fulfilled:

Reference tracking

The reference trajectory v, x, room temperature in our case, is known prior,
as a schedule. The major advantage of MPC is the ability of computing the
outputs and corresponding input signals in advance, that is, it is possible
to avoid sudden changes in control signal and undesired effects of delays in
system response.

Our aim of the control is that the room temperature should adhere the upper
desired value from its beginning to its end, whilst the lower reference level
is not important until the room temperature approaches significantly to it.
Then the lower level should be tracked too. This behavior will be achieved
by means of slack variables on the system outputs, i.e. zone temperatures.

Minimization of energy consumption

As the return water circulates in the heating system (see Fig. 4.4), energy
consumed by the heating-up of the building is linearly depended on the pos-

31t is crucial to model return water as an output because it gives a significant informa-
tion about energy accumulated in the building, moreover it represents the interconnection
between heating water and room temperature. Omitting the return water would lead to
significant lost of information.
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itive difference between heating T}, and return water 7}, temperatures en-
tering/exiting the three port valve in Fig. 4.4. Thus, the 1-norm of weighted
inputs is to be minimized.

It is worthy to note, that the deterministic formulation of MPC was used,
although the model given by subspace identification algorithm was stochastic.
Since the noise ey in Eq. (4.15) is supposed to be zero mean, one can take
only deterministic part of the model defined by Eq. (4.15) for computation
of optimal system input.

4.4.3 MPC problem formulation

At first, the deterministic part of the given system from Section 4.3.2 is
partitioned as follows:

Tyl = Axp + Buyg
y1r = Cixg + Dyuyy
Yo = Chxyp + Douy,

where y; ; stands for outputs with reference signal (e.g. Tj,x), whilst yo
represents the input-output differences — in our case ya 1, = Thw i — Lrw k-

The requirements (see Section 4.4.2) for the weighting of the particular vari-
ables can be carried out by adding slack variables a(k) € dimy; and
bi € dimys . The resulting optimization problem can be written as follows:

N-1
J = min Qa5 + [|Qabell:
i, u P
Yk — Y —ar < 0, a>0
Yo — b, < 0, b>0 (4.21)
Umin S Uk S Umax
lup —up—1] < Ay,
k—1
Yk = ClAkilxo + Z ClAkizilBui + Dyuy
1=0
k—1
Y21 = CQAk_IZU() + Z CQAk_Z_lBuZ‘ + Douy..
=0

)1 and ()9 stand for weighting matrices of appropriate dimension, t,,;, and
Umar Tepresent lower and upper bounds of the input signals and A, is
maximum rate of change of the input signal.

Eq. (4.21) can be readily rewritten into quadratic programming (QP) prob-
lem and solved using any QP solver.
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Figure 4.5: Different control strategies: comparison of weather-compensated (WC) and predictive control
(MPC) of heating water temperature and the room temperature controlled by MPC.

4.4.4 Results

Two nearly identical blocks of the CTU building were used for testing. The
first block was controlled by weather-compensated controller, while the sec-
ond one by the predictive controller. Three month of real operation were used
for investigation of controllers’ performance and savings, nine days segment of
the period is depicted in Fig. 4.5. The upper part shows outside temperature,
whilst the lower compares reference tracking for weather-compensated and
predictive controllers. It can be seen, that the predictive controller heats in
advance in order to perform optimal reference tracking, that is, inside com-
fort, and minimum energy consumption. Two last subfigures compare the
efficiency of control measured by energy consumption.
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Table 4.2: Comparison of heating curve (HC) and model predictive control (MPC) strategies using similar
building blocks B; and Bs.

B, B,
mean ¥, [°C] control mean 94,9, [°C] control mean J;,9, [°C] MPC savings

15t week -3.4 HC 214 MPC 21.1 15.54 %

274 week -1.3 MPC 214 HC 20.9 16.94 %

Evaluation of MPC energy savings

Evaluation of the energy savings achieved by different control strategies is a
complicated task. The weather conditions change all the time, as well as the
number and behavior of the building occupants. Single comparisons of results
are affected by these disturbances, therefore one independent comparison of
the real building experiment will be presented.

The comparison denoted as cross comparison uses almost similar building
blocks By and By. The cross comparison had two phases, each lasted for a
week. In the first week, block By was controlled by the heating curve and
block By by MPC. The other week, the control strategies were switched.
The advantage of the cross comparison is compensation of the majority of
disturbances because both building blocks are exposed to the same weather
conditions.

The cross comparison results are summarized in Table 4.2. According to this
comparison, MPC saved approximately 16% of energy in both weeks.

The efficiency of the predictive control was superior to the weather-compensated
controller, even if the active heating was necessary. In fact, the costs were
about 16% lower in case of predictive controller. The main reasons of the
savings is the ability of predictive controller to fully employ the thermal ca-
pacitance of a building and that the character of an optimal input is not
so aggressive in comparison to conventional control strategy. Predictive con-
troller circumspect strategy of the input signal shaping reduces the maximum
peak of the heating water as well. Consequently, the less expensive tariff of
a primary energy source could also contribute to further savings.

4.5 Conclusions

Predictive control has a great potential in the area of building control espe-
cially in case of buildings with great heat accumulation capabilities. Testing
confirmed our empirical experiences and the efficiency of the predictive con-
troller in comparison to weather-compensated controller.

MPC implementation, and foremost the modeling effort presents, presents
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the most time consuming part of MPC integration into a building automation
systems. In contrast to the current building control techniques, MPC is
based on a non trivial mathematical background that complicates its usage
in practice. But its contribution to reduction of a building operation cost is
so significant that it is expected that it will become a common solution for
so-called intelligent buildings in a few years.
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Chapter 5

Stochastic model predictive control

Ing. Jifi Cigler

In the previous chapter, the basics of the modeling and optimal control prob-
lem formulation were proposed in a deterministic fashion. However, distur-
bances acting on the system may have a stochastic nature. For instance,
weather forecast has a predefined level of uncertainty [14], occupancy profiles
are not exactly known in advance but can be considered as a random variables
with known distribution [20], etc. Moreover, probability of thermal comfort
constraints satisfaction belongs among the requirements defined by 1SO 7730
norm (concerning thermal comfort in buildings [12]). These facts motivate
researchers to investigate more the stochastic model predictive formulation
that can be afterwards applied to building climate control. In the following
text, a convex approrimation to one norm stochastic model predictive control
problem will be presented. This algorithm can be readily used for small-scale
building problems.

5.1 Introduction

Stochastic control is a relatively mature field, yet there is still a consider-
able number of unresolved problems mostly due to the notorious inherent
intractability of the vast majority of them. Only a handful of stochastic
optimal control problems (e.g. the linear quadratic control) can be solved
optimally, whereas the remainder has to be tackled by various approximation
techniques most frequently arising from the dynamic programming paradigm
1, [17].

Recent advances in computation and mathematical optimization techniques
have, however, opened new ways of dealing with these problems. One of the
simplest, yet in most practical applications very effective approach, is the
certainty equivalent model predictive control (CE-MPC) 2], [1] that solves
a deterministic optimization problem with stochastic disturbances replaced
by their estimates based upon the information available at the time, and
proceeds in a receding horizon fashion. Another popular class of control
strategies is the affine disturbance feedback policy which turns out to be



equivalent to the affine state feedback policy via a nonlinear transformation
similar to the classical Q-design or Youla-Kucera parametrization [18], [19].
However convenient the paradigm of affine disturbance feedback may be,
its use is prohibitive whenever unbounded stochastic disturbances enter the
system in the presence of hard control input bounds since then the linear
part necessarily vanishes, which, in effect, renders the policy open loop. One
way to overcome this problem is to use a saturated nonlinear disturbance
feedback as in [10], where this approach was developed for the quadratic
cost. In this article we follow up on this work and develop a methodology
for solving this problem in the 1-norm with the additional assumption of the
disturbances being jointly Gaussian (but not necessarily independent).
Another branch of approximation techniques bounds the disturbances a priori
and solves a robust MPC problem, while guaranteeing an open loop proba-
bilistic bound on the performance [4|. This approach, however, tends to be
very conservative, and thus the idea of bounding the disturbances a priori
based on their distribution appears more often in the context of chance con-
straints, see e.g. [15]. For different approaches to chance constraints handling
see [5], [13].

The very important, though much neglected, question of stability and re-
cursive feasibility of stochastic receding horizon schemes is addressed in a
series of papers [7], 8], [9] and [16]. These papers, however, assume either
compactly supported disturbances or only probabilistic input and state con-
straints, whereas [10] and [11] deal exclusively with stability in the presence
of hard input constraints. In this paper we prove in a much simpler way a
slight generalization of one of their stability results.

5.1.1 Notation

Throughout the article R denotes the set of reals, N and N, denote the
prediction and control horizons, respectively. The positive integers m and
n denote the number of control inputs and the state-space dimension. The
function sat,(-) denotes the standard elementwise saturation of the compo-
nents of a vector to r, and ||-|| denotes the induced infinity norm of a matrix
(in particular not the maximum absolute value if the matrix is a row vector).
p(+) and tr(-) denote the spectral radius and the trace of a square matrix.
E(-) denotes the expectation of a random variable, and X ~ A (u,Y) indi-
cates that X is a Gaussian random variable with the expectation p and the
covariance matrix . The symbols vec(+) and ® denote the vectorization and
the Kronecker product respectively. Finally, Hess(-) and Jac(-) denote the
Hessian and the Jacobian of a function.
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5.2 Problem statement

This article deals with the problem of minimizing the cost function

N-1
J:=E{IQN:UNI1+Z|Qkxk|1+|Rkuk|1} (5.1)
k=0

subject to the discrete-time system dynamics
Tpe1 = Axy + Buy + wy, (5.2)

xr € R", up € R™, and hard input constraints
luklloo < Unax, K=0,...,N —1, (5.3)

where Qp € R"*" R, € R™*™ are weighting matrices. All the results de-
rived here generalize with only minor modifications to the case with different
bounds on individual control inputs and/or time varying bounds. The dis-
turbances w = [w{, ..., wk _;]7 are assumed to be jointly Gaussian with the
covariance matrix ..

The minimization to be carried out is over all Borel measurable causal dis-

turbance feedback policies
up = op(xo, wo, ..., wp—1), k=0,...,N — 1. (5.4)

This problem is, however, in general intractable and various approximation
techniques exist, see e.g. [1]. For a rigorous treatment of measurability
issues in the context of stochastic control see [3]. In this paper, we adopt the
approach of [10] where the authors propose to search over a class of causal
policies affine in certain nonlinear functions of the disturbances, i.e.

MR
w=ntKew)=| ¢ [+ 7 e(w), (5.5)
N _KN'—l,l <o Kyoin-1 0
where u = [ul,...,u_|]T. n € R™N with blocks in R™ and strictly lower

block triangular K € R™V*"N with blocks in R™*" are optimization vari-
ables. The choice of the function e : R™ — R™ is discussed later, although
it certainly must be bounded should the hard input constraints be satisfied.
The bound on ||e(w)]||~ is denoted e throughout the article.

One of the main goals of the article is therefore to solve (at least approxi-
mately) the optimization problem
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N-1
mini’lx?ize E {|QN:CN|1 + kz; | Qrzrl| + |Rkuk|1}
subject to u =1+ Ke(w) (5.6)
Tre1 = Axp + Buyp + wy
K is strictly block lower triangular

constraints on 7, K such that (5.3) is satisfied.

5.3 Main results

The optimization problem (5.6) is, to our knowledge, intractable owing to
the 1-norm and the nonlinear function e(w). We therefore propose to solve a
relaxed problem where u = n+ Ke(w) in (5.6) is replaced with u = n+ Kw
while keeping constraints on n, K such that the hard input constraints are
satisfied when the original control policy is used. The relaxed problem must
be convex since the objective is convex for each disturbance realization [6]. In
the sequel, we show that the relaxed optimization problem is not only convex
but also tractable. To this end, we need an expression for the expectation of
the absolute value of a Gaussian random variable.

5.3.1 Convexity and tractability of the proposed ap-
proach

Lemma 1. If X ~ N (p,0?) then

g(p,0) == E|X]| = \/% <2ae—z‘f2 + /27 exf <UL\/§>> (5.7)

Proof. Follows by a straightforward integration from the definition of the
expectation of a continuously distributed random variable

1 0 (=)’ X —eew?
E|X| = 5 —ze 27 dx + xre 2 dz |, (5.8)
o v —00 0

and by using the definition of the error function erf(z) = \/%7 [fedt. O

Next, we show that the continuous extension (to cater for the o = 0 case) of
the Gaussian variable modulus expectation is convex under a certain com-
position and also provide an expression for its gradient and Hessian.

Lemma 2. If X ~ N(u,0?) foroc >0, X = pu foro =0, and u(n, k) =
po +bTn, o(n, k) = ||a + Ck||2 then the function f(n, k) = (E|X|)(n, k) is
jointly convex in (n, k).
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Proof. The proof proceeds directly by computing the Hessian of f for o > 0
and then a continuity argument is used to complete the proof. For ¢ > 0,
f(n, k) coincides with g(u(n, k),o(n, k)) and the gradient is

Vi(u,o)= gv + g—gvg = erf (a\/—> Vi + \/ge_zlf?VJ (5.9)

with

b 0
Vi = H . Vo= [CT“+Ck] . (5.10)
The expression for Vo follows from the fact that V||z||s = Mo, and the
multivariate form of the chain rule. Now since Hess(f) = Jac(Vf) and

Jac(hg) = g(Vh)T + hJac(g) for real-valued function h and multivariate g,
it follows that

Hess( f) — m {vm(a f> }T (5.11)

T
0 2 _ a2 2 a2
+ lcTcH—oOk] {V <\/;e 202>} + \/;e 202 Jac(Vo)

0 0
0 L CT(J—M)C

Tlall2 [l

where x = a + Ck since, again by the chain rule,

with

Jac(Vo) = [ (5.12)

a+ Ck Y
Jac, Vo = CT Jac———— = C7 [Jae ( ) o(a+ C’k:)] C, (5.13)
lla+ Ck|l [1y]l2

where o denotes the standard function composition. The remaining two terms
n (5.11) are

b| 1 /2 _ .2 0 2 2
Vert (0\/_> {0] ;\/;6 208 — [CTa+Ck] —52° 207, (5.14)

2 bl [2p .2 0 212 2
V (\/;6 20 > = — |:0] ;;6 202 - [CTater] \/;;6 204, (515)

Rewriting the Hessian with

q:= [CT&ﬂ} (5.16)

then yields

Hess(f) — \/ge_;f? G {_Z ﬁf] [_bq J 4 Jac(Va)) >0, (5.17)



[t is easily seen that f(n, k) is continuous and that the sequence of smoothed
functions f,(n, k) =g (u(n, k), \/% + > x?) converges pointwise to f. The
functions f, are readily shown to be convex by computing their respective

Hessians in the same fashion as above. The function f(n, k) is therefore
convex since it is a limit of convex functions. O

Theorem 1. The optimization problem

N-1
mini?ize E {||QNxN|1 + Z | Qrzr|[1 + |Rkuk|1}

"’ k=0
subject to u =7+ Kw (5.18)
Tpy1 = Axy + Buy + wy,
K is strictly block lower triangular
1ni] + €l| Killoo € Unax, 0 =1,...,mN

with w ~ N(0,X) is convex and tractable in the variables (n,K ). Further-
more the hard input constraints (5.3) are satisfied under the control policy
u=n+ Ke(w) if ||le(w)|| < e. Here K; denotes the i-th row of K.

Proof. The objective function is a sum of terms of the form E\qfkscﬂ or
E|"”ﬁ;uk‘a where g, 7 denote the j-th rows of Q, Rj respectively. De-
note also

B, =[A"'B,... B,0,...,0], C.=[A"' ... I1,0...0]F
where ¥ = FFT_ and observe that
qﬁxk = qﬁ(Ak:z:O + Bru + Crw)
= qﬁAkfco + C]ﬁ;lgkn + quk(Ck + B K F)w
with @ ~ N(0, I). Tt is clear that qﬁxk is Gaussian with the expectation
pu(n, k) = E(qukxk) = qﬁAkazo - q;‘-FkBkn, (5.19)

and standard deviation

o1, k) = [|g5(Ce + B )|z = Iy + (FT © ¢hBSk]l2,  (5.20)

where Sk = vec(K') with S being a certain matrix of zeros and ones, and k
containing only the nonzero elements of K. Similarly

T T T ~
Tie = TipUkn + v Fw,

where vy, is a vector that selects k-th block row of the size m. Consequently,
the expectation and standard deviation become

pln k) = rjoen,  o(n, k) = |[(F" @ rjoe) Skll2. (5.21)
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Application of Lemma 2, in the proof of which the gradient and Hessian were
computed, now completes the convexity and tractability part of the proof.
Satisfaction of the input constraints follows immediately from the definition
of the induced infinity norm and from the assumption that ||le(w)|| < e. O

5.3.2 Bound on suboptimality

In this section we provide a bound on the suboptimality in (5.6) (with the
same constraints on 7, K as in (5.18)) of the solution to the relaxed problem
problem (5.18). The idea is to bound the difference of the costs under the
policies u = n + Kw and u = n + Ke(w) for given n, K, which in effect
bounds the difference of the respective optima. For ease of notation, the
result is derived with time invariant weights, i.e. Q) := @, Ry := R (and
thus ¢ := ¢q;, 71 := r;) for all k, but generalizes immediately to the time
varying case.

Lemma 3. The cost J. incurred under the policy u = n + Ke(w) and the
cost Jy, incurred under the policy u =n + Kw differ not more then

(ng(N + D[Qlso|1Bn|loe + 1y N|| Rl|oo ) El[e(w) — w]|oo| [Kloe (5:22)
Proof. We have
[Je = Ju| < ZZ\E |4 25| — lgj =) (5.23)

k=0 j=1
N—-1 n,

+ZZ\E [ g = |y ui D).
J

Next, by Jensen’s inequality,

B(q] 2] ~ |2 )| < B lgT ] ~ T | (5.24)

< B(lqf s — qf2}]) = Bla} B (e(w) — w)|.

where

= AFzo + Bin + ByKe(w) + Cyw, x) = AFzo + Byn + By Kw + Cpw.
Furthermore

E|q BrK (e(w) — w)| < |lq; BeK||E|le(w) — w]| (5.25)
< |lg; Brllosol K || Elle(w) — w||s
< ||Q|‘OOHBNHOOHKHOOEHQ(UJ) - wHoo
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Similar procedure can be carried out for control inputs to yield
(|7} ug] = [rj ui )] < ||R][ool [ K] Elle(w) — w]]o.
Summing up all terms in (5.23) now leads to the desired result
|[Je = Jul| < (ng(N + D[Qlsc||Bnlloc + 1r N[ Rl |o0) El|e(w) — w]]oo|[ K],
which completes the proof. [

Now it is rather straightforward to derive the suboptimality bound. Denote
J¥ the optimal value of (5.6) and the corresponding minimizer K, 0. Denote
also J the optimal value of (5.18) and the corresponding optimal solution
K}, ny. Finally denote J. the cost J under the control policy u = n;, +
K} e(w) and J,, the cost J under the policy u = ¥ + Kfw.

Theorem 2. The solution n},, K of (5.18) is not more than

Umax
B 1= 2(ng(N + DIIQlloc|[Bwllo + 1 N[ ] [oo ) Bl [e(w) — w]loo——="(5.26)

suboptimal in (5.6).
Proof. 1t follows from Lemma 3 that

B

o Tl <5 g <

2
since || K} ||oo < Unax/€, || K5 |loo < Unax/€ because of the constraint on K
and 7 in both optimization problems:

|77’L| +€HKZHOO S Umax, Z: 1,. ..,mN

implies ||K||oo < Unax/e.
Now since J; < J. and J; < J,, the bound immediately follows

0< J—-J < J—Jp+Jy—J =|Je—J) + Jp — J| <P,
which completes the proof. ]

The term El|e(w) — w||s in (5.26) can be computed to virtually arbitrary
precision by means of a Monte Carlo simulation. The bound also provides
an intuitively obvious guide to selecting the function e(w) in such a way
that e(w) and w do not differ very much with high probability. For instance
with the choice of e(w) as the elementwise saturation e;(w;) = sat,(w;) with
r 2 44/p(X) it is highly likely that the bound will be close to zero and,
consequently, the solution to the relaxed problem will be almost optimal in
the original one. Note also that this fairly crude bound can be significantly
improved by terminating one inequality earlier in (5.25) at the cost of a
slightly more complicated expression.
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5.3.3 Receding horizon stability

In this section we provide a slight generalization and a much simplified proof
of a result that already appeared in [10].

Theorem 3. Let up, wyp be two stochastic processes defined on the same
probabilistic space with |[ug||se < Unax a.s. and sup; ; [|[E{w;w] }|| < oo.
The state of the system xp1 = Axyp + Bug + wy then stays mean-square
bounded (i.e. sup; E||zg||5 < 00) provided that E||zo||3 < oo and p(A) < 1.

Proof. E||xi||3 = tr(E{xxzl}) and consequently it suffices to show that
E{z;z!} is bounded in any norm because of the norm equivalence on finite
dimensional vector spaces and the fact that tr(-) coincides with the nuclear
norm on the space of positive semidefinite matrices. The proof proceeds by
direct evaluation:

E(xkac;‘g) = E{(Akxo + BLU.L + Cka)(AkZCO + B.U. + Cka;)T} (5.27)
= A"Py(ANT + AFE{20UYB] + BLE{Ux{ }(AM)T
+ BE{UULB] + BEE{UWEYCE + GE{W UL B
where
Uy = [Ug, " 7“%—1]Ta Wy = [wg;? ce 7wk;T—1]T7
B, = [Ak_lB,...,B} , Cp= [Ak_l,...,]] .
The boundedness of the first term is obvious, the boundedness of the second
and third terms follows from the fact that [|E{zoU! }||2 < Unpaxr/mkE||zo||3
(this follows directly by Jensen’s and Cauchy-Schwarz inequalities). The
boundedness of By, is obvious by the assumption that p(A) < 1, and therefore
the second and third terms actually go to zero. Consider now any A < oo

bounded family of matrices M,,, i.e. |[M,4|| < A for all r, ¢. For such a
family we have

k—1 k-1

ZAZMWAJ SZZ!IAiI\I\quI\I\Aj\! (5.28)
=0 j= =0 5=0
-1 k-1 . .
A > O IAA.
=0 75=0

The first term in (5.28) is therefore bounded since the last series is convergent
by the assumption that p(A) < 1 (for instance by taking the Jordan form
of the matrices and choosing a suitable norm, e.g. the Frobenius norm).
Here || - || can be any submultiplicative norm. The theorem then follows

64



since the last four terms in (5.27) can be casted in the stated form with
r=k—i—1 ¢g=k—j—1and M,, componentwise bounded (by Cauchy-
Schwarz inequality and the assumptions on uy, wg) and hence || - || bounded
due to the norm equivalence. ]

Corollary 1. The receding horizon implementation of the control policy de-
fined by solving the optimization problem (5.18) every N. < N steps and
applying the first N. control inputs generated by the policy u = n + Ke(w)
renders the state xj mean-square bounded provided that p(A) < 1.

Proof. Follows directly from Theorem 3 since the constraints in (5.18) ensure
that the inputs stay bounded. H

In the case of p(A) = 1 with the deterministic part of the system (5.2) Lya-
punov stable, the sole assumption of bounded control inputs is insufficient,
and another constraint must be embedded into (5.18) in order to ensure the
mean-square boundedness of the state. See [11] for details.

5.4 Numerical examples

We present two numerical examples that compares our method to other con-
trol strategies. With the gradient and Hessian on hand, the problem (5.18)
can be solved by a nonlinear solver with guaranteed convergence because of
convexity or by a general purpose convex solver. For our small scale ex-
amples we managed with the Matlab nonlinear solver implemented in the
FMINCON function with the ‘interior-point’ option as well as with a custom
interior-point solver. Nondifferentiability of the objective is not a problem
in our case since the the optimization path and the solution itself lie outside
the nondifferentiable region. If this were not the case, which can happen if
the penalty on control effort is large leading to zero mean and zero variance
of a particular control input, various techniques for nodifferentiable convex
optimization can be employed.

In the first example we consider a fixed horizon stochastic control problem.
For the the system matrices and the noise covariance matrix we chose

1 —-04 0.6 8 5

a=lon 1Y m= o) m=re 5
with wy zero-mean jointly Gaussian. We set Q = I, R = 0.1, and the
input constraints to Uy, = 30. The optimization horizon is T' = 12, the

initial state o = [1, —1]7. The function e(w) was chosen as suggested
above to be the elementwise saturation that saturates the disturbances to
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44/p(X) = 13.9. We compared our method (with N, = N = T) with
the standard certainty equivalent MPC (N, = 1, N = T') and with the
shrinking horizon CE-MPC (N, = 1, N(k) =T —k, k = 0,...,T — 1).
Furthermore, we tried out the proposed method with K = 0 against the
certainty equivalent open loop control (i.e. CE-MPC with N, = N = T).
For the sake of completeness we tried out our method in the shrinking horizon
mode with N, = 2, N(k) = T — k as well. The respective objective functions
were evaluated using 2000 Monte Carlo runs. The results are summarized
in Table 5.1, which shows that our method (without shrinking) outperforms
the others by a significant margin except perhaps for SH-MPC where the
difference is smaller and, naturally, our method in the shrinking horizon
regime. On the other hand, unlike with MPC strategies, there is no need for
online optimization with our method in this setting. It is also worth noting
that our method with K = 0 (i.e. an open loop policy) slightly outperforms
the certainty equivalent open loop control, which is in contrast with the
quadratic cost case where this strategy is optimal in the class of open loop
policies. Figure 5.1 shows histograms of the proposed policy and the two
MPC policies. Finally, we evaluate the bound (5.26) which yields 5 = 0.005
showing that the solution found by (5.18) is in this case basically optimal in
(5.6).

Table 5.1: Comparison of control policies over the optimization horizon T' =
12.

Policy || SH-(5.18) | (5.18) [ SH-MPC | MPC | (5.18), K =0 | OL
J 86.8 92.1 983 | 119.2 140.4 143.9

Our second example compares the proposed method with the certainty equiv-
alent MPC in a receding horizon regime. In this example we consider the
respective matrices

o-Lao ) o= men =t

with wy, zero-mean Gaussian and independent, where 9;; denotes the Kro-
necker delta. The weighting matrices were set to ) = I and R = 0.1/,
the input constraints to Uyax = 10, and the initial state to zo = [1, —1]T.
We compared our control policy with N = 12, N, = 4 against CE-MPC
with V=12, N. =1 in a receding horizon fashion over the simulation time
T = 100. Again, we used the 4-sigma rule to get ¢ = 13.9. Figure 5.2 shows
the accumulation of the cost over the simulation time, while Figure 5.3 de-
picts the evolution of the state’s 2-norm-square expectation suggesting its
boundedness, which was to be expected since p(A) = v/2/2. 100 Monte
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Carlo runs were used to evaluate the expectations in the costs.

5.5 Conclusion

In spite of the natural requirement of bounded control inputs, surprisingly
little research effort in the field tackles this problem directly in the presence
of unbounded stochastic disturbances.

In this article, we dealt exclusively with the expectation of the 1-norm
stochastic control problem for which we developed an approximate solution
technique ensuring bounded control inputs in the presence of Gaussian distur-
bances. Moreover, we constructed a suboptimality bound of our method in
a certain class of nonlinear disturbance feedback control policies. Finally, we
provided a simple proof of receding horizon stability of the proposed policy,
and demonstrated our results by means of two numerical examples.

Since Gaussian random variables are assumed, it is straightforward to in-
clude individual chance constraints leading to additional second-order-cone
constraints. If joint chance constraints were of interest, it is possible to adopt
the methodology of |5] resulting in a non-convex problem, which can, how-
ever, be solved by simple sequential convex programming, providing promis-
ing results.

Furthermore, the question of the mean-square boundedness of Lyapunov un-
stable systems with the system matrix of spectral radius one remains, at
least to our knowledge, open. Finally, it would be interesting to develop a
tractable way of obtaining a global lower bound on the optimal value of the
infinite horizon 1-norm stochastic control problem using the approach of [21].
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Figure 5.1: Histograms of the costs of different control policies over 2000
Monte Carlo runs on the optimization horizon T' = 12.
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Figure 5.3: Evolution of E||x||3 under our receding horizon control policy
with N =12, N. = 4 and CE-MPC control policy with N =12, N. = 1.
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