VYSOKE

UCENI
-/) TECHNICKE

V BRNE

LJ
o
LN
8
8
0y
"
@

MINISTERSTVO SKOLSTVI, OP Vzd&lavani
MLADEZE A TELOVYCHOVY pro konk hop

* *
* % K

EVROPSKA UNIE

1=
A=

]

INVESTICE DO ROZVOJE VZDELAVANI

Vyuzitie CompactRIO systémov pre
riadiace aplikacie

Ucebni texty ke kurzu

Prednasejici:
Ing. Mgr. Mark Jénas (ANV s.r.o., Bratislava)
Ing. Zuzana Petrakova (ANV s.r.o., Bratislava)
Mgr. Silvia Mékosova (ANV s.r.o., Bratislava)
Ing. Gregor lzrael, PhD. (ANV s.r.o., Bratislava)
Datum:

26.-27.9. 2012

Centrum pro rozvoj vyzkumu pokrodilych fidicich a senzorickych technologii CZ.1.07/2.3.00/09.0031

TENTO STUDIJNI MATERIAL JE SPOLUFINANCOVAN EVROPSKYM SOCIALNIM

FONDEM A STATNIM ROZPOCTEM CESKE REPUBLIKY

(0] o 1Y] o HOU T PP PPPPPPTROPPN 1
1. NAVrhoveé teChniKy @ VZOIYcceevviiviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeev e eeeeeseeeeeeees 3
2. PouZivanie premennyCh ... 10
3. Navrh pouzivatelského rozohrania s dotykovou obrazovkou 24
4. Pridanie pocitacového videnia arozpoznavania obrazu do CompactRIO
systému pre meracie a riadiace aplikacie....ccooeeeeeeeeeeeeeeeeeeeeeee, 30
5. Riadenie pohonov pomocou CompactRIO systémovcccceeeeeeeeeeeeeennnn. 46
6. Nasadenie a replikacia syStEMOV.........ouvvviiieieiiiiieeccee e, 71

1. NAVRHOVE TECHNIKY A VZORY

Prvym krokom pri vyvoji LabVIEW projektu je prieskum architektur ktoré
existuju v LabVIEW. Architektury su podstatné pre tvorbu uUspeSného navrhu
softvéru. Vacsina beznych architektur je zoskupenda do navrhovych vzorov.

Cim viac je navrhovy vzor akceptovany, tym lahsie rozoznatelné Ze bol pouZity.
Toto rozpoznanie pomo6Ze vam a inym vyvojarom interpretovat a modifikovat
VI ktoré su zaloZzené na navrhovych vzoroch.

Pre LabVIEW VI existuje velky pocCet navrhovych vzorov. Vacsina aplikacii
pouziva aspon jeden ndvrhovy vzor. V tomto kurze sa venujeme navrhovému
vzoru Stavovy stroj (State machine).

Sekvencné programovanie

Velky pocet VI ktoré napisete v LabVIEW vykonava ulohy sekvencne. Sp6sob
naprogramovania sekvencnych tloh moze byt velmi rozdielny.

V LabVIEW mozZete vykonat sekvencné ulohy pomocou vytvorenia subVI pre
kazdud ulohu, a nasledného prepojenia subVI pomocou error clustrov v poradi
akom sa maju ulohy vykonat.

MozZete pouzit Sequence Strukturu na uréenie poradia vykondvania operdacii v
blokovom diagrame. Sequence Struktira obsahuje jeden alebo Vviac
subdiagramov, alebo ramcov, ktoré sa vykonaju sekvenéne; ramec nezacne
vykonavanie kédu skor ako sa ukondi predosly ramec.

K vyuZitiu vyhod vnutorného paralelizmu v LabVIEW sa vyhnite pouZivaniu
Sequence Struktury v neopodstatnenych pripadoch. Sequence Struktury
garantuju poradie vykonavania, ale zamedzia paralelnému behu operacii.

Druhym negativnym javom pouZitia Sequence Struktury je fakt, Ze vykonavanie
kdodu nemozZete zastavit pokym sa cela Struktura nevykonala.

NajlepSou moZnostou ako naprogramovat toto VI je zahrnat funkciu One
Button Dialog do Case Struktury, a napojit error cluster na terminal podmienky.

Pouzivajte Sequence Struktiry obozretne, nakolko nepodporuju kontrolu chyb,
a ich beh sa neukondi v pripade vyskytu chyby. Radsej zvolte spravny datovy
tok na riadenie poradia vykonavania kddu ako Sequence Strukturu.

Programovanie pomocou stavov

Hoci Sequence Struktura a sekvenéne prepojené subVI splnia svoj ucel, casto
potrebujete zlozZitejSiu architekturu na vyvoj algoritmov.

e Cov pripade ak musite zmenit poradie vykonavania sekvencie?
e Co v pripade ak musite vykonat &ast sekvencie viackrat nez iné ¢asti?

e Co v pripade ak niektoré polozky v sekvencii sa maju vykonat iba ak su
splnené urcité podmienky?

e Co ak potrebujete ukon¢it program okamfite, namiesto ¢akania do konca
sekvencie?

Aj ked va$a aplikacia nemusi spifiat ani jednu z vy$ie uvedenych poZiadaviek,
je moiné, Zze program bude musiet byt modifikovany v buduicnosti. Z tychto
dovodov je architektura programovania pomocou stavov dobrou volbou, aj ked'
by bolo sekvencné programovanie dostatocné.

Stavové stroje

Navrhovy vzor stavovy automat je Standardny a velmi uZito¢ny navrhovy vzor
pre LabVIEW. Tento navrhovy vzor mobZete pouZit na implementaciu
lubovolného algoritmu ktory sa da explicitne opisat pomocou stavového
diagramu alebo diagramu toku udajov. Stavovy automat vo vSeobecnosti
implementuje stredne komplexné rozhodovacie algoritmy, ako napriklad
diagnostické rutiny alebo monitoring procesov.

Stavovy stroj, presnejSie stavovy stroj s kone¢nym poctom stavov, sa sklada zo
skupiny stavov a z prechodovych funkcii. Stavovy stroj s konecnym poctom
stavov ma viacero varidcii. Dva Standardné stavové stroje su Mealyho stavovy
stroj a Moorov stavovy stroj. Mealyho stavovy stroj vykona nejaky ukon pri
kazdom prechode. Moorov stavovy stroj vykona Specificky ukon pre kazdy stav
v diagrame stavov. Sabléna navrhového vzoru stavovy automat v LabVIEW
implementuje lubovolny algoritmus opisany pomocou Moorovho stroja.

Pouzitie navrhového vzoru Stavovy stroj

Stavové stroje pouzite v aplikacidch v ktorych existuju rozliSitelné stavy. Kazdy
stav mozZe viest k jednému alebo k viacerym naslednym stavom, resp. k

4

ukonceniu procesného toku. Stavovy stroj sa spolieha na vstup od pouzivatela,
resp. vnutro stavovu kalkuldciu na urcenie nasledujuceho stavu. Viacero
aplikacii pozaduje stav inicializacie, nasledovany Standardnym stavom, kde sa
moZe vykonat viacero réznych akcii. Vykonané akcie zavisia od predoslych a
aktualnych vstupov a stavov. Stav ukoncenia obycajne vykond dealokacné,
uvolnovacie akcie.

Stavovy automaty su beine pouzivané na tvorbu pouzivatelskych rozhrani. V
pripade pouzivatelského rozhrania, rozne akcie pouzivatela posuvaju
pouzivatelské rozhranie do roznych segmentov spracovania. Kazdy segment
spracovania je stav v stavovom stroji. Kazdy segment moze viest k inému
segmentu kvoli dalSiemu spracovaniu alebo ¢akat na dalSiu akciu pouzivatela.
Pri takejto implementacii pouZivatelského rozhrania, stavovy stroj neustdle
monitoruje mozny vyskyt akcie vykonanej pouzivatelom (polling).

Procesné testovanie je dalSou beZnou aplikdciu navrhového vzoru stavovy
automat. Pri procesnom testovani, stav reprezentuje ¢ast procesu. V zavislosti
od vysledkov testov v jednotlivych stavoch, dalSie stavy m6zu byt volané. Cely
tok sa méze vykonavat kontinualne, vysledkom je hibkova analyza testovaného
procesu.

Vyhoda pouZitia stavového stroja je ta, Ze navrhovy vzor je [lahko
implementovatelny ako nahle je vytvoreny stavovy diagram.

Infrastruktura stavového stroja

Pri konverzii zo stavového diagramu do LabVIEW blokového diagramu su
potrebné nasledovné komponenty:

e While slucka—neustale vykonava jednotlivé stavy

e Case Struktura—obsahuje pripad pre kazdy stav. V pripade sa nachadza
kod ktory sa vykona pre dany stav.

e Posuvny register—obsahuje informaciu o prechode medzi stavmi
e Funkcionalny kéd stavu—implementuje ¢innost stavu

e Kod prechodu—urci nasledujuci stav

"Ctart”, Default v

\ ' State] b

Functionalty |] Code
: Code
~
®
1 While slucka 2 Posuvny register 3 Case sStruktura

Zakladna infrastruktura stavového stroja v LabVIEW

Figure 1.1: Zakladna infrastruktura stavového stroja v LabVIEW

Tok stavového diagramu je implementovany pomocou While slucky.
Individualne stavy su reprezentované jednotlivymi pripadmi v Case Strukture.
Posuvny register vo While slucke udrziava informaciu o aktudlnom stave a je
vstupom do terminalu podmienky Case Struktury.

Riadenie stavovych strojov

NajlepSou metddou pre riadenie inicializacie a presunu medzi stavmi stavového
stroja je pouzitie datového typu enum. Datovy typ enum je Standardne
pouzivany pre vstup do terminalu podmienky Case Struktury. Avsak, ak
pouzivatel zmeni polozky v enum datovom type, spojenia ktoré su pouzité pri
kdpiach tohto enumu budud nefunkéné. To tvori prekazku pri implementacii
stavového stroja pomocou enum. Jednym z rieSeni tohto problému je vytvorit
typovu definiciu enum kontrolky. Tym padom sa zabezpedi, aby sa vsetky képie
automaticky zaktualizovali ak pridate alebo odoberiete stav.

Presun medzi stavmi stavového stroja

Existuje viacero sp6sobov na riadenie Case Struktury v stavovom stroji. Vyberte

si metddu ktora je najvhodnejsia pre danu funkcionalitu a zloZitost stavového

stroja. Najbeznejsie pouzivanou lahko pouzitelnou metédou na implementaciu

presunov medzi stavmi v stavovom stroji je implementacia pomocou jednej

Case struktury (single Case structure transition code), ktora sa moze pouZit na
6

presun medzi lubovolnym poctom stavov. Tato architektidra poskytuje najviac
Skalovatelnu, citatelnd a udrzatelnd architekturu stavového stroja. Ostatné
metddy moézu byt uzitoéné v Specifickych situaciach, a je dolezité aby ste sa s
nimi oboznamili.

Predvoleny presun

V pripade predvoleného presunu nie je potrebny Ziadny rozhodovaci
algoritmus, nakolko nasledovny stav je pevne dany.

S |"5tart"_, DEFEI_I": TP T

;

Figure 1.2: Predvoleny presun
Presun medzi dvoma stavmi

Nasledovna metdéda zahfna rozhodovanie o presune medzi dvoma stavmi.
Existuje viacero Standardnych vzorov na uskutocnenie tejto ulohy.

Figure 1.3: Pouzitie funkcie Select

Tato metdda funguje dobre,ak viete, Ze z daného stavu mozZe nastat presun iba
do dalSich dvoch stavov. Zaroven, pouZitie tejto metddy limituje rozsiritelnost
aplikacie. Ak potrebujete modifikovat stav rozsirenim mozZnych presunov na
viac ako dva, toto rieSenie by bolo nedostacujice a vyZadovalo by znacnu
modifikaciu v kdde.

Presun medzi dvoma a viacerymi stavmi

Skalovatelnejdiu architektiru vytvorite pouZitim niektorej metddy z
nasledovnych moznosti.

Case Struktiura—pouzite Case Strukturu namiesto Select funkcie na urcenie
nasledovného stavu.

Figure 1.4: Pouzitie Case Struktury pri urceni nasledujticeho stavu

Jednou z vyhod poutZitia Case Struktury je dobra Citatelnost kddu. Takyto kdd je
jednoduché citat a pochopit, nakolko kazdy pripad v Case Strukture
koreSponduje niektorej polozke v enume. Zaroven, Case Struktura je
rozsiritelnd. Narastom aplikacie, mate moznost pridat

dodatocné opcie na presun medzi stavmi pomocou pridania novych pripadov
do Case Struktury. Nevyhodou poufZitia Case Struktury je to, Ze iba cast kddu je
viditelna naraz. Je to vlastnost Case sStruktury, vdaka ktorej nie je viditelna celd
funkcionalita kddu prenosového kdédu na jeden pohlad.

* Pole presunov—ak potrebujete, aby kdd bol viditelnejsi ako to umoznuje
Case Struktura, mozete vytvorit pole presunov vsetkych moznosti.

4+ Error Handler =

B i Start =

H

Decision Making Code nt O
Index Array

Figure 1.5: Pouzitie pola presunov pri urceni nasledujuceho stavu

V tomto priklade, vystupom z rozhodovacieho algoritmu je index ktory urci
dalsi stav. Napriklad, ak dalsim stavom ma byt stav Error Handler, vystupom z
rozhodovacieho algoritmu bude hodnota 1, ktord sa pouzije pri indexacii
pomocou funkcie Index Array. Tento navrhovy vzor robi kod rozsiritelnym a
lahko citatelnym. Jedind nevyhoda pouZitia tohto vzoru je, Ze musite byt
pozorny pri vyvoji rozhodovacieho algoritmu, nakolko pole je indexované od
nuly.

2. POUZIVANIE PREMENNYCH

V tejto lekcii sa naucite ako pouzit premenné na prenos dat medzi viacerymi
slu¢kami a VI. TaktieZz sa dozviete o programovacich problémoch ktoré pouzitie
premennych prinasa, ako aj o moznostiach rieSenia tychto vyziev.

Paralelizmus

V tomto kurze sa paralelizmus vztahuje na vykondavanie viacerych ulohsucasne.
Zamyslite sa nad nasledovnym prikladom, kde zobrazujete dvasinusové
priebehy s réznymi frekvenciami. VyuZzitim paralelizmu, umiestnite jednej
priebeh do jednej a druhy do druhej slucky.

Vyzvou pri programovani paralelnych uloh je prenos dat medzi viacerymi
sluckami bez vytvorenie datovej zavislosti. Napriklad, ak prenesiete date
pomocou spojenia, zrusite paralelizmus sluciek. Pri priklade dvoch sinusovych
priebehov je uzitocné, ak mate spolocny stop prepina¢ na ukoncenie behu
sluciek

Chart 1 Plot0 MO | chatz Plot 0 Y |

Loop Control

d O
* on

Armplitude
Amplitude

1
263
Tirne Tirme

Figure 2.1: Celny panel paralelnych slugiek

Vsimnite si, ¢o sa stane ak sa pokusite zdielat data medzi paralelnymi sluckami
pomocou spojenia s pouzitim dvoch réznych metdd.

Metdda 1 (nespravna)

Umiestnite Loop Control terminal mimo sluCiek a pripojte ho k obom
podmienovacim terminalom. Loop Control terminal poskytuje vstupné data do
oboch sluciek, tym padom je vycitany iba raz, a to predtym ako ddéjde k
vykonaniu While sluciek. Ak hodnota False je vstupom do sluciek, While slucky
pobezia do nekoneéna. Vypnutim prepinaca neukoncite beh VI, nakolko
prepinac (terminal) nie je vycitany pri iteraciach slucky.

10

Metdda 2 (nespravna)

Presunte terminal Loop Control do slucky Loop 1, ako je to zobrazené na
nasledovnom blokovom diagrame. Terminal je vycitany pri kazdej iteracii slucky
Loop 1. Slu¢cka Loop 1 sa ukonéi riadne, avsak slucka Loop 2 sa nezacne
vykondavat pokym nemad dostupné data na vsetkych vstupoch. Slucka Loop 1
nepusti data na vystup pokym sa beh slucky neukonci, tym padom slucka Loop
2 musi Cakat, hodnota termindlu Loop Control sa prenesie az po ukonceni
slucky Loop 1. Z toho dovodu sa slucky nebudu vykonavat sucasne. Zaroven,
slucka Loop 2 vykona iba jednu iteraciu, nakolko vstupom do podmienovacieho
terminalu je hodnote True z prepinaca Loop Control zo slucky Loop 1.

Metoda 3 (riesenie)

Ak by ste vedeli ¢itat a zapisovat ukonéovaciu podmienku do suboru, zrusili by
ste zdvislost sludiek na toku dat, nakolko kazdad slucka moéze nezdvisle
pristupovat k suboru. Avsak Citanie a zapisovanie do suborov mdze byt ¢asovo
narocné. Inym spdsobom na uskutocnenie tejto Ulohy je Citat a zapisovat do
spoloéného pamatového miesta. V dalSich castiach tejto lekcie sa budeme
zaoberat s metdédami ktoré riesia tento problém.

Premenné

V LabVIEW je poradie vykonavania prvkov v blokovom diagrame urcené
pomocou datové toku namiesto poradia prikazov. Tym padom, mozZete vytvorit
blokovy diagram ktory ma subeiné operdcie. Napriklad, mobzZete sucasne
vykonavat dve paralelné For slucky a zobrazovat vysledok na ¢elnom panely,
tak ako je to zobrazené na nasledujucom blokovom diagrame Avsak, ak poZijete
spojenia na prenos dat medzi paralelnymi blokovymi diagramami, tie uz
nebudu vykondvané paralelne. Paralelné blokové diagramy moézZu byt dve
paralelné sluc¢ky v tom istom blokovom diagrame bez zavislosti na datovom
toku, alebo dve osobitné VI ktoré su volané sucasne.

Figure 2.2: Datova zavislost kvéli prepojeniu

11

Spojenie vytvori datovu zavislost, nakolko druhd sluc¢ka sa nezacne vykonavat
pokym prva sluc¢ka neskonci a data sa neprenesu cez tunel.

Odstrante spojenie ak chcete, aby slucky bezali sucasne. Na prenos dat medzi
subVI, pouzite ind techniku, ako napriklad premenné.

V LabVIEW, premenné su prvky blokového diagramu ktoré umoznia pristup a
uloZenie dat do pamatového miesta. Aktualne pamatové miesto sa meni v
zavislosti od typu premennej. Lokdlne premenné uloZia data do kontroliek a
indikatorov celného panela. Globdlne premenné a single-process zdielané
premenné uloZia data do Specialnych repozitarov, ku ktorym mozete pristupit z
viacerych VI. Funkcionalne globdlne premenné ulozia data do posuvnych
registrov . While sluciek. Nezavisle na mieste uloZenia dat, vSetky typy
premennych umozZnia obist Standardny datovy tok pomocou prenosu dat z
jedného miesta na druhé bez prepojenia tychto miest. Z tohto dovodu su
premenné uZitocné v paralelnych architektirach, zaroven ale maju aj urcité
nevyhody, ako napriklad vyskyt chyb sibehu (race condition).

Pouzivanie premennych v ramci jedného VI
Lokalne premenné prendsaju data v ramci jedného VI.

V LabVIEW, Citate resp. zapisujete data do objektov ¢elného panelu pomocou
terminalu na blokovom diagrame.Avsak, objekt na ¢elnom panely disponuje iba
jednym termindlom na blokovom diagrame. Vasa aplikdcia vSak moze
pozadovat pristup k datam z terminalu z viacerych miest.

Lokalne a globalne premenné prendsaju informacie medzi bodmi v aplikacii
ktoré neviete prepojit klasickym spdsobom. PouZite lokalne premenné na
pristup k objektom celného panela z viac nez jedného miesta v jednom VI.
Pouzite globalne premenné na pristup a prenos dat medzi viacerymi VI.

Pouzite uzol spatnej vazby na ulozZenie dat z predoslého behu VI alebo slucky.
Tvorba lokalnych premennych

Lokdlnu premennu vytvorite kliknutim s pravym tlacidlom mysi na existujuci
terminal blokového diagramu a volbou Create»lLocal Variable z kontextove;j
ponuky. Ikona lokalnej premennej sa zobrazi na blokovom diagrame.

MobZete vybrat lokdlnu premennu aj z palety Functions a vloZit ju do

12

blokového diagramu. Uzol lokalnej premennej eSte nie je asociovana so
zZiadnou kontrolkou alebo indikatorom.

Asociaciu lokalnej premennej ku kontrolke alebo indikatoru vytvorite pravym
kliknutim na premennu a volbou Select Item z kontextovej ponuky. RozSirena
kontextova ponuka zobrazi vsetky objekty ¢elného panela ktoré maju vlastné
navestia.

LabVIEW pouZiva vlastné ndvestia na asociaciu lokdlnych premennych s
objektmi celného panela, preto oznacte kontrolky a indikatory s opisnymi
navestiami.

Citanie a zapisovanie do premennych

Potom, Co ste si vytvorili premennu, moZete do nej zapisovat data resp. Citat z
nej data. Standardne, novd premennd je nastavend na zapis dat. Takato
premennd funguje ako indikator. Ked zapiSete nové data do lokalnej alebo
globalnej premennej, asociovana kontrolka alebo indikator na ¢elnom panely sa
zaktualizuje s novymi datami.

Takisto mozZete nakonfigurovat premennu tak, aby bola zdrojom dat.
Konfiguraciu fungovania premennej ako kontrolka nastavite s pravym klikom na
premennu a volbou Change To Read z kontextovej ponuky. Ked' sa tento uzol
vykona, VI nacita data z asociovanej kontrolky alebo indikatora.

Zmenu premennej na prijem dat z blokového diagramu vykonate pomocou
pravého kliknutia na premennu a volbou Change To Write z kontextovej
ponuky.

Premenné nastavené na prijem alebo poskytovanie na blokovom diagrame dat
rozliSite rovnakym spdésobom ako kontrolky a indikatory. Premenna na
poskytovanie dat ma hrubé ohrani¢enie, podobné kontrolke. Premennd na
prijem dat ma tenké ohranicenie, podobné indikatoru.

Priklad na lokalnu premennu

V sekcii Paralelizmus tejto lekcie ste videli priklad na pouzitie paralelnych
slu¢iek. Celny panel obsahoval jeden prepina¢, ktory ukonéil generdciu dat v
oboch sluckach. Data pre kazdy graf su generované osobite v individualnych
While sluckach. Vdaka tomu sme mohli pouZit rozdielne ¢asovanie pre kazdu

13

slucku. Terminal Loop Control ukoncil obe While slucky. V tomto priklade, kvoli
ukonceniu behu naraz, obe slucky musia zdielat prepinac.

Kvoli aktualizacii grafu podla ocakavani, obe While slu¢ky sa musia vykondvat
paralelne. Prepojenie sluciek pomocou spojenia na prenos ukoncovacej
podmienky by zabranilo paralelnému behu sluciek.

Slucka Loop 2 cCita z lokalnej premennej ktora je asociovana s prepinacom. Ked'
prepnete prepina¢ do stavu False na celnom panely, terminal prepinaca v
slucke Loop 1 zapiSe False do podmienovacieho terminalu slucky Loop 1. Slucka
Loop 2 ¢ita lokalnu premennu Loop Control zapise False do podmieniovacieho
terminalu slucky Loop 2. Tym padom, paralelné slucky sa ukoncia sucasne ked’
prepnete prepina¢ na ¢elnom panely.

Loop 1 Loop 2

Figure 2.3: Lokadlna premenna pouzita na ukoncenie paralelnych sluciek

Pomocou lokalnych premennych mozete zapisovat a vycitat data z kontroliek a
indikatorov. Zapisovanie do lokalnej premennej je podobné ako prenos dat do
iného termindlu. Avsak, do lokalnej premennej mbzete zapisovat aj v pripade
kontrolky, a vycitat Udaje aj v pripade indikatora. Tym padom, pomocou
lokdlnej premennej mdzZete pouZit objekt celného panela ako vstup dat ale aj
ako vystup dat.

Napriklad, ak pouzivatelské rozhranie pozaduje od pouzivatelov prihlasenie,
mobZete vymazat policka Prihlasovacie meno a Heslo pri kazdom novom
prihlaseni. Pouzite lokdlnu premennu na vycitanie hodnot s kontroliek
Prihlasovacie meno a Heslo, a po naslednom odhlaseni zapiste prazdny string
do tychto kontroliek.

Pouzivanie premennych na prenos dat medzi VI

14

Premenné mozZete pouZzit na spristupnenie a prenos dat medzi viacerymi VI
ktoré beZia sucasne. Lokdlna premennd zdiela data v ramci VI. Globalna
premennad zdiela data medzi viacerymi VI. Napriklad, predstavte si, Ze mate dva
VI ktoré beZia sucasne. Kazdé VI obsahuje While slu¢ku a zapisuje data do
waveform chartu. Prvé VI obsahuje boolean kontrolku na ukoncenie oboch VI.
MoZete pouzit globalnu premennu s jedinou boolean kontrolkou na ukoncenie
sluciek. Ak by obe slucky boli na tom istom blokovom diagrame v rdmci jedného
VI, mohli by ste poufzit lokalnu premennu na ukoncenie sluciek.

Spésobom, akym pouZivate globalnu premennu, modzZete pouZit aj single-
process zdieranu premennu. Zdielana premenna je podobna lokalnej
premennej alebo globdlnej premennej, pricom ale umozZnuje zdielanie dat cez
siet. Zdieland premenna (shared variable) moéZe byt single-process alebo
network-published. Hoci network-published zdielané premenné su mimo
rozsahu tohto kurzu, ak pouzijete single-process zdielané premenné, v
budicnosti ich mbzete zmenit na network-published.

Pouzite globalnu premennu na zdielanie dat medzi VI v ramci jedného pocitaca,
najma ak nepouzZivate projektovy subor. PouZite single-process zdielanu
premennu ak v buducnosti budete potrebovat zdielat data medzi VI na réznych
pocitacoch.

Tvorba globalnych premennych

Globdlne premenné pouzite na spristupnenie a prenos dat medzi viacerymi VI
ktoré beZia sucasne. Globalne premenné su vstavané LabVIEW objekty. Ked'
vytvorite globdlnu premennd, LabVIEW automaticky vytvori Specidlne globalne
VI, ktoré disponuj iba celnym panelom bez blokového diagramu. Pridajte
kontrolky a indikatory na celny panel globalneho VI. Tymto definujete datové
typy ktoré bude globalna premenna obsahovat. Vskutku, tento Celny panel je
kontajner z ktory spristupriuje data viacerym VI.

Napriklad, predstavte si, Ze mate 2 VI ktoré beZia sucasne. Kazdé VI obsahuje
While sluc¢ku a zapisuje data do waveform chartu. Prvé VI obsahuje boolean
kontrolku na ukoncenie oboch VI. Musite pouZit globalnu premennu s jedinou
boolean kontrolkou na ukoncenie sluciek. Ak by obe slucky boli na tom istom
blokovom diagrame v ramci jedného VI, mohli by ste pouZit lokalnu premennu
na ukoncenie sluciek.

15

Zvolte globalnu premennu z palety Functions a umiestnite ju na blokovy
diagram.

Dvojklikom na globdlnu premennu zobrazite celny panel globalneho VI.
Umiestnite kontrolky a indikdtory na celny panel, tak ako by ste to robili v
pripade Standardného ¢elného panelu.

LabVIEW pouziva vlastné navestia na identifikaciu globalnych premennych,
preto oznacte kontrolky a indikatory s opisnymi navestiami.

MozZete vytvorit viacero globalnych premennych, kazdé VI bude mat vlastny
Celny panel. MozZete aj zoskupit podobné premenné, vytvorenim jednej
globalnej premennej s viacerymi objektmi na ¢elnom panely.

Globalne VI s viacerymi objektmi je ucinnejSie rieSenie, nakolko mobzete
zoskupit suvisiace premenné. Blokovy diagram VI mozZe obsahovat vicero uzlov
globalnej premennej. Tieto uzly su asociované s kontrolkami a indikatormi z
celného panela globalnej premennej. Globalne VI viozite doVI tak ako by ste
vlozili subVI do VI. Vidy, ked vlozite novu globdlnu premennu na blokovy
diagram, LabVIEW vytvori nové globalne VI asociované iba s aktudlne viozenym
uzlom globalnej premennej resp. s kdpiami tejto premenne;.

Po ukonceni vkladania objektov do celného panela VI globalnej premenne;j,
uloZte ju a vratte sa k blokovému diagramu povodného VI. Nasledne musite
vybrat objekt z VI globalnej premennej ku ktorému chcete pristupovat. Kliknite
na uzol globdlnej premennej a zvolte objekt celného panela z kontextovej
ponuky. Kontextova ponuka zobrazi vsetky objekty ¢elného panela VI globalne;j
premennej ktoré maju vlastné ndvestia. ModzZete aj pravym tlacidlom mysi
kliknat na uzol globdlnej premennej a zvolit prvok z Select Item kontextovej
ponuky.

MozZete pouZit aj nastroj Operating tool alebo Labeling tool a kliknut na uzol
globalnej premennej a nasledne zvolit objekt celného panelu z kontextovej
ponuky.

Ak chcete pouZit tuto globalnu premennu aj v inych VI, zvolte polozku Select a
VI na palete Functions. Standardne je globdlna premennd asociovand s prvym
objektom celného panelu ktory ma vlastné navestie. Asociaciu globalnej
premennej na iny objekt celného panela vykonate ak kliknete pravym tlacidlo

16

mySi na uzol globadlnej premennej v blokovom diagrame a zvolite objekt
celného panela z kontextovej ponuky Select Item.

Tvorba single-process zdielanych premennych

K pouZitiu zdielanych premennych musite mat projektovy subor. Single-process
zdielanu premennu vytvorite pomocou pravého kliknutia na My Computer v
okne Project Explorer a volbou New»Variable. Zobrazi sa Shared Variable
Properties dialogové okno.

i "
13 Shared Variable Properties
‘Yariable
Description Mame
Mebwark, Yariable1
Sealing Variable Tvpe Data Tvpe
Metwark-Published dl Double |

Enable Metwaork Publishing [2E9 Double {double [64-bit real {~15 digit precision)])

Enable Timestamping

[] Enable aliasing

Eind ko:
PSP URL Browse, ..

Access Type
read only

[[o]8][Cancel H Help

Figure 2.4: Shared Variable Properties dialégové okno

V Casti Variable Type, zvolte Single Process. Zadajte nazov a typ premennej. Po
vytvoreni zdielanej premennej, premennd sa automaticky zobrazi v novej
kniznici v projektovom subore. Ulozte kniznicu. Do tejto kniznici mozZete
pridavat dodatocné zdielané premenné, podla potreby. Premenni mozZete
jednoducho uchopit a pretiahnut z okna Project Explorer priamo do blokového
diagramu. PouzZite kontextovu ponuku na prepinanie medzi zdpisom a
vyCitanim. Pouzite error cluster premennych na zabezpecenie toku dat, toku
vykonavania.

Pouzivanie premennych s nadhladom

17

Lokalne aj globalne premenné su pokrocilé koncepty LabVIEW. Nie st stcastou
modelu vykondvania kédu podla toku udajov, na ktorom je LabVIEW
postaveny. Blokové diagramy sa mozZu stat tazko Citatelné ak pouzivate lokalne
alebo globalne premenné, aj preto by ste ich mali pouzivat opatrne. Nespravne
pouzitie lokdlnych a globdlnych premennych, ako napriklad nahradenie
konektorového panelu premennymi, alebo ich pouZitie kvoli pristup k datam v
jednotlivych ramcoch sequence Sstruktury, moZe viest neocakavanému
spravaniu VI. Nespravne poutzitie, jako napriklad z dévodu obist nutnost
vytvarat dlhé spojenia cez cely blokovy diagram, alebo ich pouZivanie namiesto
prenosu udajov pomocou toku dat, spomali vykonavanie kédu.

Inicializacia premennych

Inicializaciu lokalnej alebo globalnej premennej vykondvame kvoli tomu, aby
premenna obsahovala zndmu hodnotu predtym ako sa pouzije. V opacnom
pripade, premenné mozu obsahovat data ktoré zapricinia chybné spravanie VI.
Ak premenna ako vstupnd, inicializacnd hodnotu ocakdva z vysledku urcitého
vypoctu, uistite sa, Ze LabVIEW zapiSe hodnotu do premennej predtym ako
pouZije tuto premennu v nejakej operacii v inej lokacii. Paralelny zapis do
premennej z viacerych miest moze spdsobit chyby sibehu (race conditions).

Aby ste sa uistili, Ze inicializacia sa vykona prva v poradi, mozete kod vlozit do
prvého ramca sequence Struktury, alebo do subVI ktoré je prepojené dalSimi
castami tak, aby sa subVI vykonalo ako prvé.

Ak nevykonate inicializaciu premennej predtym ako VI pouZije premennu po
prvy krat, VI bude obsahovat Standardnu hodnotu priradenu k danému objektu
celného panela.

Funkcionalne globalne premenné

Na uloZenie dat mdzZete poutZit neinicializované posuvné registre v For alebo
While sluckach, pokym je dané VI v pamati. Posuvny register si udrziava
poslednu zapisanu hodnotu. Vlozte While slucku do subVI a pouzite posuvné
registre na uloZenie dat. Tato technika je podobnd pouZitiu globdlnej
premennej. Tato metdda sa ¢asto nazyva funkcionalnou globalnou premennou.
Vyhodou tejto metddy oproti globdlnej premennej je fakt, Ze mobzZete
kontrolovat pristup k datam v posuvnom registri. VSeobecnd forma

18

funkcionalnej globalnej premennej obsahuje neinicializovany posuvny register s
For alebo While sluckou, ktora sa vykona iba raz.

Irput Function Global Yariable Code

Figure 2.5: Zakladny tvar funkcionalnej globalnej premennej

Funkcionalna globalna premenna obycajne ma vstupny parameter akcia, ktory
Specifikuje ktorud dlohu VI vykona. VI pouziva neinicializovany posuvny register
vo While slucke na zachovanie hodnot operacie.

e |"SEt"_, DEFELI“: -.-.-......,._..,._..,

COutput
Erurn
ETH

Figure 2.6: Funkcionalna globalna premenna s funkcionalitou na nastavenie a ziskanie
udajov

V tomto priklade, data prichadzaju do VI a posuvny register ich ulozi ak je enum

kontrolka nastavend na Set. Data su vycitané z posuvného registra, ak je enum
kontrolka nastavend na Get.

19

Funkciondlne globdlne premenné mozZete pouZzit na implementaciu
jednoduchych globalnych premennych, avsak ako to bolo zobrazené v
predoslom priklade, su obzvlast uZitocné ked implementujete komplexnejsie
datové Struktury,ako napriklad zasobnik. Funkciondlne globalne premenné
mobZete pouZit aj na ochranu pristupu k globalnym zdrojom, ako napr. stbory,
pristroje , DAQ zariadenia, ktoré sa nedaju reprezentovat globalnou
premennou.

Funkcionalna globdlna premennd je subVI, ktora nie je reentrantnd. To
znamena, ak je subVI volané z viacerych miest, je stale pouzita ta ista kopia
subVI v pamati. Tym padom, iba jedno volanie subVI mo6Ze nastat naraz.

Pouzitie funkcionalnych globalnych premennych na ¢asovanie

Jedna naozaj uzZitocna aplikacia funcionalnych globalnych premennych je
uskutoénenie ¢asovania VI. PoCetné mnozstvo VI ktoré vykonavaju meracie a
automatizaéné Ulohy, poZaduje uréitd formu €asovania. Casto sa stava, Ze
pristroj alebo zariadenie potrebuje ¢as na inicializaciu. Tym padom sa musi
zahrnut explicitné ¢asovanie do VI tak, aby aplikacia poskytla potrebny ¢as na
inicializaciu systému. Mozete vytvorit funkcionalnu globalnu premennu ktora
meria ¢as trvania medzi jednotlivymi volaniami VI.

V pripade Elapsed Time sa vykona odpocitanie ¢asu uloZzeného v posuvnhom
registri od aktualneho c¢asu ziskaného pomocou funkcie Get Date/Time In
Seconds. Pripad Reset Time inicializuje funkcionalnu globalnu premennu s
aktualnym casom.

Elapsed Time Express VI implementuje totoznu funkcionalitu ako tato
funkcionalna globalna premennd. Vyhodou pouzivania funkcionalnej globalne;j
premennej je jednoduchd moznost Uprav jej implementdcie, jako napriklad
pridanie moznosti pre pauzu.

Chyby subehu (Race conditions)

K chybam sibehu dochadza ked ¢asovanie udalosti alebo uUloh nedmyselne
ovplyvni vystup alebo hodnotu dat. Chyby subehu su beinym problémom v
programoch ktoré vykonavaju viacero uloh subeizne a zdielaju data medzi
ulohami.

20

Na jednoprocesorovych pocitacoch, ukony v multi-taskingovom programe sa
vykonaju v skutoénosti sekvencéne. LabVIEW a operacny systém rychlo prepina
medzi Ulohami, tym padom ulohy sa javia ako sucasne vykondvané. V tomto
priklade chyba subehu nastane ak prepnutie z jednej Ulohy do druhej nastane v
istom cCase.

Chyby subehu su tazko identifikovatelné a laditelné, nakolko vystup zavisi od
poradia v akom operacny systém vykond planované ulohy a od c¢asovania
externych udalosti. Spb6sob interakcie uUloh a operacnéhosystému, ako aj
lubovolné ¢asovanie externych udalosti, robi toto poradie v zasade nahodnym.
Kéd s chybou subehu moéze vracat tu istu hodnotu tisic krat v testovacej
prevadzke, a predsa v redlnej prevadzke moze vratit neocakavany vystup.

NajlepSim spdsobom na zabranenie chyb subehu je pouiZitie nasledovnych
technik:

* Riadenie a obmedzenie zdielanych zdrojov.
* |dentifikacia a ochrana kritickych sekcii v kode.
« Specifikacia poradia vykondvania.

Riadenie a obmedzenie zdielanych zdrojov.

Chyby subehu su beiné ak obe ulohy Citaju a zapisuju do zdielaného zdroja, ako
je to v predoslom priklade. Zdroj je fubovolna entita, ktora je spolo¢na pre
viaceré procesy. Pri chybach subehu su najbeinejsSimi zdielanymi zdrojmi
Uloziska dat, ako napriklad premenné. Prikladom na dalSie zdroje su subory a
referencie na hardvérové zdroje.

UmozZnenie zmeny zdroja z viacerych miest ¢asto vnasa moznost vyskytu chyb
subehu. Tym padom, idedlnym spésobom na zabranenie chyb subehu je
minimalizacia zdielanych premennych a poctu zapisujucich uzlov do zvysnych
zdielanych premennych. Vo vSeobecnosti plati, Ze mat viacero uzlov na Citanie
alebo monitoring zdielanych premennych nie je nebezpecné. Avsak, pouzite iba
jeden zapisujuci uzol alebo kontrolér na jednu zdieland premennu. Vacsina
chyb subehu nastane ak zdroj ma viacero zapisujucich uzlov.

V predoslom priklade mozete znizit zavislost na zdielanych zdrojoch ak kazda
slucka si bude udrzovat pocet lokalne. Nasledne, az po kliknuti na tladidlo Stop
zdielajte poCty. K tomu je potrebny iba jeden uzol na Citanie a jeden na zdapis do

21

zdielanej premennej, tym pasom sa eliminuje moznost chyby subehu. Ak vsetky
zdielané zdroje maju iba jeden zapisujuci uzol alebo kontrolér, a VI ma spravne
poradie instrukcii, tak chyby stehu nenastanu.

Ochrana kritickych sekcii

Kriticka sekcia kddu je ta cast kodu ktord sa musi spravat konzistentne za
vsetkych okolnosti. Ked pouzivate multi-tasking programy, tloha moze prerusit
beh inej ulohy. Toto sa deje takmer vo vsetkych sucasnych operacnych
systémoch. Za beinych okolnosti, prepinanie medzi ulohami nema Ziadny
nasledok. AvSak ked uloha ktora prerusila vykonavanie inej ulohy zmeni
zdielanu premennu, ktoru prerusena uloha povazuje za konstantnu, dojde k
chybe subehu.

Ak jedna slucka prerusi druht slu¢ku pocas vykondvania kédu v kritickej sekcii,
mobze dojst k chybe subehu. Jednym zo sp6sobov na eliminaciu chyb sdbehu je
identifikdcia a ochrana kritickej sekcie kdédu. Existuje viacero technik na
ochranu kritického kédu. Dve najefektivnejSie su funkciondlne globalne
premenné a semafory.

Funkcionalne globalne premenné

Jednou z moiZnosti ako chranit kriticky kod je vloZit ho do subVI. Volat
nereentrantné subVl mozZete iba z jedného miesta sucasne. Tym padom,
vloZenie kritického kddu do nereentrantného subVI zabezpeci ochranu kédu
pred prerusenim inymi volajucimi procesmi. PouZivanie architektury
funkcionalnej globalnej premennej na ochranu kritickej sekcie kédu je obzvlast
efektivne, nakolko pomocou posuvnych registrov mobzZete nahradit menej
chranené metddy datovych uloZisk, ako napr. globdlne, alebo single-process
zdielané premenné. Funkciondlne globalne premenné taktiez podnecuju tvorbu
multi-funkcionalnych subVI ktoré obsluzia vsetky ulohy asociované s danym
zdrojom.

Po identifikacii vSetkych sekcii kritického kdédu, zoskupte tieto sekcie podla
zdrojov ku ktorym pristupuju, a nasledne vytvorte funkciondlne globdlne
premenné pre kazdy zdroj. Z kritickych sekcii vykonavajucich rézne operacie
moZete spravit prikazy pre funkciondlnu globalnu premennd, a tym padom
mobZete zoskupit totoZné opericie do jediného prikazu, ¢im zvysite
znovupouzitelnost kédu.

22

Semafory

Semafory su synchronizaéné mechanizmy, Specificky navrhnuté na ochranu
zdrojov a kritickych sekcii kddu. MoéZete zabranit tomu, aby sa kritické sekcie
kddu sa navzajom prerusovali. Uzavrite kriticky kéd medzi Acquire Semaphore a
Release Semaphore VI. Standardne, semafor neumoini aby ho ziskala viac ne?
jedna uloha. Tym padom, po tom, €o jedna z uloh vstupi do kritickej sekcie,
ostatné ulohy nemozu vstupit do kritickej sekcie pokym sa prva uloha neukondi.
Pri spravnom pouziti, tato metdda eliminuje chyby subehu.

Urcenie poradia vykonavania

Kod, v ktorom tok dat nie je spravne pouzity na riadenie poradia vykonavania,
moze sposobit chyby subehu. Ked' zavislost na datach nie je zavedend, LabVIEW
mobZe naplanovat ulohy v lubovolnom poradi, o moze mat za nasledok chyby
subehu, ak ulohy su vzajomne zavislé.

23

3. NAVRH POUZIVATELSKEHO ROZOHRANIA S DOTYKOVOU
OBRAZOVKOU

Building User Interfaces and HMIs Using LabVIEW

This chapter examines one software design architecture for building an
operator interface with a scalable navigation engine for cycling through
different HMI pages.

You can use this architecture to build an HMI based on LabVIEW for any HMI
hardware targets including the NI TPC-2512 touch panel computer running the
Windows XP Embedded OS or the NI TPC-2106 running the Windows CE OS and
the NI PPC-2115 panel PC running the Windows XP OS. LabVIEW is a full
programming language that provides one solution for a variety of development
tasks ranging from HMI/SCADA systems to reliable and deterministic control
applications. The LabVIEW Touch Panel Module offers a graphical programming
interface that you can use to develop an HMI in a Windows development
environment and then deploy it to an NI touch panel computer (TPC) or any
HMIs running Windows CE. This chapter offers a framework for engineers
developing HMls based on both Windows Vista/XP and Windows CE.

Basic HMI Architecture Background

An HMI can be as simple or as complex as the functionality you require. The
software architecture defines the functionality of an HMI as well as its ability to
expand and adapt to future technologies. A basic HMI has three main routines:

1. Initialization and shutdown (housekeeping) routines
2. 1/0O scan loop
3. Navigation (user interface) loop

Before executing the 1/0O scan loop and the navigation loop, the HMI needs to
perform an initialization routine. This initialization routine sets all controls,
indicators, internal variables, and variables communicating with the hardware
(controller) to default states. You can add more logic to prepare the HMI for
operations such as logging files. Before stopping the system, the shutdown task
closes any references and performs additional tasks such as logging error files.
Initialization and shutdown tasks are not diagramed since they are not
processes (they execute only once).
24

=] Touch Panel HMI

= CompactRIO I/O Scan Loop

Data Sender > Data Engine | Event Engine > Alarm Engine

Command Parser v

Navigation Loop

: Background
Ul Pages Processes

Figure 3.1: Basic Software Architecture of a Touch Panel HMI Communicating With a
CompactRIO Controller

1/0O Scan Loop

The 1/0O scan loop typically consists of three components: a Data Engine, an
Event Engine, and an Alarm Engine.

Data Engine

The Data Engine exchanges tag values with the controller via an Ethernet-based
communication protocol or Modbus. It receives this data across the network
and makes it available throughout the HMI application.

Event Engine

The 1/O scan loop might also handle alarms and events. An Event Engine
compares a subset of tag values to a set of predefined conditions (value equal
to X, value in range or out of range, and so on) and logs an event when a tag
value matches one of its event conditions.

Alarm Engine

Some events are simply logged while other events require operator
intervention and are configured as alarms. The alarm event data is sent to the
Alarm Displays Engine, which manages how the alarm is presented to the
operator. When the tag value leaves the alarm state, the Event Engine sends an
alarm canceling the event to the Alarm Displays Engine.

Navigation Loop

25

With a Windows CE-based touch panel, you do not have individual windows
like you do in a Windows XP or Windows 7 application. Instead, the top-level VI
occupies the entire screen. In addition, the tab control is not supported in
Windows CE. Therefore, to switch between different panels (Uls) in the
application, you need to add support in your Ul such as buttons to switch to
other panels.

The navigation loop handles the management and organization of different Uls
in your application. You can implement a navigation loop as a simple state
machine built with a While Loop and a Case structure. Each case encloses an
HMI page VI that, when called, is displayed on the HMI screen. Figure 3.2 is an
example of a navigation loop.

|Create page VIs from page template and add to this case 5tructure|

Initial Page [initialization] [HNE Page Manager (Next)| £ Launch HMI Page
fion] . -
Max page history length i i I I_. -------------------------------- |

:
(5. b) :

Figure 3.2: Example Navigation Loop Block Diagram

This example uses the HMI Navigation Engine (HNE) reference library, which
was created for HMI page management and navigation. The HNE is based on
ViIs included with the LabVIEW Touch Panel Module, but it features an
additional history cache so the user can define a button to jump backward
toward the previously viewed screen. The HNE also includes basic templates
and examples for getting started. Refer to the NI Developer Zone document
HMI Navigation Engine (HNE) Reference Library to download the HNE library.

The HNE installs a page manager APl palette named HNE to the User Libraries
palette in LabVIEW.

26

421 HNE

J

L L 1L L

HME Page M... HME Page M... HME Page M... HME Page M...

L4 .4
==

Exarnples Templates

Figure 3.3. HNE (HMI Navigation Engine) Palette

HNE Page Manager (Init)—This VI initializes the HNE by setting the navigation
history depth and setting the name of the first page to be displayed.

HNE Page Manager (Next) —This VI returns the name of the next page and
passes it to the Case structure in the HNE.

HNE Page Manager (Set)—This VI sets the name of the next page to be
displayed. It is used within HMI pages to support navigation buttons.

HNE Page Manager (Back)—This VI returns the name of the previous page from
the page history. It is used within HMI pages to support the operation of a
“back” navigation button.

Examples subpalette—This is a subpalette that contains the example VI for the
HNE API.

Templates subpalette—This is a subpalette that contains two template VIs for
the HNE API. The first is a template VI for the navigation loop called
HMI_NavigationEngine VI and the second is a template for an HMI page called
HMI_Page VI.

The navigation engine uses VIs from the Touch Panel Navigation palette.

A I (), Search l o iE ¥ l

[] = [T []
=l Tl Tl
iy BE, BE B
TPC Initialize ... TPC Gek Mext,.. TPC Sek Mext,., TPC Set Previ...

Figure 3.4. The Navigation Palette

27

TPC Initialize Navigation—This VI initializes the navigation engine by setting the
navigation history depth and the name of the first page to be displayed.

TPC Get Next Page—This VI returns the name of the next page and passes it to
the Case structure in the HMI navigation engine.

TPC Set Next Page—This VI sets the name of the next page to be displayed. Use
it within HMI pages to support navigation buttons.

TPC Set Previous Navigation Page—This VI returns the name of the previous
page from the page history. Use it within HMI pages to support the operation
of a “back” navigation button.

The page state and history are stored in a functional global variable that each
of these VIs access.

Ul Pages

As stated above, the navigation loop contains all of the HMI pages for an
application. Each HMI page is a LabVIEW VI created to monitor and configure a
specific process or subprocess in the machine. The most common elements on
a page front panel are navigation buttons, action buttons, numeric indicators,
graphs, images, and Boolean controls and indicators. Figure 3.5 shows an
example page containing a typical set of front panel elements.

Page vnavple v Front Parm! = U
[t I ¥ (porwte Jook Window ek }
[
0 |

Motor Speed

Sequence 1 results
12:01:32 Pass
Sequence 2 results

12:25:13 Pass

Speed (RPM) .

Sequence 3 resuits

12:40:25 Fall

Figure 3.5. Example of a Typical Ul Page in LabVIEW

28

The page block diagram uses the event-based producer consumer design
pattern to implement a responsive, event driven Ul. The example in Figure 3.6
uses the Asynchronous Message Communication (AMC) reference library for
interprocess communication. You can download the AMC reference library,
which uses queues for interprocess communication, from the NI Developer
Zone document Asynchronous Message Communication (AMC) Reference
Library. The AMC library also has an API based on UDP that you can use to send
messages across the network. You can implement the Figure 3.6 example using
gueue functions for communicating between the Event Handler process and
the Message process.

= T Frocess Data 1” a2
State Varlables
e

Message Generain - 1lsar Intesfane Fvent Handies

[This Innp ariris messages b he quUeiR fn he processed i the
Imessage processor, In a UL application this loop typically uses the LT
fevenil strutbure L detect U events and place U on Ui nessaus
Jaucue. Cther types of applations may replace this structure with [dd actions to perfiorm in response to Frocess button being pressed|
lother code that will receive messages and place them on the quaus.
Event Structure Timeout {ms)
. [Frocess Data L wf|
Source
Tyoe E.. ‘.l
Time =
CHRAF |
CidVal
|
[Frocess Data 1 lgedl
lE
oo
=) Fimecu]
py =
424]

E
']

Figure 3.6. Example Page Block Diagram Using AMC Design Pattern

For more information on creating Ul pages, see the NI Developer Zone
document Creating HMI Pages for the LabVIEW Touch Panel Module.

29

4. PRIDANIE POCITACOVEHO VIDENIA A ROZPOZNAVANIA OBRAZU
DO COMPACTRIO SYSTEMU PRE MERACIE A RIADIACE
APLIKACIE

Machine Vision/Inspection

Machine vision is a combination of image acquisition from one or more
industrial cameras and the processing of the images acquired. These images are
usually processed using a library of image processing functions that range from
simply detecting the edge of an object to reading various types of text or
complex codes.

Figure 4.1. Edge detection, optical character recognition, and 2D code reading are common
machine vision tasks.

Often more than one of these measurements is made on one vision system

from one or more images. You can use this for many applications including

verifying that the contents of a container match the text on the front of the

bottle or ensuring that a code has printed in the right place on a sticker.

The information from these processed images is fed into the control system for
data logging, defect detection, motion guidance, process control, and so on.

For information on the algorithms in NI vision tools, see the Vision Concepts
Manual.

Machine Vision System Architecture

Typical machine vision systems consist of an industrial camera that connects to
a real-time vision system, usually via a standardized camera bus such as IEEE
1394, Gigabit Ethernet, or Camera Link. The real-time system processes the
images and has I/O for communicating to the control system.

30

A few companies have combined the camera with the vision system, creating
something called a smart camera. Smart cameras are industrial cameras that
have onboard image processing and typically include some basic I/0.

NI offers both types of embedded machine vision systems. The NI Compact
Vision System (Figure 4.2) is a real-time embedded vision system that features
direct connectivity to up to three IEEE 1394 cameras as well as 29 general use
I/O channels for synchronization and triggering. This system features Ethernet
connectivity to your industrial network, allowing communication back to
CompactRIO hardware.

NI Smart Cameras (Figure 4.2) are industrial image sensors combined with
programmable processors to create rugged, all-in-one solutions for machine
vision applications. These cameras have a VGA (640x480 pixels) or SXGA
(1280x1024 pixels) resolution as well as an option to include a digital signal
processor (DSP) for added performance for specific algorithms. These cameras
feature dual Gigabit Ethernet ports, digital inputs and outputs, and a built-in
lighting controller.

Figure 4.2. NI Compact Vision System and NI Smart Camera

NI also offers plug-in image acquisition devices called frame grabbers that

provide connectivity between industrial cameras and PCI, PCI Express, PXI, and
31

PXl Express slots. These devices are commonly used for scientific and
automated test applications, but you also can use them to prototype a vision
application on a PC before you purchase any industrial vision systems or smart
cameras.

All NI image acquisition hardware uses the same driver software called NI
Vision Acquisition software. With this software, you can design and prototype
your application on the hardware platform of your choice and then deploy it to
the industrial platform that best suits your application requirements with
minimal code changes.

Lighting and Optics

This guide does not cover lighting and optics in depth, but they are crucial to
the success of your application. These documents cover the majority of the
basic and some more advanced machine vision lighting concepts:

e A Practical Guide to Machine Vision Lighting—Part |
e A Practical Guide to Machine Vision Lighting—Part II
e A Practical Guide to Machine Vision Lighting—Part ll|

The lens used in a machine vision application changes the field of view. The
field of view is the area under inspection that is imaged by the camera. You
must ensure that the field of view of your system includes the object you want
to inspect. To calculate the horizontal and vertical field of view (FOV) of your
imaging system, use Equation 4.1 and the specifications for the image sensor of
your camera.

FOV = Pixel Pitch » Active Pixels x Working Distance
Focal Length

Eq 4.1. Field of View Calculation
Where
e FOVis the field of view in either the horizontal or vertical direction

e Pixel pitch measures the distance between the centers of adjacent pixels
in either the horizontal or vertical direction

e Active pixels is the number of pixels in either the horizontal or vertical
direction

32

e Working distance is the distance from the front element (external glass)
of the lens to the object under inspection

e Focal length measures how strongly a lens converges (focuses) or
diverges (diffuses) light

1 Horizontal lmaging Width 3 Horizontal Figld of View
2 Working Distance

Figure 4.3. The lens selection determines the FOV.

For example, if the working distance of your imaging setup is 100 mm, and the
focal length of the lens is 8 mm, then the FOV in the horizontal direction of an
NI Smart Camera using the VGA sensor in full Scan Mode is

_ 0.0074 mm x 640 = 100 mm

Forfﬁorf:omm' - g mm = 592 mm

Similarly, the FOV in the vertical direction is
FOV, i = 0.0074 mm x 480 x 100 mm _ 44 4 mm

8 mm

Based on the result, you can see that you may need to adjust the various
parameters in the FOV equation until you achieve the right combination of
components that match your inspection needs. This may include increasing

33

your working distance, choosing a lens with a shorter focal length, or changing
to a high-resolution camera.

Software Options

Once you have chosen the hardware platform for your machine vision project,
you need to select the software platform you want to use. NI offers two
application development environments (ADEs) for machine vision. Both NI
Compact Vision Systems and NI Smart Cameras are LabVIEW Real-Time targets,
so you can develop your machine vision application using the LabVIEW Real-
Time Module and the NI Vision Development Module.

The Vision Development Module is a library of machine vision functions that
range from basic filtering to pattern matching and optical character
recognition. This library also includes the NI Vision Assistant and the Vision
Assistant Express VI. The Vision Assistant is a rapid prototyping tool for
machine vision applications. With this tool, you can use click-and-drag,
configurable menus to set up most of your application. With the Vision
Assistant Express VI, you can use this same prototyping tool directly within
LabVIEW Real-Time.

Another software platform option is NI Vision Builder for Automated Inspection
(Al). Vision Builder Al is a configurable machine vision ADE based on a state
diagram model, so looping and decision making are extremely simple. Vision
Builder Al features many of the high-level tools found in the Vision
Development Module. Both hardware targets work with Vision Builder Al as
well, giving you the flexibility to choose the software you are most comfortable
with and the hardware that best suits your application.

34

Vision Application

1F 1F

=) Programming
-Vision Development Module -
= LabVIEW

1F 1F

NI Vision Acquisition Software

as|

Figure 4.4. NI offers both configuration software and a full programming environment for
machine vision application development.

Configuration
- Vision Builder Al -

Machine Vision/Control System Interface

Most smart camera or embedded vision system applications provide real-time
inline processing and give outputs that you can use as another input into the
control system. The control system usually has control over when this image
acquisition and processing starts via sending a trigger to the vision system. The
trigger can also come from hardware sensors such as proximity sensors or
guadrature encoders.

The image is processed into a set of usable results such as the position of a box
on a conveyor or the value and quality of a 2D code printed on an automotive
part. These results are reported back to the control system and/or sent across
the industrial network for logging. You can choose from several methods to
report these results, from a simple digital I/O to shared variables or direct
TCP/IP communication, as discussed previously in this document.

Machine Vision Using LabVIEW Real-Time

35

The following example demonstrates the development of a machine vision
application for an NI Smart Camera using LabVIEW Real-Time and the Vision
Development Module.

Step 1. Add an NI Smart Camera to the LabVIEW Project

You can add the NI Smart Camera to the same LabVIEW project as the
CompactRIO system. If you wish to prototype without the smart camera
connected, you can also simulate a camera.

2
Targets and Devices

(+) Bxdsting target or device
Discover an axisting targot(s) or deviceds),

) Dasting device on remote subnet
Specly & davice on & remote suboet by address

) New target or device
Creato & new target or device by type. ﬂ 10} |
Targets and Devices - Fle Edk View Project Operate Tools Window Help
+) Compact Vison Systen FN— o ~— .
& L) Reak-Tene CompactRIO L_l F‘ %" H Eﬂ Y ?J i

) Reak-Tene Desitop [tems Files
*) Res-Tere PX1

Bowd RIO = Bl Project: Control Primer Example.vproj
+ N My Computer

+ [} RT CompadtRIO Target (192.168.1.101)
= Tl Smart Camera Target (192.163.1.102)
< Dependencees
.’Q:-‘ Buld Specifications

v
< >

Relfrosh . [coxa J[o |

Figure 4.5. You can add NI Smart Camera systems to the same LabVIEW project as
CompactRIO systems.

Step 2. Use LabVIEW to Program the NI Smart Camera

Creating an application for the smart camera is almost identical to creating an
application for a CompactRIO real-time controller. The main difference is using
the NI Vision Acquisition driver to acquire your images and algorithms in the
Vision Development Module in order to process them.

You can create a new VI and target it to the smart camera just as you have
created VIs for CompactRIO.

36

i It
{3 project Explorer - Control Primer Example.lvp...ElElg

File Edit View Project Operate Tools Window Help
[hS@l xhOX||ER| R o

Items Files

= IEQ. Project: Control Primer Example.lvproj
E} B My Computer
= Dependencies

{ - Build Specifications
3t RT CompactRIO Target (0.0.0.0)

& B 6
"% Dependencies W
i +E Build Specification e , Si.rnulation bsj"ﬁ:em
Virtual Folder
Connect
o Control
o Lib
Utilities poo
Variable
Deploy Tirne-Triggered Variable
Deploy All I/O Server
. Find Project Items... Class
STl > Statechart
Expand All Targets and Devices...
Collapse All Robotics Environment Sirmulator
Remowve from Project
Rename... F2
Help...
Properties

Figure 4.6. Adding a VI on Your NI Smart Camera to Your Project in LabVIEW Real-Time

Upon deployment, this VI resides in smart camera storage and runs on the
smart camera during run time.

To simplify the process of acquiring and processing images, NI includes Express
Vis in the Vision palette. Use these Express Vis in this example to acquire
images from the smart camera (or vision system) as well as process the images.
To access these Express Vls, right-click on the block diagram and choose
Vision»Vision Express.

37

‘ﬂ“ I O%Search l =R l B

&)

E4

[Fi=)

Vision Acquisi, ..

Vision Assistant

Figure 4.7. The Vision Express Palette

The first step is to set up an acquisition from your camera. Or, if your camera is
not available or not fixtured correctly yet, you also can set up a simulated
acquisition by opening images stored on your hard drive.

Start by dropping the Vision Acquisition Express VI onto the block diagram. This
menu-driven interface is designed so that you can quickly acquire your first
image. If you have any recognized image acquisition hardware connected to

your computer, it shows up as an option.

menu to open images from disk.

(=]

If not, you have the option on the first

() Single Acquisition with processing

This acquisition is used For acquiring a single image. Mo loop
structures are required.

@ Continuous Acquisition with inline processing
This acquisition is used For continuously acquiring images. IF you do not
want o miss images, select Acguire Every image and specify the Mumber of
Images to buffer. Your average image processing time must be less than
wour image acquisition time to avoid missing images,

() Finite Acquisition with inline processing
This acquisition is used for acquiring a fixed number images once, When an
image is acquired, it will be available For image processing. This is useful if you
want to display or process vour images before the acquisition is done,

O Finite Acquisition with post processing
This acquisition is used For acquiring a fixed number images once. The images
will be available when allimages have been acquired. This is useful if wour
image processing time is longer than your image acquisition time.

Select Acquisition Source | Select Acquisition Type | Configure Acquisition Settings | Select Controls/Indicators

2]

Acquire Image Type

Acquire Most Recent Image

Murnber of Images to BuFfer
5

Murnber af Images ko Acquire
o 5
=1
A
N Mumber of Images ko Acquire
T [5
o 4
[l

(oo [notor] [) [coneel |

Figure 4.8. The Vision Acquisition Express VI guides you though creating a vision
application in LabVIEW.

38

Next, choose which type of acquisition you are implementing. For this example,
select Continuous Acquisition with inline processing so you can sit in a loop and
process images. Next, test your input source and verify that it looks right. If it
does, then click the finish button at the bottom.

Once this Express VI generates the LabVIEW code behind the scenes, the block
diagram appears again. Now drop the Vision Assistant Express VI just to the
right of the Vision Assistant Express VI.

With the Vision Assistant, you can prototype your vision processing quickly. You
can deploy this same tool to real time systems, although traditional LabVIEW
Vis are usually implemented to provide greater efficiency in the real-time
systems. For an overview of the tools in this assistant, view the NI Vision
Assistant Tutorial.

Step 3. Communicate With the CompactRIO System

Once you have set up the machine vision you plan to conduct with the Vision
Assistant Express VI, the last thing to do is communicate the data with the
CompactRIO system. You can use network-published shared variables to pass
data between the two systems. Network communication between LabVIEW
systems is covered in depth in an earlier section in this document. In this
example, you are examining a battery clamp, and you want to return the
condition of the holes (if they are drilled correctly) and the current gap shown
in the clamp.

39

’l‘ln’o(' Explorer - Control Praner Fxam 4-_\3"-'1 '(hechClamp. vi Block Disgram on Control Primer Example tvprep/Smart Camera Tary. . ‘;‘Ew

B £ Yo Gt Gpeate Do Wrdow teb
B3| % g E &

Al

Rems | fes

[.,& Project: Control Primer Example. o)

= ﬂ My Computes

r ¥ Copesiuchs

® Suld Specfuations

RT CompactRIO Targst {192.168.1.101)
Chassts ((R10-5104)

o]

o
g TR 1
&«

z
3

-

Bl St Camera Target (192,163.1.102)

i

Bl EX Yow Projet Cperate Took Windw Help R
Emmnc‘ Q@Itmmm =

ERmi R

200 | Vaondcquston || Vison Assstant

B8 seF FSEEn‘;}b:T;r .—ﬁg_q}f’f =] 4
Stopped v} (Do ICE EL i)
<3 ‘]
L ’ |
(o [ofames
[Acquire Trage] [rocess mage] toto

ﬂ ChechClamp vi Tront Panel on Control Primer Dxample tprejfSmart Canera Target *

ortrol Primer Cxample hproySmart Camera Target (¢ | -

lelolokBuoDnh = Brh

Figure 4.9. A Complete Inspection in LabVIEW

As you can see in Figure 4.9, the results of the inspection are passed as current
values to the CompactRIO system via shared variables hosted on the
CompactRIO system. You can also pass the data as commands to the

CompactRIO system.

Machine Vision Using Vision Builder Al

As mentioned previously, Vision Builder Al is a configurable environment for

machine vision. You implement all of the image acquisition, image processing,
and data handling through configurable menus.

Step 1. Configure an NI Smart Camera With Vision Builder Al

40

When you open the environment, you see a splash screen where you can
choose your execution target. If you do not have a smart camera connected,
you can simulate a smart camera. Choose this option for this example.

m":l n Builder Al elcon

NATIONAL
INSTRUMENTS

q Configure Tnspection D

Inspect Product]

I
- - - | i
Vision Builder — =

for Automated Inspection

[recution Targe': Sk ge e gy T Ly w

ni.com/vision

Figure 4.10. Choose your execution target from the Vision Builder Al splash screen.

With this emulator, you can set up lighting and trigger options, arrange I/0 to
communicate to the CompactRIO hardware, and complete many of the other
actions required to configure the smart camera without having one available
for your development system. Once you have selected your execution target,
click on Configure Inspection. This takes you into the development
environment, which features four main windows. Use the largest window, the
Image Display Window, to see the image you have acquired as well as any
overlays you have placed on the image. Use the window to the upper right, the
State Diagram Window, to show the states of your inspection (with your
current state highlighted). The bottom right window, the Inspection Step
palette, displays all the inspection steps for your application. Lastly, the thin
bar at the bottom is the Step Display Window, where you see all of the steps
that are in the current state.

41

[7 53 vew Coeste Toms Wb

RVSH A [elSex® T uw > o,
|
State Diagram
Windowe

-

Image Display
Window

< ’

— @& & (T 7" an te
;‘ h.)‘ﬂ:.In\?".-'-r mowesh fegam N

ann e skl i, S
Ll =

- > e bt
| *‘. - :n‘-_.l of mages by readng mages
B
»

sae = Rx @
Inspection Step

Step Display Window by
S ! Palette

Figure 4.11. The Vision Builder Al Development Environment

This example implements the same inspection as the LabVIEW example that
inspected battery clamps and returned the number of holes and the gap of the
clamp back to CompactRIO via the two shared variables hosted on the
CompactRIO hardware.

Step 2. Configure the Inspection

The first step of the inspection, just like in LabVIEW, is to acquire the image.
Implement this with the Acquire Image (Smart Camera) step. Select this step
and configure the emulation by clicking on the Configure Simulation Settings
button. For example, set the image to grab the images from the following path:

C:\Program Files\National Instruments\Vision Builder Al
3.6\Demolmg\Battery\BAT0000.PNG

This library of images should install with every copy of Vision Builder Al (with
differing version numbers). After selecting the file above, also make sure to
check the box for Cycle through folder images.

You also see that with this window, you can configure exposure times, gains,
and other settings for the camera. These settings do not make any difference in

42

the emulator, but in the real world, they go hand-in-hand with lighting and
optics choices.

Main | Trigger | Lighting | Advanced |

I > I Configure Simulation Setkings l

Skep Mame
Acquire Image (Smark Camera) 1

Exposure Time (ms)
. 502z
| | | | | 11

001 o1 1 10 100 2000

ain

. 200
1 1 1 1 1

] 200 400 600 7ed

it

03

[(8]4] [Cancel]

Figure 4.12. The Image Acquisition Setup Step

From here, set up pattern matching, edge detection, object detection, code
reading, or any other algorithms you need. For example, implement a pattern
match to set the overall rotation of the object, a detect objects to see if both of
the holes were in the clamp, and a caliper tool to detect the distance between
the clamp prongs. This generates a few pass/fail results that you can use to set
the overall inspection status, which you can display on the overlay to the user.

43

e 2 Yo Opwas Toch
UdH PRPAOM #Sex® TN w dEBeD °

Figure 4.13. A Completed Inspection in Vision Builder Al

Now create two new states by clicking the toggle main window view button
(circled in red). Create a pass state and a fail state. In both states, report the
values back to CompactRIO but, in the fail state, also reject the part using some
digital I/O.

Step 3. Communicate With the CompactRIO System

Vision Builder Al provides access to many of the 1/O types discussed previously,
including network-published shared variables, RS232, Modbus, Modbus TCP,
and raw TCP/IP. In this example, use the variable manager to access the shared
variables hosted on CompactRIO. Access the variable manager by navigating to
Tools»Variable Manager.

Here you can discover the variables on the CompactRIO system by navigating to
the Network Variables tab. From there, select and add the variables and bind
them to variables within the inspection.

44

Step Mame
Publish Yariables

‘Wariables
MName Scope Current Yalue Operation Tew Yalue -~
Distance Inspection 0 Set o Caliper 1 - Distance (Pixel) Z8.55705
Mumber of Holes Inspection 0 Set ko Makch Patkern 1 - # Matches 1
w
Operation

O Do ok Set Commenk

() Set ko Constant a0 ~

(%) SetboMeasurement |Caliper 1 - Diskance (Pixel) w

O Increment

O Decrement W

Edit Yariables] [oK] [Cancel

Figure 4.14. Setting Up Variable Communication in Vision Builder Al

Now these results are sent back to the CompactRIO system, and the inspection
waits on the next camera trigger.

As you can see, both methods (programmable and configurable) offer the user
a way to acquire images, process them, and then use the pertinent information
to report results back to a CompactRIO control system or to directly control I/0
from a real-time vision system.

45

5. RIADENIE POHONOV POMOCOU COMPACTRIO SYSTEMOV

Motion Control

This section examines precision motion control. Motor control is the on-off
control or simple velocity control of rotary equipment such as fans and
pumps. You can implement motor control with standard digital output
modules to an appropriate motor starter or with an analog output to a
Variable Frequency Drive (VFD). With specialized sensors, actuators, and
fast control loops, you can perform precise position or velocity motion
control, often on multiple axes. This section discusses the more
sophisticated task of performing high-precision motion control on
CompactRIO hardware.

A full motion control implementation is a complex system with several
nested control loops—some running at high speeds—and precise
mechanical components. A reliable, high-performance motion control
system consists of the following devices:

1. Motion controller—This controller is the processing element that runs
software algorithms and closed control loops to generate the motion
profile commands based on the move constraints from the user-
defined application software and I/O feedback.

2. Communication module—This 1/O module interfaces with the drive
and feedback devices. It converts the command signals from the
motion controller to digital or analog values that the drive can
interpret.

3. Drive/amplifier—The drive/amplifier consists of the power electronics
that convert the analog or digital command signal from the
communication module into the electrical power needed to spin the
motor. In many cases, it also has a processing element that closes
high-speed current control loops.

4. Motor—The motor converts the electrical energy from the
drive/amplifier into mechanical energy. The motor torque constant,
kt, and the motor efficiency define the ratio between motor current
and mechanical torque output.

46

5. Mechanical transmission—The transmission consists of the
components connected to the motor that direct the rotary motion of
the motor to do work. This typically involves mechanical devices such
as gearboxes or pulleys and lead screws that convert the rotary
motion at the motor shaft to a linear movement at the payload with a
certain transmission gear ratio. Common examples are belts,
conveyors, and stages.

6. Feedback devices—These are sensors such as encoders and limit
switches that provide instantaneous position and velocity information
to the drive/amplifier and the motion controller

[Drive Signal] [Current]

Application Motion I/O ¢ Amplifier ‘l, Mechanical
Software Controller Module Drive System
e

Feedback
T Device

[Position, Velocity]

Figure 5.1. Simplified Motion System Diagram for CompactRIO

The Motion Controller

The motion controller, the heart of the motion system, contains the motion
control software that offers you the flexibility to create complicated multiaxis
motion control applications. The motion controller consists of three cascaded
control loops.

47

Trajactory Genaralion
[ms)

Supervisory Conirol
ims}

Conirol Loop (ps)
[with Interpolation)

A Usar AP
o | Interface

Wity

Commands jor

Supervisary
Trajectory Generator

Control

Output
[Euent Manitoring Interfa De] Set Point '

Updated
...... =" Updates Trajectory

Generalor Based on
e} 1 And User
Pesponse

HoEpasy

Senscr

Figure 5.2. Functional Architecture of NI Motion Controllers

1. Supervisory control—This top control loop executes command

sequencing and passes commands to the trajectory generation loops.
This loop performs the following:

e System initialization, which includes homing to a zero position

e Event handling, which includes triggering outputs based on position or
sensor feedback and updating profiles based on user-defined events

e Fault detection, which includes stopping moves on a limit switch
encounter, safe system reaction to emergency stop or drive faults, and
other watchdog actions

. Trajectory generator—This loop receives commands from the
supervisory control loop and generates path planning based on the
profile specified by the user. It provides new location setpoints to the
control loop in a deterministic fashion. As a rule of thumb, this loop
should execute with a 5 ms or faster loop rate.

. Control loop—This is a fast control loop that executes every 50 ps. It uses
position and velocity sensor feedback and the setpoint from the
trajectory generator to create the commands to the drive. Because this
loop runs faster than the trajectory generator, it also generates

48

intermediate setpoints based on time with a routine called spline
interpolation. For stepper systems, the control loop is replaced with a
step generation component.

LabVIEW NI SoftMotion and NI 951x Drive Interface Modules

You can build all of the motion components from scratch using the LabVIEW
Real-Time and LabVIEW FPGA modules, but NI also provides a software module
and C Series I/O modules featuring prebuilt and tested components. The
LabVIEW NI SoftMotion Module offers a high-level API for motion control
programming and features the underlying motion architecture described
previously as a driver service. The supervisory control loop and the trajectory
generator run on the real-time processor on the CompactRIO controller. NI also
offers C Series drive interface modules (NI 951x) that run the control loop and
provide 1/0 to connect with drives and motion sensors. All of the loops and I/0
modules are configured from the LabVIEW project.

For applications that need greater customization, such as a custom trajectory
generator or a different control algorithm, LabVIEW NI SoftMotion offers
software tools to open the code and customize these components with
LabVIEW Real-Time and LabVIEW FPGA. For applications that require
functionality or features that are not available with the NI 951x C Series
modules, LabVIEW NI SoftMotion provides axis interface nodes so you can use
other 1I/O modules or communication interfaces to third-party drives. In
addition, LabVIEW NI SoftMotion enables virtual prototyping for motion
applications and machine design by connecting to the SolidWorks Premium 3D
CAD design application. With NI SoftMotion for SolidWorks, you can simulate
your designs created in SolidWorks using the actual motion profiles developed
with LabVIEW NI SoftMotion function blocks before incurring the cost of
physical prototypes.

For more information, visit ni.com/virtualprototyping.
Getting Started With Motion on CompactRIO

You can build a motion control application with CompactRIO in four basic steps.

49

1. Determine the system requirements and select
components.

2. Connect the hardware.

3. Configure the controller from the LabVIEW
project.

4. Develop a custom motion application using the
NI SoftMotion API.

Figure 5.3. Four Steps for Building a Motion Control System

Determine the System Requirements and Select Components

Start by selecting the right mechanical components and motors for your
system. One of the most common applications involves moving an object from
one position to another. A typical way to change the rotary motion of a rotary
motor to a useful linear motion is by connecting the motor to a stage and using
a leadscrew mechanism to move the payload. Stages are mechanical devices
that provide linear or rotary motion useful in positioning and moving objects.
They come in a variety of types and sizes, so you can use them in many
different applications. To find the correct stage for your application, you need
to be familiar with some of the common terminology used when describing
stages. Some of the key items to consider when selecting a stage include the
following:

e Transmission gear ration—Determines the linear travel distance of the
stage per rotary revolution of the motor.

e Accuracy—How closely the length of a commanded move compares to a
standard length.

e Resolution: The smallest length of travel that a system is capable of
implementing—can be as small as a few nanometers.

50

e Travel distance—The maximum length the system is capable of moving in
one direction.

e Repeatability—The repeated motion to a commanded position under the
same conditions. Often this is specified in unidirectional repeatability,
which is the ability to return to the same point from one direction, and
bidirectional repeatability, which specifies the ability to return from
either direction.

e Maximum load—The maximum weight the stage is physically designed to
carry, given accuracy and repeatability.

Stage Selection

You can choose from a variety of stages to meet your application needs. You
can narrow down these stages to two main types—linear and rotary. Linear
stages move in a straight line and are often stacked on each other to provide
travel in multiple directions. A three-axis system with an x, y, and z component
is @a common setup used to position an object anywhere in a 3D space. A rotary
stage is a stage that rotates about an axis (usually at the center). Linear stages
are used to position an object in space, but rotary stages are used to orient
objects in space and adjust the roll, pitch, and yaw of an object. Many
applications, such as high-precision alignment, require both position and
orientation to perform accurate alignment. The resolution for a rotary stage is
often measured in degrees or arc minutes (1 degree equals 60 arc minutes).
Special types of stages include the goniometer, which looks like a linear stage
that moves in an arc rather than a straight line, or a hexapod, which is a parallel
mechanism that gives you movement in six axes to control—x, vy, z, roll, pitch,
and yaw. With a hexapod, you can define a virtual point in space about which
the stage can rotate. While that is a benefit, the disadvantage is that hexapods
are parallel and the kinematics involved are much more complex than those for
simple stacked stages.

Backlash

Another stage attribute to consider when choosing a stage for your precision
motion system is backlash. Backlash is the lag created when one gear in a
system changes direction and moves a small distance before making contact
with a companion gear. It can lead to significant inaccuracies especially in

o1

systems using many gears in the drive train. When moving on a nanometer
scale, even a small amount of backlash can introduce major inaccuracy in the
system. Effective mechanical design minimizes backlash but may not be able to
eliminate it completely. You can compensate for this problem by implementing
dual-loop feedback in software. The NI 9516 C Series servo drive interface
module supports dual-encoder feedback and accepts feedback from two
different sources for a single axis. To understand the circumstances for which
you need to use this feature, consider a stage. If you monitor the stage position
directly (as opposed to the position of the motor driving the stage), you can tell
if a move you have commanded has reached the target location. However,
because the motion controller is providing input signals to the motor and not
to the stage, which is the primary source of feedback, the difference in the
expected output relative to the input can cause the system to become
unstable. To make the fine adjustments necessary to help the system stay
stable, you can monitor the feedback directly from the encoder on the motor
as a secondary feedback source. Using this method, you can monitor the real
position of your stage and account for the inaccuracies in the drive train.

Motor Selection

A motor provides the stage movement. Some high-precision stages and
mechanical components feature a built-in motor to minimize backlash and
increase repeatability, but most stages and components use a mechanical
coupling to connect to a standard rotary motor. To make connectivity easier,
the National Electrical Manufacturers Association (NEMA) has standardized
motor dimensions. For fractional horsepower motors, the frame sizes have a
two-digit designation such as NEMA 17 or NEMA 23. For these motors, the
frame size designates a particular shaft height, shaft diameter, and mounting
hole pattern. Frame designations are not based on torque and speed, so you
have a range of torque and speed combinations in one frame size.

The proper motor must be paired with the mechanical system to provide the
performance required. You can choose from the following four main motor
technologies:

1. Stepper motor—A stepper motor is less expensive than a servo motor of
a similar size and is typically easier to use. These devices are called
stepper motors because they move in discrete steps. Controlling a

52

stepper motor requires a stepper drive, which receives step and
direction signals from the controller. You can run stepper motors, which
are effective for low-cost applications, in an open-loop configuration (no
encoder feedback). In general, a stepper motor has high torque at low
speeds and good holding torque but low torque at high speeds and a
lower maximum speed. Movement at low speeds can also be choppy,
but most stepper drives feature a microstepping capability to minimize
this problem.

. Brushed servo motor—This is a simple motor on which electrical contacts
pass power to the armature through a mechanical rotary switch called a
commutator. These motors provide a 2-wire connection and are
controlled by varying the current to the motor, often through PWM
control. The motor drive converts a control signal, normally a £10 V
analog command signal, to a current output to the motor and may
require tuning. These motors are fairly easy to control and provide good
torque across their range. However, they do require periodic brush
maintenance, and, compared to brushless servo motors, they have a
limited speed range and offer less efficiency due to the mechanical
limitations of the brushes.

. Brushless servo motor—These motors use a permanent magnet rotor,
three phases of driving coils, and Hall effect sensors to determine the
position of the rotor. A specialized drive converts the £10 V analog signal
from the controller into three-phase power for the motor. The drive
contains intelligence to perform electronic commutation and requires
tuning. These efficient motors deliver high torque and speed and require
less maintenance. However, they are more complex to set up and tune,
and the motor and drive are more expensive.

. Piezo motor—These motors use piezoelectric material to create
ultrasonic vibrations or steps and produce a linear or rotary motion
through a caterpillar-like movement. Able to create extremely precise
motion, piezo motors are commonly used in nanopositioning
applications such as laser alignment. For high accuracy, they are often
integrated into a stage or actuator, but you can also use piezo rotary
motors.

53

Stage Drive Relative

T Travel Distance Repeatability e Relative Cost
Stepper Medium/Low MediunmyLow High Medium/Low Lo Low
Brushed Servo High High High Mediurm Medium Low
Brushless Servo Wery High High High High High/Medium High
Piezo Medium Low Loww Wery High High High

Table 5.1. Comparison of Motor Technology Options

Because the motor and drive are so closely coupled, you should use a motor
and drive combination from one vendor. Though this is not a requirement, it
makes tuning and selection easier.

Connect the Hardware

Once you have selected the appropriate mechanics, motor, and drive for your
application, you need to connect your CompactRIO system to the hardware.
With the Axis Interface Node and LabVIEW FPGA, you can use any C Series
module to connect to the CompactRIO system; however, for simplicity, NI
recommends using the NI 951x C Series drive interface modules.

NI 951x Drive Interface Modules

NI 951x modules provide servo or stepper drive interface signals for a single
axis and can connect to hundreds of stepper and servo drives. In addition to
supplying the appropriate 1/O for motion control, the modules feature a
processor to run the spline interpolation engine with a patented NI step
generation algorithm or the servo control loop.

e The NI 9512 is a single-axis stepper or position command drive interface
module with incremental encoder feedback.

e The NI 9514 is a single-axis servo drive interface module with
incremental encoder feedback.

e The NI 9516 is a single-axis servo drive with dual-encoder feedback.

When run in Scan Mode, these modules must be used in any of the first four
slots in a CompactRIO chassis. With LabVIEW FPGA, you can use them in any
slot.

o4

NI 951x modules were designed to simplify wiring by providing the flexibility to

hook up all the 1/O for motion control to a single module. To further ease

connectivity, the digital I/0 is software configurable to connect to either sinking

or sourcing devices. The modules offer the following:

Analog or digital command signals to the drive
Drive enable signal; software configurable as sinking or sourcing (24 V)

DI signals for home, limits, and general digital 1/O; all software
configurable as sinking or sourcing (24 V)

Encoder inputs and 5 V supply; configurable for single ended or
differential

DI/DO for high-speed position capture/compare functions (5 V)

LEDs to provide quick debugging for encoder states, limit status, and axis
faults

To further simplify wiring, NI offers several options for connecting NI 951x drive

interface modules to external stepper drives or servo amplifiers including the

following:

NI 9512-to-P7000 Stepper Drives Connectivity Bundle—Connects the NI
9512 to the P70530 or P70360 stepper drives from NI.

NI 951x Cable and Terminal Block Bundle—Connects an NI 951x module
with 37-pin spring or screw terminal blocks.

D-SUB and MDR solder cup connectors—Simplifies custom cable
creation.

D-SUB to pigtails cable and MDR to pigtails cable—Simplifies custom
cable creation.

95

L

- ok B Tow Dont e . =
oo | BHARHLE. [e e,

Figure 5.4. Choose from several options to simplify connecting NI 951x modules directly to
drives.

Configure the Controller From the LabVIEW Project

To use LabVIEW NI SoftMotion in LabVIEW, you must first create axes,
coordinates, and tables in the LabVIEW project. When you create these items,
you associate a logical channel with the physical motion resources and
instantiate background control loops to run on the controller. You use the

logical channels you create when developing motion applications using the NI
SoftMotion LabVIEW API.

e An axis is a logical channel associated with an individual motor. Each
motor you are controlling must be in an axis.

e A coordinate is a grouping of one or more axes. By planning for multiple
axes in a coordinate, you can create multiaxis coordinated motion. For
instance, if you have an XY stage and you want to create an oval, it is
difficult to command the two motors individually. But if you group them
as an axis, the LabVIEW NI SoftMotion trajectory generator automatically
develops the commanded points to each axis so the resulting motion is
an oval.

56

e A table is used to specify more complex move profiles such as contour
moves and camming. You can import the move profile from an external
tab delimited text file.

Adding Axes, Coordinates, and Tables to the Project

You can add axes, coordinates, and tables by right-clicking on the CompactRIO
controller in the LabVIEW project and selecting New.

{3 Project Explorer - Motion Example App.lvproj ® g@

File Edit Wiew Project Operate Tools Window Help

[hSHE XD XY ogk @& o

Ikems | Files

= @; Project: Mation Example Spp.lvproj
= B My Computer
- 1~ :
e Dependencies
- L Build Specifications
= [-Ti. TWi-cRIC (10,0,59, 1837
3 Mew 3 W1
Simulation Subsystem
+
7 Add
: d Wirtual Folder

+ Conneck

Conkrol
. Library
Litilities 3 Variable
Deploy I/ Server
Deploy Al Class
Stakechart
Arrange b 3
Expand all MI SoftMotion Axis..
Collapse all MI SoftMotion CoordinatEsspace. ..

I SaftMotion Table, ..
Remove From Project

Rename... Fz Targeks and Devices. ..
IJnit Tesk

Help. ..

Properties

S7

-
G Axis Manager
| Axis Name Bound Hardware |

fixis 1 Mod? (Slat 1, MI 95129
I.ﬁ.dd M s ’Change Binding] [Delete Axis] Move Up Miowe Dol
[I l ’ Cancel] ’ Help

Figure 5.5. Adding an Axis to a CompactRIO System

An axis consists of a trajectory generator, PID control loop or stepper output,
and supervisory control. You can associate a LabVIEW NI SoftMotion axis with
simulated hardware or with actual hardware. Servo axes require an encoder
feedback resource. Open-loop stepper axes do not require feedback for
operation.

Once you have created axes, you can generate coordinates and add axes to the
coordinates. When using coordinate resources in LabVIEW, you receive target
positions and other coordinate information in a 1D array with axis information
arriving in the order that axes are added using this dialog box.

Configuring the Axes

Once you add an axis to the project, you need to configure the axis by right-
clicking on it and selecting properties.

58

13 Axis Configuration

s Setup otion I/0
Trajectary
: Lirnits Horme Drive Signals Carmpare & Capkure Software Limits
"G 'é:ﬁ::apture — Active Inactive
Digital Tjc SR
Encoder Input Type Active State
TILJCMOS | Low el e
Digital Filter e coM
100 1is ™
CoTESIs Active Inactive
Cutput Type Ackive Skate
Single-Ended v Lo I
_______________ W+
Safe State Oulput
T (S COM
Mo Change [l
IJse standard Mode [l << Prev [ik l ’ Cancel] [Apply l [Help]

Figure 5.6. You can use the Axis Configuration feature to configure all of the motion 1/0
parameters.

To configure a stepper drive connected to the NI P7000 series stepper drive,
follow these steps:

1. Right-click the axis in the LabVIEW Project Explorer window and select
Properties from the shortcut menu to open the Axis Configuration dialog
box.

2. On the Axis Setup page, confirm that Loop Mode is set to Open-Loop.
Axes configured in open-loop mode produce step outputs but do not
require feedback from the motor to verify position.

3. Also on the Axis Setup page, confirm that the Axis Enabled and Enable
Drive on Transition to Active Mode checkboxes contain checkmarks.
These selections configure the axes to automatically activate when the
Scan Engine switches to active mode.

4. If the modules do not have physical limit and home input connections,
you must disable these input signals for proper system operation. To
disable limits and home, go to the Motion I/O page and remove the
checkmarks from the Enable checkboxes in the Forward Limit, Reverse
Limit, and Home sections.

59

5. Configure any additional 1/O settings according to your system
requirements.

6. Click OK to close the Axis Configuration dialog box.

7. Right-click the controller item in the LabVIEW Project Explorer window
and select Deploy All from the shortcut menu to deploy.

Note: Make sure all hardware connections are made and power is turned on
before deploying the project. Deployment switches the Scan Engine to active
mode and enables your axes and drive, if connected, so that you can start a
move immediately.

Test the Motion System

To make sure your motion is configured and connected correctly, you can use
the Interactive Test Panel to test and debug your motion system. With the
Interactive Test Panel, you can perform a simple straight-line move and
monitor move and I/O status information, change move constraints, obtain
information about errors and faults in the system, and view the position or
velocity plots of the move. If you have a feedback device connected to your
system, you can also obtain feedback position and position error information.

To start the Interactive Window, right-click the axis in the LabVIEW Project
Explorer window and select Interactive Test Panel from the shortcut menu. Set
the desired position, move mode, and move constraints using the tabs.

60

@' Interactive Test Panel 3
4 Current Position velocity || Drive Enabled Errors
0 Unit 0 Unit/sec |l Outputs in Safe State Mo Error
Move | Move Canstraints I Skatus I Flats | welocity
Owvertide
Position Move | In a position move, the target position is interpreted based on the move mode, 2005
Move Mode Target Position
@ Relative Position 10000,00 = Unit
Absolute Position
) 100%
0%
100 =
% | O (] > - B - ?

Figure 5.7. With the Interactive Test Panel, you can verify a motion configuration before
writing code.
Click the Start button on the bottom of the dialog box to start the move with
the configured options. Use the Status and Plots tabs to monitor the move
while it is in progress.

Develop Custom Motion Applications Using the LabVIEW NI SoftMotion API

LabVIEW NI SoftMotion provides a function block APl to build deterministic
motion control applications. These function blocks, which are inspired by the
PLCopen motion function blocks, use the same terminology and execution
paradigm as IEC 61131-3 function blocks. While function block programming is
similar to LabVIEW data flow, you need to know about some execution
differences before building applications using the function blocks.

The function blocks themselves do not run any motion algorithms. Instead,
they are an API that sends commands to the motion manager that runs as a
driver service on the CompactRIO controller. The motion manager runs at the
scan rate, but you can run the function block API at any rate you want and even
call the blocks in nondeterministic code.

61

Non Real-Time LabVIEW Real-Time Processor RIO Hardware
(CompactRIO Controller, Real-Time PXI)

Host HMI and
Axis Settings:
LabVIEW Project

User VI

MNI-Mation
Function

Block API

e e CompactRIO with NI Scan Engine
NI SoftMotion

NI 951x cRIO Axis <01 .| crO NI 951x =
Communication “I | Chassis | CSeries |9
Motion Manager Module Module(s)

Trajectory Axis

Generator|| Interface NI 951x EtherCAT Axis E(t;hglcfm NI 951 .
Communication -« > on eres | C Series
Module assis | Module(s)

I

]

I

]

I

i

i Supervisory _E
i Control ki
I

]

I

]

I

]

I

1

I
:
]
]
I
!
| EtherCAT with NI Scan Engine
]
]
I
|
|
]
I
|

Figure 5.8. Block Diagram of LabVIEW NI SoftMotion Components on a CompactRIO
System

Power 1

O
Power

¥ EFTOFin error auk

*
¥ rEsOUrcE resaurce auk v
v ExecUbe done »
[
*

v enable axis bz
v enable drive ackive
aborted r |

"

Figure 5.9. LabVIEW NI SoftMotion Function Block

Motion function blocks are an APl to the motion manager running on the
CompactRIO system. They perform two actions:

1. Send a command to the motion manager—The function block sends the
command to the manager when the “execute” input transitions from low
to high (rising edge). The default value is false so if a true constant is
wired into the block, the first iteration counts as a rising edge.

2. Poll the motion manager—Every iteration, the function block polls the
manager to see if the command was executed successfully. The results of

n u

the poll are returned through the “done,” “busy,” “active,” “aborted,”

and “error out” outputs.

62

The error out, done, aborted, busy, and active outputs behave according to the
following guidelines:

Output Busy, done, error out, and aborted are mutually exclusive

exclusivity and set at any given time. Only one of these outputs can be
TRUE at any time on one function block. If the execute input
is TRUE, one of these outputs must be TRUE.

Output status The done and aborted outputs are reset with the falling
edge of execute (state latches while execute is high).
However, the falling edge of execute does not stop or
influence the execution of the motion manager once it has
received the command.

Behavior of The done output is set TRUE when the commanded action

done output successfully completes. The default value is FALSE. Once a
move has completed, it is reset to FALSE when the execute
is false.

Behavior of Aborted is set when a commanded operation is interrupted

aborted output by another command. The reset behavior of aborted is like
that of done.

Behavior of Every function block has a busy output that indicates that

busy output the function block operation is not complete. Busy is set at
the rising edge of execute and resets when either done,
aborted, or error out is set. It is recommended that the
application controlling the execution of this function block
not be terminated for at least as long as busy is TRUE
because the software may be left in an undefined state.

Output active The active output is set to TRUE at the moment the function
block takes control of the specified resource, all properties
have been committed, and the function block has executed.

Using LabVIEW NI SoftMotion Function Blocks

63

The following tips may help you when programming with LabVIEW NI
SoftMotion function blocks in LabVIEW:

Function blocks
e Are nonblocking and always execute in a defined period of time.

e Are triggered to pass commands to the motion manager based on a
rising edge of the “execute” input.

e Provide feedback if the motion manager successfully finishes the
commanded task through a “done” output.

e Are instanced (have a unique memory space) and reentrant, but each
instance can be called from only one location in the program.

e Must be executed in a VI that is part of a LabVIEW project.

e Have a double-click dialog that you can use to configure default values,
automatically bind data to variables, and configure the data source as
terminal, variable, or default.

e Have methods exposed on the right-click menu. For instance, the “Stop
Move” function block can be either decelerate, immediate, or disable
drive.

e Must always be run in a loop. Depending on your application
requirements, you can use either a While Loop timed using a Wait Until
Next ms Multiple Function or you can use a Timed Loop.

You should use the function block status inputs and outputs (execute, done,
and so on)—not standard LabVIEW programming methods—to determine the
order of function block execution. For example, do not place function blocks
inside a Case structure unless the Case structure is controlled by the status
outputs. Consider the Figure 5.4 block diagram:

64

A

= (1]
¥l

' Untitied 1 Block Diagram on Motion Example App. tvpro/TW.cRIO *
[l £ Yew Profect Operste Jook Window bHeb

(18]] 915 ol [t] 553

v
GO EX 0o ACp. pe ol TW-CRE0 | € >

Figure 5.10. Incorrect Example of Programming Motion Using Motion Function Blocks

If you are not familiar with function blocks, you likely expect this code to move
Axis 1 to position 1000 and then back to 0. However, these function blocks are
not actually performing the motion—they are simply sending commands to the
motion manager when they see a rising edge on their “execute” inputs.

Instead this code enables the drive and axis, but no motion takes place.

e The Power function sees a rising edge on the execute input (the default
is false, so if you wire a true, the first iteration executes).

e When it receives a rising edge, it sends a command to the motion
manager to enable the axis and drive.

e This nonblocking function does not wait for the manager to finish the
command before continuing the LabVIEW code, and the “done” output is
false on the first iteration.

e All remaining blocks in the code chain do not see a rising edge on their
execute inputs and do not send any commands to the manager.

¢ No motion takes place.

65

3 Untitled 1 Block Diagram on Metion Example App.lvproj/TW-cRIO * =] <
File Fdit Wiew Projert Operate Tonls Windnw Help

[2[2] © 0] [] el] * [t toicsionrone -] [5e[m~] [€5-o]
O

@ 5Cans
(T [Synichiron Bl trror W
ot [T -
3 - @
ﬁg Straight-Line Move Straight-Line Move 1
& I; Power
== /.
L Straight-Line Maove Straight-Line Mowe
Power [Absolune) [Absolute)

» Errarin error out » » Errorin error out » FErrorin error out »
¥ [ES0WNCE resource ouk v ¥ FESOUFCE Fesource oub » ¥ rESOUFCE resource out v
A v eveoues Pe[e s — v meouke done b || v EwzoUke done »
== » enable axis » position E— ¥ posikion

i » enable drive 100

Fotim Example App Feprof] TW-cRIO| ¢ | m | ﬂ

Figure 5.11. Example of a Working Program Using Motion Function Blocks

In this example, the drive is enabled, moves to position 1000, and moves to
position 0, but it does not perform repeated moves. This is because each
function block receives a rising edge on the execute input only once.

To make the axis cycle repeatedly between 1000 and 0, you need to write code
like that shown in Figure 5.12.

]
(T | 0 N
b dt MError S —
p22,
. Straight-Line Move Straight-Line Move 1 Stop Move
Fower
i i% 1% (o]
B - Straight-Line Move Straight-Line Move Stop Move =
I Power (Aheolute) (Ah=olute) (Necelerate) -
Axis ¥ ITOF IN RITOr QUL b [meocccm——y + 81TOT 1N EITOr QUL b =] & SFTOF IN error out » » error in error out »
f Axis 1]v] b resource resource out » * respurce resource out » + resource resource out+ P resource resource out »
Run - r execule done » [-—J¥ e e done |1 done » |5 | » execule dore |-
== » enable axis i] position E i
et s enable drive -{} !
:
Stop -
v accel. jerk [
1o @ v decel, jerk [¢ jerk Jii
ez i
i

Figure 5.12. Correct Example of Programming Repeated Motion Using Motion Function
Blocks

This code causes repeated motion between position 1000 and 0.

e The loop with the Power function block sends a command to the motion
manager.

66

It then polls the manager to check the status of the command. Once it
gets confirmation that the command was finished, it writes a true to the
done bit and exits the first loop.

In the Timed Loop, the first straight-line move function block sees a true
on the execute terminal and commands the manager to move to position
1000.

The done output is false until the move has completed, and the second
Straight-Line Move function block does nothing because it has a false in
the execute input.

At each iteration of the loop, the first straight-line move polls the
manager to see if the move completed. When the first move is complete,
it outputs a true on the done terminal.

The second straight-line move sees a low-to-high transition on the
execute bit and sends its command to the manager.

When this block receives confirmation that it completed, it transitions its
done terminal from false to true.

Through the shift register, this causes the first function block to see a
low-to-high transition on the execute terminal and the moves repeat.

If a stop command is ever executed, the clean-up code with the stop
command stops the motion. Because the motion manager is a separate
process, without this stop command to the manager the move continues
until completion even though the LabVIEW code is no longer executing.

67

Palette Palette Description
Object Symbol e

Line

Arc

Contour

Reference

Capture

Compars

Gearing

Camming

Read

Write

Reset
Paosition

Stop

Power

Clear Faults

i

LY

Performs a straightline move using an axis or coordinate resource. A straight-line move connects two
points using one or more axes. The behavior of the move changes based on the Straight-Line Move Mode.

Performs a circular, spherical, or helical arc mowve. An arc move produces motion in a circular shape using a
radius you specify. The type of arc to perform changes based on the Arc Move Mode.

Performs a contour meve using an axis of coordinate resource. A contour move is a move expressed as a
series of positions that the software uses to extrapolate a smooth curve. These positions are stored ina
table. Each point in the move is interpreted as an absolute position using the starting point of the move as a
termnporary “zero” position. The type of contour move changes based on the Contour Mode.

Performs a reference move, such as locating a home or limit position, on an axis resource. Reference
moves are used to initialize the motion systemn and establish a repeatable reference position. The behavior
of the mowve changes based on the Reference Move Mode.

Records encoder position based on an external input, such as the state of a sensor. You can use the
captured position to execute a move relative to a captured position, or simply record the encoder position
when the capture event ocours.

Synchronizes the motor with external activities and specified encoder positions. When the specified
position is reached, a userconfigurable pulse is executad. The behavior of the position compare operation
changes based on the Compare Mode.,

Configures the specified axis for gearing operations. Gearing synchronizes the movernent of a slave axis

to the moverment of a master device, which can be an encoder or the trajectory of another axis. The
movemnent of the slave axes may be ata higher or lower gear ratio than the master. For example, every tumn
of the master axis may cause a slave axis to turn twice. The type of gearing operation to perform changes
based on the Gearing Maode.

Configures the specified axis for camming operations. These ratios are handled autormatically by LabVIEW
NI Softhotion, allowing precise switching of the gear ratios. Camming is used in applications where the
slave axis follows a nonlinear profile from a master device. The type of carmming operation changes based
on the Camming Maode.

Reads status and data information from axes, coordinates, feedback, and other resources. Use the read
methods to obtain information from different resources.

Writes data information to axes, coordinates, or feedback resources. Use the write methods to write
information to different resources.

Resets the position on the specified axis or coordinate.

Stops the current maotion on an axis or coordinate. The behavior of the move changes based on the Stop
Made.

Enables and disables axes andfor drives on the specified axes or coordinate resources.

Clears LabVIEW NI SoftMotion faults.

Table 5.2. Motion Function Block Overview

LabVIEW Example Code

&)

Examgio

A state machine
applications. However, while a state machine increases the application

LabVIEW example code is provided for

this section.

68

is @ common programming architecture for motion

flexibility, some additional caveats are introduced when using motion function
blocks in a state machine.

In sequential programming, you transition between motion commands based
on the function block error, aborted, and done outputs. (The busy output is a
logical combination of these other states, so for simplified programming, you
can also monitor the busy output.) In state machine programming, you may
have parallel states or events that affect the motion and cause states to exit
before a move is complete.

For instance, you may want to build logic where a stop command can be sent
to the system. If a stop state is running in parallel to the motion state, the
motion manager stops the move and the motion state returns a True on the
aborted output.

You may also structure your code to exit without waiting for the abort
command to be returned through the function block, for example, when you
are writing an ESTOP state into your program. In most application designs, the
ESTOP immediately quits all other states and transitions into a safe emergency
stop state. In this case, because the function block did not exit cleanly, you
need to reset it before execution. A function block is reset when a false is
written to the execute input.

To address this problem, you need to ensure that the function block had a false
written to the execute input. You can choose from several methods to
complete this in LabVIEW, including adding logic to maintain state data for each
motion state to ensure that the function block is always cleared before
execution. Or you can simply always write a false to the execute input on the
first iteration of a state. This delays your motion execution by one cycle.

Consider an example featuring a simple state machine with four states: idle,
initialize, move, and stop. In each state, the busy output is used to determine if
the function block has completed.

You can transition the stop move from any state. This means the stop state can
leave the move or initialize state during execution and cause the function block
to require a reset before you can execute it again. To accomplish this, the state
machine is set so each function block receives a false on the execute input on

69

the first iteration and a true every subsequent iteration. This automatically
cleans up a function block that was aborted.

13 Axis Straight Line State Machine.vi Block Diagram on Motion Example. lvproj/TW-cRIO
File Edt Y“ew Project Operate Took ‘Window Help

[8] @ [w][g |fel efeplos [Avssinot [z (][l

o H Mu Errur 't e
| Tstop s
hen state changes, the "Move” hd

Irst boolean output vl
@ false - this vall mitislize Skraight-Lins Move
he function block. 1he y

ext boolean autput will »

& Crue which wil start
he function black,

Straight-Line Move

emerin (Relative)
¥ amorin ervor out v
» FESOUFCE FESOUFCE OUE »
r » execute busy » |42
= : . E
-}'T : ====-==H|:J:-t|:1|— » position :

(]
B
b
&7

[Fiatian Example Fpro TW-B1G ¢ I e

Figure 5.13. A State Machine With Motion Function Blocks

You can place this state machine in your standard CompactRIO controller
architecture with initialization and shutdown states.

1000000000000 000707070

Initalization Poutine Shutdown Routine

scans
(e [Synchrol B[Errar ¥
E
v (| CEE = =

100

Figure 5.14. You can drop a state machine with motion commands into the standard
controller architecture.

70

6. NASADENIE A REPLIKACIA SYSTEMOV

Application Deployment

All LabVIEW development for real-time targets and touch panel targets is done
on a Windows PC. To run the code embedded on the targets, you need to
deploy the applications. Real-time controllers and touch panels, much like a PC,
have both volatile memory (RAM) and nonvolatile memory (hard drive). When
you deploy your code, you have the option to deploy to either the volatile
memory or nonvolatile memory on a target.

Deploy to Volatile Memory

If you deploy the application to the volatile memory on a target, the application
does not remain on the target after you cycle power. This is useful while you
are developing your application and testing your code.

Deploy to Nonvolatile Memory

If you deploy the application to the nonvolatile memory on a target, the
application remains after you cycle the power on the target. You also can set
applications stored on nonvolatile memory to start up automatically when the
target boots. This is useful when you have finished code development and
validation and want to create a stand-alone embedded system.

Deploying Applications to CompactRIO

Deploy a LabVIEW VI to Volatile Memory When you deploy an application to
the volatile memory of a CompactRIO controller, LabVIEW collects all of the
necessary files and downloads them over Ethernet to the CompactRIO
controller. To deploy an application you need to

» Target the CompactRIO controller in LabVIEW
* Open aVlunder the controller
* Click the Run button

LabVIEW verifies that the VI and all subVIs are saved, deploys the code to the
nonvolatile memory on the CompactRIO controller, and starts embedded
execution of the code.

71

3

Ceployment Skakus

Initializing. ..
Calculating dependencies. ..
Checking items For conflicts, This operation could kake a while. ..

Deployment Progress

[J

[+] Close on successful completion | Close |[Caniel]

Figure 6.1. LabVIEW Deploying an Application to the Nonvolatile Memory of the Controller
Deploy a LabVIEW VI to Nonvolatile Memory

Once you have finished developing and debugging your application, you likely
want to deploy your code to the nonvolatile memory on the controller so that
it persists through power cycles and configure the system so the application
runs on startup. To deploy an application to the nonvolatile memory, you first
need to build the VI into an executable.

Building an executable from a VI

With the LabVIEW project, you can build an executable real-time application
from a VI by creating a build specification under the real-time target in the
LabVIEW Project Explorer. When you right-click on Build Specifications, you are
presented with the option of creating a Real-Time Application along with a
Source Distribution, Zip File, and so on.

72

T IEI it
{3 project Explorer - Bioreactorlvproj * Euﬂ

File Edit View Project Operate Tools Window H
' &S| % LR

Items | Files

= [led. Project: Bioreactor.lvproj
= B My Computer

£+ [J Demol - Bioreactor

: B[HMISubVs

| B[TypeDefs

b jml HMIMain.vi

>_'£" Dependencies

+% Build Specifications

= E:-‘L Instructor (10.0.60.168)
& [J Demo1l - Bioreactor
i 8 Chassis (cRIO-9074)
.

Dependencies

- m Real-Time Application
Packed Library h‘

Arrange By »

o

Source Distribution
Help... Web Service (RESTful)
L Zip File

Figure 6.2. Create a new real-time application build specification.

After selecting Real-Time Application, you see a dialog box featuring two main
categories that are most commonly used when building a real-time application:
Information and Source Files. The Destinations, Source File Settings, Advanced,
and Additional Exclusions categories are rarely used when building real-time
applications.

The Information category contains the build specification name, executable
filename, and destination directory for both the real-time target and host PC.
You can change the build specification name and local destination directory to
match your nomenclature and file organization. You normally do not need to
change the target filename or target destination directory.

73

i ™
b} My Real-Time Application Properties M

Source Files

Build specification name
Destinations

Source File Settings
Advanced Target filename
Additional Exclusions
Pre/Post Build Actions
Component Definition
Preview

My Real-Tirme Application

startup.riexe

Local destination directory

ChUsers\mkerny\DocumentshSales Events'Design RIO ECM Application Dev Days 2012\ Demos\builds)
Bioreactor\Instructor\My Real-Time Application

Target destination directory
c\ni-rt\startup

Build specification description

[Build |[ok || cancel |[Help

Figure 6.3. Information Category in the Real-Time Application Properties

The Source Files category is used to set the startup ViIs and include additional
Vs or support files. You need to select the top-level VI from your Project Files
and set it as a Startup VI. For most applications, a single VI is chosen to be a
Startup VI. You do not need to include Ivlib or set subVIs as Startup Vls or
Always Included unless they are called dynamically in your application.

74

- ™y
b} My Real-Time Application Properties M
Infermation
Project Files Startup VIs &
Destlnatllons . =l 4] -[m] RT Main.vi
Source File Settings = |. Deme1 - Bioreactor
Advanced _ G [RT SubVls
»;\ddijtlonfg E_>I<;|:=~'°_ﬂ5 B | RT Variables
re/Post Build Actions [
Component Definition Lg _
Preview -
Always Included -
=
.
[Build |[ok || cancel |[Hep |

Figure 6.4. Source Files Category in the Real-Time Application Properties (In this example,
the cRIOEmbeddedDatalLogger (Host).vi was selected to be a Startup VI.)
After all of the options have been entered on the required category tabs, you
can click OK to save the build specification or you can directly build the
application by clicking the Build button. You can also right-click on a saved build
specification and select Build to build the application.

When you build the application, an executable is created and saved on the hard
drive of your development machine in the local destination directory.

Setting an executable real-time application to run on startup

After an application has been built, you can set the executable to automatically
start up as soon as the controller boots. To set an executable application to
start up, you should right-click the Real-Time Application option (under Build
Specifications) and select Set as startup. When you deploy the executable to
the real-time controller, the controller is also configured to run the application
automatically when you power on or reboot the real-time target. You can
select Unset as Startup to disable automatic startup.

75

{3 project Explorer - Bioreactor.lvproj * E@lﬁ

File Edit View Project Operate Tools Window H
[Ke=1- 1 L =0

Items | Files

= @;L Project: Bioreactor.lvproj
= B My Computer
E}__J Demol - Bioreactor
: l [HMI SubVls
- () TypeDefs
Lo lmd HMI Main.vi
>_'§:,_" Dependencies
+-:-r:_ Build Specifications
= m Instructor (10.0.60.168)
#-[J Demo1l - Bioreactor
G- @8 Chassis (cRIO-9074)
'5:;' Dependencies
& +-:-r:_ Build Specifications
Build
Deploy

- Run as startup k

Duplicate

Explore
Clean

Remowve from Project
Help...
Properties

Figure 6.5. Configuring a Build Specification to Run When an Application Boots

Deploy executable real-time applications to the nonvolatile memory on a
CompactRIO system

After configuring and building your executable, you now need to copy the
executable and supporting files to the nonvolatile memory on the CompactRIO
controller and configure the controller so the executable runs on startup. To
copy the files and configure the controller, right-click on the Real-Time
Application option and select Deploy. Behind the scenes, LabVIEW copies the
executable files onto the controller’s nonvolatile memory and modifies the ni-
rt. iNI file to set the executable to run on startup. If you rebuild an application
or change application properties (such as configuring it not to run on startup),
you must redeploy the real-time application for the changes to take effect on

the real-time target.
76

At some point, you may want to remove an executable you stored on your real-
time target. The easiest way to do this is to use FTP to access the real-time
target and delete the executable file that was deployed to the target. If you
used the default settings, the file is located in the NI-RT\Startup folder with the
name supplied in the target filename box from the Information category and
the extension .rtexe.

[E ftp://10.0.67.99/ni-rt/startup/ —1O] x|
‘@(j}v | fp:/10.0.67.99/nirt/startup/ | k&3 |search (2]
Fie Edit View Tools Help
Organize * Views = .@.
Eavorite Links Name = || Size | -] Type || Date modified | -| Date created | +| Date acces... | -] ¢+

| |startup.aliases
FE, Documents

FE Pictures

f[}' Music

More

Folders A

PR Cesktop =
|H Steven Bassett
, Public
1M& Computer
i—,_f, Local Disk (C:)
—w RECOVERY D:)
) DVD RW Drive (£
X secure Digital 5t
L¥ Network
& Internet Explorer
¥ 10.0.67.99
, cRIOTestl
, cRIOTest2

. =

startup.rtexe on 10.0.67.99

Figure 6.6. Deleting the startup.rtexe From a CompactRIO Controller
Deploying LabVIEW FPGA Applications

Once the development phase of the FPGA application is complete, you need to
deploy the generated bitfile, also referred to as a personality, to the system.
The way you deploy the file depends on whether the FPGA is independent or
dependent on a host VI. If the FPGA VI does require communication or data
logging, then the development of a host VI is required. However, if the FPGA
runs independently of any other target, then you should store the personality

77

in nonvolatile flash memory on the FPGA target. The relationship between
these two deployment methodologies and where the FPGA personality is then
stored for a CompactRIO controller is displayed in Figure 11.7.

Host VI/Executable

FPGA Application ")
FPGA Application

Method 1: Reference in Host VI Method 2: Downicad to On board Flash

Figure 6.7. Two Stand-Alone Deployment Options for LabVIEW FPGA

Method 1: Reference in Host VI

The most prevalent method for deploying an FPGA personality is to embed it in
the host application as shown in Figure 6.8. This inclusion in the application
occurs when the Open FPGA VI Reference function is used in the host
implementation. When the host application is then compiled into an
executable, the FPGA application is embedded inside this file. Therefore, when
the host application is deployed and run, it downloads the bitfile and opens a
reference to the FPGA when the Open FPGA VI Reference function is called.

Host VI/Executable ' l \ =)

FPGA Application

Method 1: Reference in Host VI

78

Figure 6.8. If you use an Open FPGA VI Reference in a host VI, then you embed the FPGA’s
bitfile in the host executable.

A benefit of this method is that the executable includes both targets’

applications in one file. In addition, since the host file is an executable, you can

simply transfer it to the host using any FTP program.

The host application is required to initialize before the FPGA application is
loaded. As a result, there is a delay from device power up to the configuration
of the FPGA. In addition, on power up, the state of the input and output lines of
your target is unknown since the FPGA has not yet been configured. Therefore,
if the FPGA is completely independent of the host application, its personality
should be stored in the onboard FPGA flash memory.

Method 2: Storing the Application in Nonvolatile Flash Memory on the FPGA
Target

You also can download the bitfile to flash memory on the FPGA target device
using the RIO Device Setup that is included with the NI-RIO driver as shown in
Figure 6.9. Subsequently, whenever the target is rebooted, it immediately loads
the personality onto the FPGA from the flash memory independent of what the
host application is executing. To learn more about this download process,
reference KnowledgeBase 47D9Q22M. In addition, downloading the
personality to the flash memory ensures that when the device is in power up, it
drives all of the input and output lines to a known state since it is loaded
immediately on the FPGA.

FPGA Application S e |

Method 2: Download to On board Flash

Figure 6.9. You can download the FPGA bitfile to the FPGA’s onboard flash memory using
the RIO Device Setup.

79

If communication does occur with the host, you must modify the host
application so that the Open FPGA Reference function does not overwrite the
personality that is automatically loaded on the FPGA. To disable this download,
uncheck the Run the FPGA VI option in the Open FPGA VI Reference function
configuration, as shown in Figure 6.10. In addition, since the FPGA personality
is loaded immediately on boot up from the flash memory, the connecting host
does not immediately have control over the current state of the FPGA. If you
need host control of the FPGA, you should embed the personality in the host
application rather than store it in flash memory.

B Configure Open FPGA VI Reference

Open
(oR" |
FPGA Targel\Uniiled 2. @
() Bitlile
s
[Bind FPGA host refetance ko type definkion
L=
ok | | cCoes || Hee |

Figure 6.10. You need to disable the Run the FPGA VI option in the Open FPGA VI
Reference configuration window if the FPGA bitfile is loaded from the onboard flash
memory so that the host application does not overwrite the bitfile on the FPGA.

The recommended personality deployment architecture depends on the needs
of the specific application. However, in the majority of implementations, you
should embed the personality in the host application since the FPGA often is
dependent on a host application. For more information on managing FPGA

deployments, see the NI Developer Zone document Managing FPGA
Deployments.

Deploying Applications That Use Network-Published Shared Variables

The term network shared variable refers to a software item on the network
that can communicate between programs, applications, remote computers,

80

and hardware. Find more information on network shared variables in Chapter
4: Best Practices for Network Communication.

You can choose from two methods to explicitly deploy a shared variable library

to a target device.

1. You can target the CompactRIO system in the LabVIEW project, place the
library below the device, and deploy the library. This writes information
to the nonvolatile memory on the CompactRIO controller and causes the
Shared Variable Engine to create new data items on the network.

mpruject Explorer - Basic Comm Example... g@

File Edit “ew Project Operate Tools Window Help

[hSd] « D x|SR E-&

Irems | Files

=1 @g, Project: Basic Comm Example.lvproj
= B My Computer
IR = = | ;
i 5 Dependencies
: 'J-.:- Build Specifications
= [, CompactRIO (192.168.1.123)

5[cRIO

= m? Memory and Comm Table Data
_ I_:g Cammuricatic Ir':.iew e N
- 9, Sv_PID_S
Wy Stop Open
+ I_g I Library vl Explore..,
e I_g Memory Tabl Show in Files Wiew Ctrl+E
Top Level,vi
= F Add b
+ [Chassis (cRIO-9074
+ _'-L—'_" Dependencies Find Project Ttems. ..
L Build Specifications
= Save 4
Find 4

Show Error Window

Deploy
Deploy
Undeploy
4 Autodeploy Variables
Mulkiple Yariable Editor, .,

Create Yariahles. ..

Figure 6.11. Deploy libraries to real-time targets by selecting Deploy from the right-click
menu.

81

2. You can programmatically deploy the library from a LabVIEW application
running on Windows using the Application Invoke Node.

* On the block diagram, right-click to bring up the programming
palette, go to Programming»Application Control, and place the
Invoke Node on the block diagram.

» Using the hand tool, click on Method and select Library»Deploy

Library.
g it 3 App E
Library Path Library . Deploy Library
e [Lib Path

Target IPAddress i v Target IPAddress
|@ k

Figure 6.12. You can programmatically deploy libraries to real-time targets using the
Application Invoke Node on a PC.

* Use the Path input of the Deploy Library Invoke Node to point to
the library(s) containing your shared variables. Also specify the IP
address of the real-time target using the Target IP Address input.

Undeploy a Network Shared Variable Library

Once you deploy a library to a Shared Variable Engine, those settings persist
until you manually undeploy them. To undeploy a library

1. Launch the NI Distributed System Manager (from LabVIEW»Tools or
from the Start Menu).

2. Add the real-time system to My Systems (Actions»Add System to My
Systems).

3. Right-click on the library you wish to undeploy and select Remove
Process.

Deploy Applications That Are Shared Variable Clients

Running an executable that is only a shared variable client (not a host) does not
require any special deployment steps to deploy libraries. However, the
controller does need a way to translate the name of the system that is hosting
the variable into the IP address of the system that is hosting the variable.

82

5. m cRIC 8074 (10.0.60.168)
+ [Demol - Bioreactor

[N [& Variable Library.lvlib

Figure 6.13. Network Variable Node and Its Network Path

“\cRIO 9074\Variable Library\Setpoint

To provide scalability, this information is not hard-coded into the executable.
Instead, this information is stored in a file on the target called an alias file. An
alias file is a human-readable file that lists the logical name of a target
(CompactRIO) and the IP address for the target (10.0.62.67). When the
executable runs, it reads the alias file and replaces the logical name with the IP
address. If you later change the IP addresses of deployed systems, you need to
edit only the alias file to relink the two devices. For real-time and Windows XP
Embedded targets, the build specification for each system deployment
automatically downloads the alias file. For Windows CE targets, you need to
configure the build specification to download the alias file.

Basic Comm Example.aliases - WordPad
File Edit “iew Insert Formak Help

"]
DEeE Sk # &
[[compactRIO]
CowpactRIO = "10.0.59.171"
[Expahsion CompactRIO Target]
Expansion CompactRIO Target = "0O.0.0.0%

[My Computer]
My Computer = "10.0.32.134"

Figure 6.14. The alias file is a human-readable file that lists the target name and IP address.

If you are deploying systems with dynamic IP addresses using DHCP, you can
use the DNS name instead of the IP address. In the LabVIEW project, you can
type the DNS name instead of the IP address in the properties page of the
target.

83

{4 Real-Time CompactRIO Properties

Categary ~ General
General

Conditional Disable Symbols

I Server: Configuration Mame

¥I Server: Machine Access TW-cRIO

VI Server: Exported ¥1s

‘Wb Server: Configuration IP address | DNS Mame

wheh Server: Visible Ys

‘Web Server: Browser Access
User Access

Hosk Enviranment
Miscellaneous

Wweb Services: Security

Scan Engine

Ti'-cRIO

v | ok || concel || hep |

Figure 6.15. For systems using DHCP, you can enter the DNS name instead of the IP
address.

One good approach if you need scalability is to develop using a generic target
machine (you can develop for remote machines that do not exist) with a name
indicating its purpose in the application. Then as part of the installer, you can
run an executable that either prompts the user for the IP addresses for the
remote machine and My Computer or pulls them from another source such as
a database. Then the executable can modify the aliases file to reflect these
changes.

Recommended Software Stacks for CompactRIO

NI also provides several sets of commonly used drivers called recommended
software sets. You can install recommended software sets on CompactRIO
controllers from MAX.

84

i

File Edit Wiew Tools Help

Configuration |,Fi Add/Remove Software | & showHep
E| g My System ;I
' & Devices and Interfaces
5] Software Software
E| g Remote Systems
= [# rio-s022 What is Software?
B Devices and Interfaces Software displays the National Instruments software components installed on a
[&1 Software LabVIEW Real-Time target.
LabVIEW Real-Time Software Wizard |
Software Selection
Select the recommended software set you want to install to the target. National Instruments ﬂm&“
recommends the following software sets for your target.
EI}E LabVIEW Real-Time 8.6.1 ;I Click Next to install the following recommended software set ecific
{0 LEEH NIRIO 3.1.0 (minimal) - January 2009 (current to the target:
NI-RIO 3.1.0 - January 2009 hu or
i J NI-RIO 3.1.0 with NI Scan Engine support - Jar NI-RIO 3.1.0 - January 2009 s
}---gm Custom software installation e :
. , DataSocket for LabVIEW Real-Time 4.5.5
~K Uninstall 2l software LabVIEW PID Control Toolkit 8.6.1
LabVIEW Real-Time 8.6.1
Modbus /0 Server 1.5.1
NIRIO 3.1.0
MNI-Serial RT 3.3.3
NI-VISA 4.4
M i e 8 =
(9 ooay ¥
T |> —4—
[-]
=
A
Update BIOS... | << Back | Next == | Cancel | Help |

Figure 6.16. Recommended Software Sets Being Installed on a CompactRIO Controller

Recommended software sets guarantee that an application has the same set of
underlying drivers for every real-time system that has the same software set. In
general, there is a minimal and full software set.

System Replication

After you deploy a LabVIEW Real-Time application to a CompactRIO controller,
you may want to deploy that image to other identical real-time targets. Being
able to replicate the image of a real-time target makes deploying targets and
systems easier and more efficient. Whether the user is making periodic
backups of a system, deploying from a developed system to many new ones,
updating an image on a target, or giving someone else the tools to duplicate a
working system, replicating an image makes all of these applications possible.
The Real-Time Application Deployment utility makes the system replication
simple and intuitive.

NI offers a variety of tools for the replication of LabVIEW Real-Time targets. You
can use the tools to replicate one real-time target into multiple copies,
circumventing the use of MAX and an FTP client in favor of a simple utility or

85

the ability to customize your own using LabVIEW. The imaging process includes
the following steps:

1. Deploy the built application to a real-time target from the LabVIEW
project.

2. Create a disk image from this controller (the image packages every file
on the real-time target hard drive in a zip file and saves it to the host
machine).

3. Deploy that image to one or more targets.

Figure 6.17. With NI imaging tools, you can deploy images to multiple real-time targets.

With this imaging process, you can obtain an exact copy of a real-time system
and easily deploy it to multiple targets. This reduces the risk of deployment
error and the need for using the LabVIEW development environment for
deployment. When using this process, you must deploy images to the same
controller model used to create the image. For example, an image that was
created for a cRIO-9022 controller cannot be used on a cRI0-9024 controller.

You can choose from two methods for imaging CompactRIO systems. You can
use a prebuilt imaging utility or you can design your own custom utility using
built-in functions in LabVIEW Real-Time. The next section provides an overview
of the Real-Time Application Deployment Utility in addition to several APIs for
developing your own custom utility.

The Real-Time Application Deployment Utility (RTAD)

RTAD is a turnkey application for deploying and replicating LabVIEW Real-Time
applications from one LabVIEW Real Time target to another. This type of utility
is commonly used in the production and software/firmware installation of
systems such as machine control systems, medical devices, automated testers,

86

and so on. OEMs may use this type of utility as part of their factory installation
processes when assembling their products.

You can download this utility from the NI Developer Zone document,
Automated LabVIEW Real-Time Deployment (RTAD) Reference Application.
After installation, you can start the RTAD directly from the Tools menu in the
LabVIEW environment.

When replicating applications from one target to another, the application
image is retrieved from one real-time target and copied to another. The
application image is the contents (all of the files and directories) of the hard
drive of a real time target that define the behavior of the real-time target as
well as any bitfiles set to deploy to the FPGA flash memory. This utility only
transfers images between identical controllers and backplanes. If you receive
an image from a specific controller, you can deploy that image only to
controllers with the same model number.

The RTAD utility shows these two entities, Real-Time Targets and Application
Images, in two tables on the main Ul of the utility.

File Targets Images Help

Exit
Real-Time Targets Application Images 2
3 Refresh B Settings 3 Refresh & Settings
Host Mame IP Address Serial Number Maodel | Application Name Date/Time |
MI-cRIOS022-014C1A3: 10.018.146 014C1A33 cRIO-9022 : 11/30/201001:32:54 PM | cRIO-9022
ModbuslO 10.0.18.154 0135C8C5 cRIO-9014 11_30 9022 Image 1101 11/30/2010 01:43:50 PM | cRIO-9022
PXI-8108-Koopmans | 10.0.18.162 2F11AD31 PXI1-8108 [4mnenioy MI-9074 Empty Image | 1.0.0 11/02/2010 11:42:15 AM | cRIO-9074
cRIO-9014-TdB-Dev | 10.0.18.163 013C3451 cRIO-9014 9074 Image FPGA Image | 1.0.0 11/16/2010 04:35:51 PM | cRIO-0074
cRIO-9014-Black 10.0.18.166 00E98C92 cRIO-8014 m =pRetrieve | CRIO Modbus Eample | 1.0.0 12/21/201010:45:36 AM | cRIO-8022
MI-cRI0S024-Devin 10.0.18.170 014F8139 cRIO-9024 cRI0 Modbus EXE 1.0.0 12/13/2010 03:51:55 AM | cRIO-8022
cl-cRIO-9012 10018171 01356FBE cRI0-9012 1y Compare EVS Image for Testing | 1.0.0 12/27/2010 04:30:37 PM | EVS-1460
jack 10018177 00EJBFEL cRIO-8014 FPGA test 101 12/02/2010 03:02:19 PM | PXI-8106
AT -BTRANIE FhoAE 1Annio17e | Aiacetan o1 o B | jnn ot T B 10 Tam7 Ann Az ake T avieine L
S=Configure 3 j Select All [:ﬁ%.-\dd Target S= Configure

Figure 6.18. With NI imaging tools, you can deploy images to multiple real-time targets.

The Real-Time Targets table shows all of the targets on the local subnet as well
as any network targets manually added to the list. You can use these targets for
both image retrieval and image deployment. The Application Images table
shows all of the images that are stored on the local hard drive and can be
deployed to a target system.

Retrieving Application Images

87

To copy the application image from a real-time target to the local hard drive,
select the appropriate target in the table and click the Retrieve button in the
center of the Ul. You can retrieve an application image from a target in three
ways. The application could either be a brand new application or a new version
of a previous image either currently on the controller or previously saved to
disk. If the current application is a new version of an older application, it is best
to inherit the old application properties. If you are creating an image of the
application for the first time, select New Application Image.

After making this selection, you are presented with the dialog box in Figure
6.19 to specify the local file for the application image and specify some
additional information that is stored with the application image. If this is not a
new image, properties from the old version of the image are automatically
populated.

88

Application Image Properties

Name
cRIO Modbus Test
Old Version New Version
1.00
Description

This is a cRIO Modbus application.

Configure Bitfile(s) for FPGA Flash Deployment

Application Image Destination
C:\AppImages\cRIO Modbus EXE1_0_0.lvappimg
%

Browse

Retrieve image from ()

Cancel

Figure 6.19. Configuring Your Application Image Properties

In addition to retrieving and deploying an image on the real-time hard drive,
the utility can deploy bitfiles to FPGA flash memory. Saving a bitfile in flash
memory has some advantages to deploying the bitfile from the RT EXE. For
example, the host application is required to initialize before the FPGA
application is loaded and, as a result, there is a delay from device power up to
the configuration of the FPGA. In addition, on power up, the state of the input
and output lines of your target is unknown since the FPGA has not yet been
configured. Therefore, if the FPGA is completely independent of the host
application, its personality should be stored in the onboard FPGA flash
memory.

Using the RTAD utility, you can now save bitfiles with an image during retrieval
and then later deploy them to flash memory when you deploy the image. Click

89

Configure Bitfile(s) for FPGA Flash Deployment to edit your FPGA flash
deployment settings.

Deploying Application Images

To deploy an application image to one or more targets, select the image in the
right table and select the desired real time targets in the left table. You can
select multiple real-time targets using a <Ctrl-Click> or <Shift-Click> or by
clicking the Select All button. After completing your selection, click on Deploy
at the center of the Ul. A dialog confirms your real-time target selection and
allows for additional target configuration options.

After verifying the selected targets and setting any desired network
configuration options for your real-time targets, click on Deploy Application
Image to Listed Targets to begin the deployment process. The application
image is 195 deployed to the selected targets in sequential order, one at a
time. During this process, the Figure 6.20 progress dialog is shown. This process
takes several minutes per real-time target.

Deploving application image ko 10,0,18.197 ...

Figure 6.20. Application Image Deployment Process
Comparing Application Images

In addition to retrieving and deploying application images, the utility offers an
image comparison feature. The comparison tool compares each file in two
images to notify you if any files have been modified, added, or removed. You
can choose to compare a local image with an image on a controller, or two
local images.

90

Original Image Path
C:\AppImages\cRIO Modbus EXE1_0_0.lvappimg

—3

@ Compare Local Image With Controller
") Compare Two Local Images
Ignore Automatically Updated Files
V]

RT Target - IP Address or Name

Start Close

Figure 6.21. Compare a Local Image to Network Controller Dialog

Click the Start button to begin the comparison process. Once the comparison
begins, each file on both images is compared for changes. Files that are found
in one image and not the other are also identified. This process may take
several minutes to complete, and a progress dialog is displayed until
completion. If the tool completes with no differences found, the Figure 6.22
dialog appears.

RT Image Verified Successfully.
The Twa Images Are Identical.

Figure 6.22. Identical Images Notification

However, if any differences are identified, they are listed in the Figure 6.23
table. You can then log the results to a TSV file.

91

Image differences are listed below...
List of Modified Files Files Found Only In Original Image (local) Files Found Only In Comparison Image (local or remote) - |
chni-rivconfig\criocfg.bin chlvappimage.info chni-ri\configynimcdata.xml
c\ni-rt\config\masterRegistry.xml cni-rtisystemymxsCheckpoints\20101119_225018.cpty, | c\ni-rt\system\dmECAT3rdPartyComm.out —
config3.mxs
cini-rt\config\scanConfig.xml c\ni-rt\system\dmECATComm.out
chni-rivconfig\variables.xml chni-ri\system\dmRIOComm.out
ch\ni-rt\systern\config.cdf c\ni-rt\system\dmsimcom.out
ch\ni-rtsystemymexsjar.ini c\ni-rt\systeminimeca.out
chni-rt\systemymxsjar.mx5 c\ni-rt\system\nimedm.out
chni-rt\systemmxsSchema.log c\ni-rt\system\nimedmtg.out
A ni-rf crctami nicvcani ini FAni-rt crctaminimel abVIEW A Aantar Aurt |
[Log Results] [OK

Figure 6.23. Image Comparison Results Table
Deploying CompactRIO Application Updates Using a USB Memory Stick

If your CompactRIO systems are not available on the network, you may want to
deploy an image using a USB stick. The process of updating or deploying a new
application image from a USB memory device to a CompactRIO controller is
based on a simple file copy operation that replaces the files on the hard drive
of the CompactRIO controller with files stored on the USB memory device. This
file copy operation is added as a VI to the main LabVIEW Real-Time application
deployed to the controller.

A LabVIEW Real-Time application once loaded and running on the controller is
stored completely in the active memory (RAM) of the controller. Because of
this, you can delete and replace the application files stored on the controller
hard drive while the application is running in memory. The new application
becomes active by performing a reboot operation on the controller and loading
the new application during the boot process.

To update the deployed code from the USB memory device in the future, you
must add code to the main application that handles the deployment process.
The Deploy Image.vi shown in Figure 6.24 handles the update process.

1000000000

Main Application
Deployment Status
IISB Memory Stick Root Path | Appi
I5E
Diepl
Feboot on Update + |:12;¢y

100000000 0

Figure 6.24. Include the USB Deploy Image VI in your deployed real-time application to
enable updates from a USB memory stick.

92

Once you have added this code, you can build the main application into an
executable and deploy it to a CompactRIO controller. The deployed application
executable, together with all of the other files on the CompactRIO controller
hard drive, becomes the application image. For more information on this utility
including downloadable files, see the NI Developer Zone document Reference
Design for Deploying CompactRIO Application Updates Using a USB Memory
Device.

APIs for Developing Custom Imaging Utilities

You can choose from several imaging APls—all with nearly identical
functionality—depending on the version of LabVIEW you are using. The RTAD
utility is based on the RT Utilities VIs.

System Configuration APl—Recommended for LabVIEW 2011 or later
RT Utilities APl—Recommended for LabVIEW 2009 and 2010
NI System Replication Tools—Recommended for LabVIEW 8.6 or earlier

Another useful API discussed in this section is the cRIO Information Library
(CRI), which you can use with the three APIs listed above to return information
about the current hardware configuration of a CompactRIO system.

System Configuration API

The System Configuration APl exposes MAX features programmatically. For
example, you can use this APl to programmatically install software sets, run
self-tests, and apply network settings in addition to image retrieval and
deployment. This API is located in the Functions palette under Measurement
I/O»System Configuration»Real Time Software.

Image Path

[% C:\SystemBenchmarklmage.zip |
Controller IP Address

Iiialize.*.ri S stem Imagewi Closevi

......... ﬂ =z Systemn Session g - =

.......... wEL [+ HaltOnErr

Figure 6.25. Programmatically Setting a System Image Using the System Configuration API
RT Utilities API

93

The RT Utilities APl also includes VIs for image retrieval and deployment.

RT Create Target Disk Image.vi
target address = _ target address out
image file path'"; -------------- "'RTJ] ~ image file path out

allow overwrite? (F) -~ ¥ becx grror out
error in (no error)

RT Apply Target Disk Image.vi

target addeSSmE_m S5 IP settings after restart
image file path F‘?
error in (no error) == iH

error out

Figure 6.26.You also can use the RT Utilities VIs in LabVIEW 2009 or later to
programmatically deploy and retrieve a system image

LabVIEW Real-Time system replication tools

For LabVIEW 8.6 and earlier, neither the RT Utilities API nor the System
Configuration API is available. For these applications, NI recommends using
LabVIEW Real-Time system replication tools. For more information on these
tools, including the downloadable installation files, see the NI Developer Zone
document Real-Time Target System Replication.

cRIO Information Library (CRI)

You can use the CRI with the three APIs discussed above to detect the current
configuration of a CompactRIO system. The cRIO Information component
provides VIs to retrieve information about a local or remote CompactRIO
controller, backplane, and modules including the type and serial number of
each of these system components.

cRIO Controller

B o Backplane
IP address '_Eﬂ cRIC Maodules

[ab« rm?m Feai]
=3

Figure 6.27. CRI Get Remote cRIO System Info.vi

You can download this library from the NI Developer Zone document Reference
Library for Reading CompactRIO System Configuration Information.

IP Protection

Intellectual property (IP) in this context refers to any unique software or
application algorithm(s) that you or your company has independently
94

developed. This can be a specific control algorithm or a full-scale deployed
application. IP normally takes a lot of time to develop and gives companies a
way to differentiate from the competition. Therefore, protecting this software
IP is important. LabVIEW development tools and CompactRIO provide you the
ability to protect and lock your IP. In general, you can implement two levels of
IP protection:

Lock algorithms or code to prevent IP from being copied or modified

If you have created algorithms for a specific functionality, such as performing
advanced control functions, implementing custom filtering, and so on, you may
want to distribute the algorithm as a subVI but prevent someone from viewing
or modifying that actual algorithm. This may be to achieve IP protection or to
reduce a support burden by preventing other parties from modifying and
breaking your algorithms.

Lock code to specific hardware to prevent IP from being replicated

Use this method if you want to ensure that a competitor cannot replicate your
system by running your code on another CompactRIO system or want your
customers to come back to you for service and support.

Locking Algorithms or Code to Prevent Copying or Modification

Protect Deployed Code LabVIEW is designed to protect all deployed code, and
all code running as a startup application on a CompactRIO controller is by
default locked and cannot be opened. Unlike other off-the-shelf controllers or
some PLCs for which the raw source code is stored on the controller and
protected only by a password, CompactRIO systems do not require the raw
source code to be stored on the controller.

Code running on the real-time processor is compiled into an executable and
cannot be “decompiled” back to LabVIEW code. Likewise, code running on the
FPGA has been compiled into a bitfile and cannot be decompiled back to
LabVIEW code. To aid in future debugging and maintenance, you can store the
LabVIEW project on the controller or call raw VIs from running code, but by
default any code deployed to a real-time controller is protected to prevent
copying or modifying the algorithms.

Protect Individual Vls

95

Sometimes you want to provide the raw LabVIEW code to enable end
customers to perform customization or maintenance but still want to protect
specific algorithms. LabVIEW offers a few ways to provide usable subVIs while
protecting the IP in those Vis.

Method 1: Password protecting your LabVIEW code

Password protecting a VI adds functionality that requires users to enter a
password if they want to edit or view the block diagram of a particular VI.
Because of this, you can give a VI to someone else and protect your source
code. Password protecting a LabVIEW VI prohibits others from editing the VI or
viewing its block diagram without the password. However, if the password is
lost, you cannot unlock a VI. Therefore, you should strongly consider keeping a
backup of your files stored without passwords in another secure location.

To password protect a VI, go to File»VI Properties. Choose Protection for the
category. This gives you three options: unlocked (the default state of a Vi),
locked (no password), and password-protected. When you click on password-
protected, a window appears for you to enter your password. The password
takes effect the next time you launch LabVIEW.

i3 V1 Properties 2

Category Protection |E|

”
) Unlocked (no password) :[g Enter Password ﬁ

Any user can view and edit the

Enter Mew Password:

' Locked (no password) sk

A user must unlock this VI (fror lagrarm.
Enter Mew Password Again to Verify:

@) Password-protected *******1

A user cannot edit this VI nor v ord.
[0]4] I Cancel I

Change Password...

Mote: Changing a VI password deletes
the unde history so you cannot undo
the password change.

I oK H Cancel Il Help

Figure 6.28. Password Protecting LabVIEW Code

96

The LabVIEW password mechanism is quite difficult to defeat, but no password
algorithm is 100 percent secure from attack. If you need total assurance that
someone cannot gain access to your source code, you should consider
removing the block diagram.

Method 2: Removing the block diagram

To guarantee that a VI cannot be modified or opened, you can remove the
block diagram completely. Much like an executable, the code you distributed
no longer contains the original editable code. Do not forget to make a backup
of your files if you use this technique because the block diagram cannot be
recreated. Removing the block diagram is an option you can select when
creating a source distribution. A source distribution is a collection of files that
you can package and send to other developers to use in LabVIEW. You can
configure settings for specified VIs to add passwords, remove block diagrams,
or apply other settings.

Complete the following steps to build a source distribution.

1. In the LabVIEW project, right-click Build Specifications and select
Newn»Source Distribution from the shortcut menu to display the Source
Distribution Properties dialog box. Add your VI(s) to the distribution.

2. On the Source File Settings page of the Source Distribution Properties
dialog box, remove the checkmark from the Use default save settings
checkbox and place a checkmark in the Remove block diagram checkbox
to ensure that LabVIEW removes the block diagram.

3. Build the source distribution to create a copy of the VI without its block
diagram.

97

4 My Source Distribution Properties

(Eatenon Source Fle Settings
Information
Saource Files - -
Destinations Project Files [[] Inclusion Type
{Soirce File Setbings: =N Always Included
additional Exclusions | Unkitled 2.vi
Freview _';:'_" Dependencies Destination
Destination Directary bl

[Customize WI Properties. ..

[JUse defaul: save settings
[Iremave front panel
Remove block diagram

() Mo password change
() Remaowe password

() Apply new password

[Irename this file in the build

Untitled 2.vi

[Eiuild] [[o]4] [Cancel] [Help]

Figure 6.29. You can programmatically deploy libraries to real-time targets using the
Application Invoke Node on a PC.
Note: If you save VIs without block diagrams, do not overwrite the original
versions of the VIs. Save the Vls in different directories or use different names.

Lock Code to Hardware to Prevent IP Replication

Some OEMs and machine builders also want to protect their IP by locking the
deployed code to a specific system. To make system replication easy, by default
the deployed code on a CompactRIO controller is not locked to hardware and
can be moved and executed on another controller. For designers who want to
prevent customers or competitors from replicating their systems, one effective
way to protect application code with CompactRIO is by locking your code to
specific pieces of hardware in your system. This ensures that customers cannot
take the code off a system they have purchased from you and run the
application on a different set of CompactRIO hardware. You can lock the
application code to a variety of hardware components in a CompactRIO system
including the following:

e The MAC address of a real-time controller

* The serial number of a real-time controller
98

* The serial number of the CompactRIO backplane
* The serial number of individual modules
* Third-party serial dongle

You can use the following steps as guidelines to programmatically lock any
application to any of the above mentioned hardware parameters and thus
prevent users from replicating application code:

1. Obtain the hardware information for the device. Refer to the following
procedures for more information on programmatically obtaining this
information.

2. Compare the values obtained to a predetermined set of values that the
application code is designed for using the Equal? function from the
Comparison palette.

3. Wire the results of the comparison to the selector input of a Case
structure.

4. Place the application code in the true case and leave the false case blank.

5. Performing these steps ensures that the application is not replicated or
usable on any other piece of CompactRIO hardware.

License Key

Adding licensing to a LabVIEW Real-Time application can protect a deployed
application from being copied and run on another similar or identical set of
hardware without obtaining a license from the vendor or distributor of the
application. Most modern-day applications running on desktop computers are
protected by a license key that is necessary to either install the application or
run it in its normal operational mode. Many vendors use license keys to
determine if an application runs in demo mode or is fully functional. License
keys may also be used to differentiate between versions of an application or to
enable/disable specific features.

You can add this behavior to a LabVIEW Real-Time application using the
reference design and example code developed by NI Systems Engineering. You
can download this code from the NI Developer Zone document Reference
Design for Adding Licensing to LabVIEW Real-Time Applications. The main

modification is how you create a unique system ID for a specific hardware
99

target. In the case of CompactRIO, you use the controller, backplane, and
module serial numbers. For other targets, you may use the serial number or
Ethernet MAC address of a given target to create a unique system ID.

Choosing a License Model

The license model defines how the license key is generated based on particular
characteristics of the target hardware. One simple example of a license model
is to base the license key on the serial number of the controller. In this case,
the application runs if the controller has the serial number matching the license
key provided.

If the controller serial number does not match the license key, the application
does not run. If the hardware target includes additional components such as a
CompactRIO backplane and CompactRIO modules, you may choose to lock the
application not only to the controller but also to these additional system
components. In this case, you can link the license key to the serial numbers of
all of these hardware target components. All components with the correct
serial numbers must be in place to run the application.

The unique characteristic of the hardware target (for example, a serial number)
is called the system ID for the purpose of this guide.

One example of a more complex license model is to base the license key on the
serial numbers of multiple system components but require only some of these
components to be present when running the licensed application. This allows
the application user to replace some of the system components, in case a
repair is required, without needing to acquire a new application license key.
The number of components linked to the license key that must be present to
run the application is defined by the developer as part of the license model.

Application Licensing Process

Adding licensing (creating and using a license key) to a LabVIEW Real-Time
application consists of the following steps:

1. Create a unique system ID for each deployed hardware target
2. Create a license key based on the system ID

3. Store the license key on the hardware target

100

4. Verify the license key during application startup system for each
deployed hardware target

Create a unique system ID for each deployed hardware target

To create a license key for a specific hardware target, you must first create a
unique system ID. The system ID is a number or string that uniquely identifies a
specific hardware target based on the physical hardware itself. The licensed
application is locked to the hardware target using the license key, which is
linked to the system ID. The system ID can be a number such as the serial
number of the target or a value that is a combination of each of the system
component’s serial numbers. Another source for a system ID can be the Media
Access Control (MAC) address stored in every Ethernet interface chipset. The
example uses the Reference Library for Reading CompactRIO System
Configuration Information to retrieve these different pieces of information
from a CompactRIO system.

B 0 o 0 o o 0 W e M B M W i B w M B i W W B W W il W W W W e W s W Wl s W W s W i Wl)
Store license key in file on current system

Combined Serial Mumber License String

s s
o Tanue] e 8 = WTre ~H

I
Encryption Key 333;1 :
z sz j21 i Invalid encryption key
EEE T
El 51 B

Encrypt the system LU sting to generate the lcense key
using a knawn enaryption ley. The generated string is the
liren: y whirh shnaild he stored in the system in A file

olm

o

[Store the license key in & local ML s |

Do Lt pmiit e cnn 1D sl widiich s unigue Lo e HW syslan
for which a icense key wil be generated. This can be the
serial number of the controller, backplane, modules, or any
combination thereof,

D000 0D00000 000000000 00000000 0000000000000 0000000000 0000000000000 0000000000000 000000000000

Figure 6.30. Block Diagram Showing the Process of Creating the License Key

Figure 11.31 shows one possible example of generating a system ID for a 4-slot
CompactRIO system using these VIs. The serial numbers for all six system
components are added together. While this is not a truly unique value for a
given CompactRIO system, it is unlikely that after replacing one or more system
components, the sum of all the serial numbers will be the same as when the
license key was generated.

101

Combined Serial Mumber

— Y - = Fabc |
T - : Serial Mumber %;l
ey | e

...... b | Serial Number

: Serial Number
b | Serial Mumber
-------- =+ | Serial Humber

nd O

Combined Serial Mumber
| 000650CACF

Figure 6.31. Generating a System ID Using Serial Numbers
Create a license key based on the system ID

Once you create a system ID, you derive a license key from the system ID. The
license key is a unique string that is linked to the system ID using an encryption
algorithm. The goal is to create a string that can be verified against the system
ID but cannot be easily generated by the user for a different hardware target to
disallow using the application on a different set of hardware.

Encryption

The encryption used in the reference example is a version of the Hill Cipher,
which uses a simple matrix multiplication and a license key matrix. The matrix
multiplication converts the input string into a different output string that
cannot be easily decrypted without knowing the key matrix. The Hill Cipher is
not considered to be a strong encryption algorithm and is only one possible
option you can use to generate a license key. You can easily replace the
encryption subVI in the reference example with your own encryption tool.

The encryption VI provided with the reference example converts the system ID
using the Hill Cipher and a 3x3 key matrix (Encryption Key). The key matrix is
the key to unlocking the license key. Therefore you should change the key
matrix value before using the reference example in a real-world application.
Not all 3x3 matrices are valid for use as a key matrix. The Hill Cipher Encryption
VI tells you if your chosen matrix is invalid. If it is invalid, try other values for
your key matrix.

102

Input String Output String

000650CA0F 1 At
v|ale0 (140
Cperation Qutput String (Hex)
E—j Encrypt 090004200F 300940047410 2D0AFD05381 281000601 180230
Encryption Key

Invalid encryption key

=1y
[
—

{.,-1|-..{.,-1-..
[} L=}
| T 210 =T
Lei] u et
un
| T =15 210
Ju = (]
—]
T 210
Lad [ai}
r

Figure 6.32. Encryption of the System ID Into the License Key

The encryption VI provides two versions of the license key. The default
algorithm returns a stream of bytes that can have any value between 0 and
255. Therefore these bytes may not represent printable characters and may
not be easily stored in a text file or passed along using other mechanisms such
as email. To simplify the process of storing and transferring the license key, the
VI provides a hexadecimal version of the encrypted string made up of the ASCII
representation of the hexadecimal value of each of the byte values in the
original string. This string is stored in a file as the license key.

Store the license key on the hardware target

The reference example stores the license key in a simple INI file on the
CompactRIO controller hard drive.

License Key File Path g—
E ILlcensel

‘:@ — T: * error out
S

[Store the license key in a local INI file. |

I licensekey.ini - Notepad |Z| |E| r5__<|
File Edit Format View Help
[License]

Key=090004200F2009400474102D0AFD053812810606011 80230

Figure 6.33. Storing the License Key in an INI File on the CompactRIO Controller

103

If the license key and file are generated away from the actual CompactRIO
system, then you must copy the license file to the CompactRIO system when
you deploy the application to the controller.

Verify the license key during application startup

When the deployed application is starting up, it needs to verify the license key
and, based on the result of the verification process, adjust its behavior
according to the license model. If the license key is verified correctly, the
application runs normally, but if the key is not verified, it may not run at all or
run in an evaluation mode.

The reference example provides a basic verification VI that is added before the
actual application.

[Place vour application here |

License Status

ILicense verified. [~Fabe]|

Figure 6.34. Adding the License Key Verification to an Application

You can choose from two different methods to verify a license key. The first
and preferred method is to recreate the license key on the target system
(described in this section). The second method, which consists of decrypting
the license key, is described in the NI Developer Zone white paper titled
Reference Design for Adding Licensing to LabVIEW Real-Time Applications
under the section titled “Enabling Features based on the License Key”.

The more basic and more secure method to verify the license key is to run the
same algorithm you use to create the license key on the target system and then
compare the new license key with the license key stored in the license file. If
the two match, then the license key is verified and the application may run.

104

D000 000000000000 000D 0000000000000 0000000000000 D00D00000N0 0000000000000 0Do0D0000 DopDoo0Do0oooo0o0

ense Key calculated for local HW cense fiom Fle

it | Bibc
;—| =1 Valid License
I
opher =
Tvald enervelion kev Lisense Key File Patt
Invalid encry oL

2> e

[Read the icense kev from a local INT file. |

D000 C0000 N0 00O 000D OO0 DD 0D O 00N D 000000 000N 00D 0 DD 0DO000oNDO0DDD000DOo0DDoDoo0Do00Q COopDCo0oDooooooog

Figure 6.35. Block Diagram to Verify the License Key Stored in the File on the System

Figure 6.35 shows that this process is almost identical to the process of
generating the license key. Instead of writing the license file, however, the
license file is read and compared to the newly generated license key.

This method of verifying the license key works well if you do not need any
partial information from the license key such as information about enabling or
disabling individual features or the individual serial numbers of system
components. For licensing models that require more detailed information
about the license key, the key itself must be decrypted. For more information
on this type of licensing, see the NI Developer Zone document Reference
Design for Adding Licensing to LabVIEW Real-Time Applications.

Deploying Applications to a Touch Panel
Configure the Connection to the Touch Panel

Although you can manually copy built applications to a touch panel device, you
should use Ethernet and allow the LabVIEW project to automatically download
the application. NI touch panels are all shipped with a utility called the NI TPC
Service that allows the LabVIEW project to directly download code over
Ethernet. To configure the connection, right-click on the touch panel target in
the LabVIEW project and select Properties. In the General category, choose the
connection as NI TPC Service and enter the IP address of the touch panel. Test
the connection to make sure the service is running.

105

43 Touch Panel Target Properties
Categary ~ General
General
Conditional Disable Symbols
Tarme
MI TPC-2012 Device
Dervice 1D
102
Launch Device Emulator Manager
Conneckion
MI TPC Service (TCPYIP) W
Touch Panel device IP address
woseE]
Connection status
W [QK l [Cancel l [Help

Figure 6.36. Connect to a touch panel through Ethernet using the NI TPC Service.

You can find the IP address of the touch panel by going to the command
prompt on the TPC and typing ipconfig. To get to the command prompt, go to
the Start menu and select Run... In the popup window, enter cmd.

Deploy a LabVIEW VI to Volatile or Nonvolatile Memory

The steps to deploy an application to a Windows XP Embedded touch panel
and to a Windows CE touch panel are nearly identical. The only difference is on
an XP Embedded touch panel, you can deploy an application to only the
nonvolatile memory, and, on a Windows CE touch panel, you can deploy to
volatile or nonvolatile memory, depending on the destination directory you
select. To run a deployed VI in either volatile or nonvolatile memory on a touch
panel, you must first create an executable.

Building an executable from a VI for an XP Embedded touch panel

The LabVIEW project provides the ability to build an executable touch panel
application from a VI. To do this, you create a build specification under the
touch panel target in the LabVIEW Project Explorer. By right-clicking on Build

106

Specifications, you can select the option of creating a Touch Panel Application,

Source Distribution, Zip File, and so on.

i3 Froject Explorer - HMI_SV lvproj

loeSe %

File Edit Wiew Project

.
Mj=X
Qperate Tools

IETIEEEYE

Window Help

Items | Files

[TPC

- [F) NI TRC-:

=[] Project: HMI_SY lvproj

= B My Computer
+ [Simulated Controller
= Dependencies
‘% Build Specifications
= [MI TPC-2512 Device

+ _'-fq'_' Dependencies
5 [Build - s

MEw 3 Touch Panel Application (EXE)
] Source Distributinr&
Build Al o
Zip File
Expand Al

Collapse Al

Help. ..

Figure 6.37. Create a touch panel application using the LabVIEW project.

After selecting the Touch Panel Application, you are presented with a dialog

box. The two most commonly used categories when building a touch panel

application are Information and Source Files. The other categories are rarely

changed when building touch panel applications.

The Information category contains the build specification name, executable

filename, and destination directory for both the touch panel target and host

PC. You can change the build specification name and local destination directory

to match your nomenclature and file organization. You normally do not need to

change the target filename or target destination directory.

107

fs

y Application2 Properties

Cateiori

Source Files
Destinations

Saource File Settings
Icon

Advanced

Additional Exclusions
wersion Information
Run-Time Languages
Presiew

Build specification name

|My Applicationz |

Targek filename

|Applicati0n.exe |

Lacal destination directory

Ci\Documents and SettingsibwalterDesktoplExamples - Shared Variable Communication - A& User Interface|HMI
Conkral Primer{2009) with Svs\builds\HMI_SYiNI TPC-2512 DevicelMy Applicationz
Targek destination directory
c:hni
Build specification description
[Euild] [o]] [Cancel] [Help]

y

Figure 6.38. The Information Category in the Touch Panel Application Properties

b Hy !pp'wa!mn! ﬂrnper!ws E

Cakegor

Information

Destinations

Source File Settings
Icon

Advanced

Additional Exclusions
Wersion Information
Run-Time Languages
Preview

[

Project Files Skartup Is
BE! MI TPC-2512 Device E, HMI_S i
=@ TPC

Subvis
HMI_SY . wi

*B
&
[«]

Always Included

(] (3]

[Buid

I

OK

I

] [Cancel Help

]

Figure 6.39. Source Files Category in the Touch Panel Application Properties (In this
example, the HMI_SV.vi was selected to be a Startup VI.)

You use the Source Files category to set the startup VIs and obtain additional
Vls or support files. You need to select the top-level VI from your Project Files

108

and set it as a Startup VI. For most applications, a single VI is chosen to be a
Startup VI. You do not need to include Ivlib or set subVIs as Startup Vs or
Always Included unless they are called dynamically in your application.

After you have entered all of the information on the required category tabs,
you can click OK to save the build specification or you can directly build the
application by clicking the Build button. You can also right-click on a saved build
specification and select Build to build the application.

When you build the application, an executable is created and saved on the hard
drive of your development machine in the local destination directory.

Building an executable from a VI for a Windows CE touch panel

The LabVIEW project provides the ability to build an executable touch panel
application from a VI. To build this application, you create a build specification
under the touch panel target in the LabVIEW Project Explorer. By right clicking
on Build Specifications, you can select the option of creating a Touch Panel
Application, Source Distribution, Zip File, and so on.

rﬁ Project Explorer - HMI_SV. lvproj g@w
File Edit Yiew Project Operate Tools wWindow Help
=] IECIE Y E

Items | Files

= [l Project: HMI_S¥.lvproj
2 B My Computer
. G [@ Simulated Controller
: .2 Dependencies
E "% Buid Specifications
+ [MITPC-2512 Device
= [MITPC-2012 Device

@ TRC
+ "= Dependencies
= t Buil = 3 %Tnuch Panel Application (EXE)
] ource Distribution
Build Al o
Zip File
Expand Al
Collapse all
Help. ..

Figure 6.40. Creating a Touch Panel Application Using the LabVIEW Project

After selecting Touch Panel Application, you see a dialog box with the three
main categories that are most commonly used when building a touch panel

109

application for a Windows CE target: Application Information, Source Files, and
Machine Aliases. The other categories are rarely changed when building
Windows CE touch panel applications.

The Application Information category contains the build specification name,
executable filename, and destination directory for both the touch panel target
and host PC. You can change the build specification name and local destination
directory to match your nomenclature and file organization. You normally do
not need to change the target filename. The target destination determines if
the deployed executable runs in volatile or nonvolatile memory. On a Windows
CE device

* \My Documents folder is volatile memory. If you deploy the executable
to this memory location, it does not persist through power cycles.

« \HardDisk is nonvolatile memory. If you want your application to remain
on the Windows CE device after a power cycle, you should set your
remote path for target application to a directory on the \HardDisk such
as \HardDisk\Documents and Settings.

{3 HMI_SV Touch Panel Build Specification Properties

Categar | Application Information
i Application Information

Device Information
Source Files

EBuild specification name

Source File Settings HMI_3W
Machine Aliases
Generated Filas Target filename
HMI_SV . exe Same as top-level Y1

Destination directary

Ci\Documents and Settingsttwalter\Deskbop\Examples - Shared Variable
Caommunication - AA1Jser Interface\HMI Control Primer(2009) with Svsibuilds)
HIMI_SyyHMI_5y

Remoke path For karget application

My Documents]

[] cenerate serial only [] Expression Folding
[] Enable debuaging

Front panel scale factor &llacake constants

i Firsk Use W
Screen depth Deallocate constants

8 w Qut of Scope v

[0]4 ” Cancel ” Help

110

Figure 6.41. The Information Category in the Touch Panel Application Properties

Use the Source Files category to set the startup VI and obtain additional Vis or
support files. You need to select the top-level VI from your Project File. The
top-level VI is the startup VI. For Windows CE touch panel applications, you can
select only a single VI to be the top-level VI. You do not need to include Ivlib or
subVls as Always Included.

3 %
Categar | Source Files
Application Information
Device Infarmation — -
{Source Files || [EEy=Es = ial
Source File Settings = [l NI TPC-2012 Device .Top—lelvel L] -
Marhine Aliases =1f@ TrC @ Ul HMI_ SV
Generated Files + {0 Subvis
i Jsel, .
Additional files (*.c, *.cpp, *.lib, *.cbj) A
]
<] (2
Always included (¥, wi) |
v |
] 2]] 2]
l [o]'4] l Cancel] [Help]

Figure 6.42. Source Files Category in the Touch Panel Application Properties (In this

example, the HMI_SV.vi was selected to be the top-level VI.)
The Machine Aliases category is used to deploy an alias file. This is required if
you are using network-published shared variables for communication to any
devices. Be sure to check the Deploy alias file checkbox. The alias list should
include your network-published shared variable servers and their IP addresses
(normally CompactRIO or Windows PCs). You can find more information on
alias files and application deployment using network-published shared
variables in the section titled Deploying Applications That Use Network-
Published Shared Variables.

111

{3 HMI_SV Touch Panel Build Specification Properties

Categar , | Machine Aliases

Application Information

Device Information i

Source Files Mame Address A
’ Source File Settings | My Computer i 10,0,59,153 H
: Machine Aliases A

Generated Files

Deploy aliases file

l (0] 4 ” Cancel ” Help]

Figure 6.43. The Machine Aliases Category in the Touch Panel Application Properties (Be
sure to check the deploy aliases file checkbox if you are using network-published shared
variables.)

After you have entered all of your information on the required category tabs,
you can click OK to save the build specification or you can directly build the
application by clicking the Build button. You can also right-click on a saved build
specification and select Build to build the application.

When you build the application, an executable is created and saved on the hard
drive of your development machine in the local destination directory.

Deploy an Executable Touch Panel Application to a Windows CE or XP
Embedded Target

After configuring and building your executable, you now need to copy the
executable and supporting files to the memory on the touch panel. To copy the
files, right-click on the Touch Panel Application and select Deploy. Behind the
scenes, LabVIEW copies the executable files to the memory on the touch panel.
If you rebuild an application, you must redeploy the touch panel application for
the changes to take effect on the touch panel target.

112

The Run Button

If you click the Run button on a VI targeted to a touch panel target, LabVIEW
guides you through creating a build specification (if one does not exist) and
deploys the code to the touch panel target.

Setting an executable touch panel application to Run on Startup

After you have deployed an application to the touch panel, you can set the
executable so it automatically starts up as soon as the touch panel boots.
Because you are running on a Windows system, you do this using standard
Windows tools. In Windows XP Embedded, you should copy the executable and
paste a shortcut into the Startup directory on the Start Menu. On Windows CE,
you need to go to the STARTUP directory on the hard disk and modify the
startup. iNI file to list the path to the file (\HardDisk\Documents and
Settings\HMI_SV.exe). You can alternatively use the Misc tab in the
Configuration Utility (Start»Programs»Utilities»Configuration Utilities) to
configure a program to start up on boot. This utility modifies the startup.iNlI file
for you.

Porting to Other Platforms

This guide has focused on architectures for building embedded control systems
using CompactRIO systems. The same basic techniques and structures also
work on other NI control platforms including PXI and NI Single-Board RIO.
Because of this, you can reuse your algorithms and your architecture for other
projects that require different hardware or easily move your application
between platforms. However, CompactRIO has several features to ease
learning and speed development that are not available on all targets. This
section covers the topics you need to consider when moving between
platforms and shows you how to port an application to NI Single-Board RIO.

113

Analog 1/O
Digital I/0O

Custom I/O

NI CompactRIO /

LabVIEW

NI Single-Board

Figure 6.44. With LabVIEW, you can use the same architecture for applications ranging
from CompactRIO to high-performance PXI to board-level NI Single-Board RIO.

LabVIEW Code Portability

LabVIEW is a cross-platform programming language capable of compiling for
multiple processor architectures and OSs. In most cases, algorithms written in
LabVIEW are portable among all LabVIEW targets. In fact, you can even take
LabVIEW code and compile it for any arbitrary 32-bit processor to port your
LabVIEW code to custom hardware. When porting code between platforms,
the most commonly needed changes are related to the physical I/O changes of
the hardware.

When porting code between CompactRIO targets, all 1/0 is directly compatible
because C Series modules are supported on all CompactRIO targets. If you need
to port an application to NI Single-Board RIO, all C Series modules are
supported, but, depending on your application, you may need to adjust the
software 1/0 interface.

NI Single-Board RIO

NI Single-Board RIO is a board-only version of CompactRIO designed for
applications requiring a bare board form factor. While it is physically a different
design, NI Single-Board RIO uses the processor and FPGA, and most models

114

accept up to three C Series modules. NI Single-Board RIO differs from
CompactRIO because it includes I/0 built directly into the board. NI offers three
families of NI-Single-Board RIO products:

Digital 1/0 With RIO Mezzanine Card Connector

The smallest option for NI Single-Board RIO combines the highest performance
real-time processor with a Xilinx Spartan-6 FPGA and built-in peripherals such
as USB, RS232, CAN, and Ethernet. In addition to the peripherals, the system
includes 96 FPGA digital I/0O lines that are accessed through the RIO Mezzanine
Card (RMC) connector, which is a high-density, high-bandwidth connector that
allows for direct access to the FPGA and processor. With this type of NI Single-
Board RIO, you can create a customized daughtercard designed specifically for
your application that accesses the digital I/O lines and processor 1/0 including
CAN and USB. This NI Single-Board RIO family currently does not support C
Series connectivity.

Digital 1/0 Only or Digital and Analog I/O With Direct C Series Connectivity

NI also offers NI Single-Board RIO devices with both built-in digital and analog
I/O on a single board. All I/0O is connected directly to the FPGA, providing low-
level customization of timing and 1/O signal processing. These devices feature
110 3.3 V bidirectional digital I/O lines and up to 32 analog inputs, 4 analog
outputs, and 32 24 V digital input and output lines, depending on the model
used. They can directly connect up to three C Series 1/0O and communication
modules for further 1/O expansion and flexibility.

LabVIEW FPGA programming

Not all NI Single-Board RIO products currently support Scan Mode. Specifically,
the NI Single-Board RIO products with a 1 million gate FPGA (sbRIO-9601,
sbRI0-9611, sbRIO-9631, and sbRI0-9641) are not supported, in addition to the
NI Single-Board RIO products with the RMC connector (sbRIO-9605 and sbRIO-
9606). Instead of using Scan Mode to read 1/O, you need to write a LabVIEW
program to read the 1/O from the FPGA and insert it into an 1/O memory table.
This section examines an effective FPGA architecture for single-point 1/0
communication similar to Scan Mode and shows how to convert an application
using Scan Mode.

Built-in 1/0 and 1/0 modules
115

Depending on your application I/O requirements, you may be able to create
your entire application to use only the NI Single-Board RIO onboard /0, or you
may need to add modules. When possible, design your application to use the
I/0 modules available onboard NI Single-Board RIO. The I/O available on NI
Single-Board RIO with direct C Series connectivity and the module equivalents
are listed below:

e 110 general purpose, 3.3 V (5 V tolerant, TTL compatible) digital I/O (no
module equivalent)

* 32 single-ended/16 differential channels, 16-bit analog input, 250 kS/s
aggregate (NI 9205)

* 4-channel, 16-bit analog output; 100 kS/s simultaneous (NI 9263)
* 32-channel, 24 V sinking digital input (NI 9425)
* 32-channel, 24 V sourcing digital output (N1 9476)214

This NI Single-Board RIO family accepts up to three additional C Series modules.
Applications that need more than three additional I/O modules are not good
candidates for NI Single-Board RIO, and you should consider CompactRIO
integrated systems as a deployment target.

FPGA size

The largest FPGA available on NI Single-Board RIO is the Spartan-6 LX45.
CompactRIO targets offer versions using both the Virtex-5 FPGAs and the
Spartan-6 FPGAs as large as the LX150. To test if code fits on hardware you do
not own, you can add a target to your LabVIEW project and, as you develop
your FPGA application, you can periodically benchmark the application by
compiling the FPGA code for a simulated RIO target. This gives you a good
understanding of how much of your FPGA application will fit on the Spartan-6
LX45.

Port CompactRIO Applications to NI Single-Board RIO or R Series Devices

Follow these four main steps to port a CompactRIO application to NI Single-
Board RIO or PXI/PCI R Series FPGA 1/0 devices.

1. Build an NI Single-Board RIO or R Series project with equivalent 1/0
channels.

116

2. If using the NI RIO Scan Interface, build a LabVIEW FPGA-based scan API
if porting to unsupported NI Single-Board RIO devices or to PXI/PCI R
Series FPGA 1/O Devices

e Build LabVIEW FPGA 1/O scan (analog in, analog out, digital 1/0O,
specialty digital 1/0).

* Convert I/O variable aliases to single-process shared variables with
real-time FIFO enabled.

* Build a real-time I/O scan with scaling and a shared variable-based
current value table.

3. Compile LabVIEW FPGA VI for new target.
4. Test and validate updated real-time and FPGA code.

The first step in porting an application from CompactRIO to NI Single-Board RIO
or an R Series FPGA device is finding the equivalent 1/O types on your target
platform. For I/O that cannot be ported to the onboard 1/0 built into NI Single-
Board RIO or R Series targets, you can add C Series modules. All C Series
modules for CompactRIO are compatible with both NI Single-Board RIO and R
Series. You must use the NI 9151 R Series expansion chassis to add C Series 1/0
to an R Series DAQ device.

Step two is necessary only if the application being ported was originally written
using the NI RIO Scan Interface, and if porting to unsupported NI Single-Board
RIO or PXI/PCI R Series FPGA I/O Devices. If you need to replace the NI RIO Scan
Interface portion of an application with an I/O method supported on all RIO
targets, an example is included below to guide you through the process.

If the application you are migrating to NI Single-Board RIO or PXI/PCI R Series
did not use the RIO Scan Interface, the porting process is nearly complete. Skip
step 2 and add your real-time and FPGA source code to your new NI Single-
Board RIO project, recompile the FPGA VI, and you are now ready to run and
verify application functionality. Because CompactRIO and NI Single-Board RIO
are both based on the RIO architecture and reusable modular C Series I/O
modules, porting applications between these two targets is simple.

117

mprnject Explorer - PID Exampl E]@ i3 Project Explorer - Untitled Pr g@

File Edit Wew Project Operate Tools wWindow Help File Edit Wiew Project ©Operate Tools ‘Window Help
IR LA [T I8 | &~]
Items | Files Items | Files
= ng, Project: PID Example. lvproj = Tgil, Project: Unkitled Project 3
+ Q My Computer New Target + Q My Computer
= [l CompactRIC (192.168.1.123) < |, RT Single-Board RIC (0.0.0.0)
= [cRIO NI Single-Board RIO 5 {8 FPGA Target (sbRIC-9642)
+ I_; Comrunications Library. b +LJ onboard IfC
’:"1_3» 10 Library. blib +',J Moda
o ml TopLevel.vi + [ModB
W Chassis (cRI0-9074) Thermocouple +J ModC
i [y Modt (Slot 1, NI 9211) Input 4 [J ModD
¢) Modz (Siot 2, M1 9474) \ + [Modl
+_'§:|_" Dependencies T 40 MHz Cnboard Clock,

nnr
‘- & Build Specifications B Modi (Slot 1, NI 9Z11)
- 0 Mada (M1 9205}
-l ModB (N1 9263)

\A ~ 0 ModC (NI 9425)

- 0 ModD (NI 9476)
k]

24V
Digital Output T

Dependencies

- Build Specifications
'-fq' Dependencies

‘-:h‘_ Build Specifications

Figure 6.45. The first step in porting an application from CompactRIO to an alternate target
is finding replacement 1/0 on the future target.

Example of Porting a RIO Scan Interface-Based Application to use LabVIEW
FPGA

If you used the RIO Scan Interface in your original application, you might need
to create a simplified FPGA version of the Scan Engine. Use these three steps to
replace the RIO Scan Interface with a similar FPGA-based scan engine and
current value table:

1. Build a LabVIEW FPGA 1/0 scan engine
2. Replace scan engine I/O variables with single-process shared variables
3. Write FPGA data to current value table in LabVIEW Real-Time

First, create a LabVIEW FPGA VI that samples and updates all analog input and
output channels at the rate specified in your scan engine configuration. You can
use IP blocks to recreate specialty digital functionality such as counters, PWM,
and quadrature encoder. Next, create an FPGA Scan Loop which synchronizes
the 1/O updates by updating all outputs and reading the current value of all
inputs in sequence.

118

FPGA Scan Loop

1 0000000000000 00

|Wait on Scan Request From RT| -
F.eset Trigger
PWM O PWM 0 local Thermacouple 1
ticks | [EAL Thermaocouple 1 local
vEie [DeFaul A RT Trigger I PwM1 o PWM I local Mod1/CIC 0]
i [E Mod1 3¢ local -
m Maodl/Autozera
Mad1fautazera lacal EFlg

IDDDDDDDDDDDDDDDDDDDDD:IDDDDDDDDDDEE|E|E|E|E|E|DDDDDDDDDDDDDDDUDDDDDDDD

Analog Input Acquisition Loop

10000000000 00000000000000000000000

TC Period {us) [Acquire analog inputs at max moduls rate |

[vs2

Thermaocouple 1 local
A Rl o] L]
AN ModlTCo) -
Bon modijcic B

Mod1}CIC local
B Mod 1 fautozero B
Modl/autozera lacal

O00000000000000000000000000000000

@

Specialty Digital Module (PWM) Loop
1000000000000 00000000000000000000000¢rn
Pt O Period (us)

E

Pt 1 Period (us)

Loap Petiod (uSec) [o=—
Q0P Feriod (U2eC = n
P 0 lacal | se- ﬂJ'UMDdD,fDODn
T TR Y P Modo /oot
%_;pw,,!....il__, odD)
P 1 lacal |} Frea
— UL
;%_;PWM
O00O00000000000000000000000000000o0o000
-
E——

Figure 6.46. Develop a simple FPGA application to act as an FPGA scan engine.

After you have implemented a simple scan engine in the FPGA, you need to
port the real-time portion of the application to communicate with the custom
FPGA scan engine rather than the scan engine I/O variables. To accomplish this,
you need to first convert all 1/O variable aliases to single-process shared
variables with the real-time FIFO enabled. The main difference between the
two variables is while 1/O variables are automatically updated by a driver to
reflect the state of the input or output channel, single-process shared variables
are not updated by a driver. You can change the type by going to the properties
page for each I/0O variable alias and changing it to single-process.

Tip: If you have numerous variables to convert, you can easily convert a library
of 1/O variable aliases to shared variables by exporting to a text editor and
changing the properties. To make sure you get the properties correct, you
should first create one “dummy” single-process shared variable with the single-

119

element real-time FIFO enabled in the library and then export the library to a
spreadsheet editor. While in the spreadsheet editor, delete the columns
exclusive to /O variables and copy the data exclusive to the shared variables to
the 1/0 variable rows. Then import the modified library into your new project.
The 1/O variable aliases are imported as single-process shared variables.
Because LabVIEW references shared variables and 1/O variable aliases by the
name of the library and the name of the variable, all instances of 1/O variable
aliases in your VI are automatically updated. Finally, delete the dummy shared
variable that you created before the migration process.

13 Project Explorer - PID Examplell 2] = = x 13 Project Explorer - Untitled Prcl & =
ject Exp P ject Exp
File Edt Wiew Project Operate Tools Window Help Fle Edit Yiew Project Operate Tools Window Help
g = [- ErC] [-
|Jtce s hox|(IER|E-& o S xboX||Ew|m-& o
Items | Files Items | Files
)
= [B Project: LU Example.hvproy =Bl Project: Untitled Froject 3 [
& B My Computer & § My Computer [
2 [, CompactRIO {192.168.1.123) = il R Single-Board RIO (0.0.0.0) .
i R0 i . 2. [} 10 Library it ~ Mew r
E L; Communications | New '_ - @" Thermocouple 1 Open
i L9 stop Open - @' Heater 1 Explore...
= [I0Ubraryihib | Explore... - @' Thermocouple 1 -sv| gpoy, i Filas View Chl4E
i B Thermocoupls Show in Files View Chrl+E - [Communications Library - :
B Heater1 |- : - [l Toplevelvi Add 4
Za Add » E .
@" Thermocoupls : o {8 FPGA Target (hRIS-90 b project ems
|l Top Level.vi Find Project Ttems... i () Onboard 1jO -
S [Chassis (cRIO-2074) - : e[Moda Save 4
- 0 Modt (Slot 1, ur{_ e 4 o [ModB ')
= '] . . Find »
+) Mod2 (St z, ML) g » o [ModC - -
- 1';;7' Dependencies - - ¢ [ModD Show Error \Window
—"4; Buid Specifications | Shawe Error Window) e [Modi ' Deploy
Deplay DMz Onboard Cle
Deplay Al - [} Mod (Slot 1, NI 92 Undenk
Undeplay %: mogl:((:llsssog)) J Autodeploy Variables
« Autodeploy Variables o ’ Multiple Variable Editer...
Multiple Yarizble Editor:' ModC (I 942 Create Yariables, ..
Create Varizbles... ..:' ModD (1 947 Create Bound Yariables. ..
A Create Bound Yariables. ., [Expaort Yariables. ..
Export Varisbles... % Import ¥ariables, ..
ort Yariables. .. : %

F A R C n F E G H 1 1 K g M N 0 P 0

1 MName Type VarType Gloiﬁl Global:En:Industrial Industrial: Industrial: Network: Network:l Netwnr\{;l Network:lNet\uork:lRe_al-TimE Real-Time Real-Time Real-Time Features:
2 ThermocoDouble |industrial on FALSE 2 readonly TRUE CompaciR TRUE FALSE

3 Heater1 Double |m_uaw % il WE FALSE

4 |ThermocoDouble |Global on FALSE FALSE FALSE on FALSE il FALSE

1. Leave variable types alone. 2. Copy "dummy” shared variable settings to all IOVs. 3. Save variable list as .csv

Figure 6.47. You can easily convert an I/0 variable (I0V) Alias Library to shared variables
by exporting the variables to a spreadsheet, modifying the parameters, and importing
them into your new target.

The final step for implementing an FPGA scan engine is adding a real-time
process to read data from the FPGA and constantly update the current value
table. The FPGA 1/0 you are adding to the shared variables is deterministic, so
you can use a Timed Loop for implementing this process.

120

To read data from the FPGA scan engine, create a Timed Loop task set to the
desired scan rate in your top-level RT VI. This Timed Loop is the deterministic
I/O loop, so you should set it to the highest priority. To match the control loop
speed of your previous Scan Mode application, set the period of this loop to
match the period previously set for Scan Mode. Any other task loops in your
application that were previously synchronized to the Scan Mode also need to
change their timing sources to the 1 kHz clock and set to the same rate as the
I/O scan loop.

The 1/0 scan loop pushes new data to the FPGA and then pulls updated input
values. The specific write and read Vls are also responsible for the scaling and
calibration of analog and specialty digital I/O.

10000000000 000000000000 00.0

Initislization Routing [Control and Measurement Tasks| Shutdown Routine
ms
h kHz B|Error ¥
b dt [10 =
b7z, [1OD as
== _“Heater 1
i 2| A n
&d" Thermacoupls 1|_,
m mStop [I
i
FPGA 1fO Scan Loop W[Errar |
i
RT Write FPGA Scan 10,vi RT Read FPGA Scan I0.vi
B e -]]
o n rd &8 I
FPiza Target
1000000000000 00 0000000000000

Figure 6.48. The FPGA 1/0 scan loop mimics the RIO Scan Interface feature by
deterministically communicating the most recent input and output values to and from the
FPGA 1/0 and inserting the data into a current value table.

121

13 RT Write FPGA Scan 10.vi Block Diagram on Single-Board RIO PID Example. lvproj/RT Singldl 2| = 8. |- |[O0/:3

File Edit ‘jew Project Operate Tools Window Help

=
:';>|{§}| ©|E|||.,u||ﬁl'|uj} [13pt Application Font |v.||;mv'|7u:v”cg'h|@ ‘
]
[Petform applicable scaling] [Update FrGa 1j0]
FPGA WI Reference In FPGA VI Reference Out
=3 LS 5]
P Perind (sec) P PWMO 5
-ib_’_. [1
errar In m 100 b error Ok
up 4 —
[+
Single-Board RIC PID Example Ivproj/RT Single-Board RIC [(] | i | m

Figure 6.49. The RT Write FPGA Scan 10 VI pulls current data using a real-time FIFO single-
process shared variable, scales values with appropriate conversion for the FPGA Scan VI,
and pushes values to the FPGA VI.

T3 RT Read FPGA Scan 10.vi Block Diagram on Single-Board RIO PID Example. @ < = 8. - |[O0/23

File Edit Miew Project Operate Tools Window Help il
D[@] @[] [2][25] [wal] ot [130t Appication Fart |~ |25~][Ta~] [£5~][=a] &8
[Read FreaTjo] [Petform applicable scaling] ?2&?35?#5rf?hn.:riilhil.fzriable w

FPGA Y1 Reference In E FPGA Y1 Reference Cut
_______ B & D]
amorn § Thermacouple 1 » C{OrERe * @' Thermacouple 1| Se
' RS M Tm o
Mﬂglﬂf;jt':;;m ¥ = !E'
Single-Board RIO PID Example. lvprojfRT Single-Board RIO ¢ | | m | [l]

Figure 6.50. The RT Read FPGA Scan 10 VI pulls all updates from the FPGA Scan 10 VI,
performs applicable conversions and scaling, and publishes data to a current value table
using a real-time FIFO single-process shared variable.

After building the host interface portion of a custom FPGA I/0 scan to replace
Scan Mode, you are ready to test and validate your ported application on the
new target. Ensure the FPGA VI is compiled and the real-time and FPGA targets
in the project are configured correctly with a valid IP address and RIO resource
name. After the FPGA VI is compiled, connect to the real-time target and run

the application.

Because the RIO architecture is common across NI Single-Board RIO,
CompactRIO, and R Series FPGA 1/0O devices, LabVIEW code written on each of
these targets is easily portable to the others. As demonstrated in this section,

122

with proper planning, you can migrate applications between all targets with no
code changes at all. When you use specialized features of one platform, such as
the RIO Scan Interface, the porting process is more involved, but, in that case,
only the I/O portions of the code require change for migration. In both
situations, all of the LabVIEW processing and control algorithms are completely
portable and reusable across RIO hardware platforms.

123

124

Centrum pro rozvoj vyzkumu pokrocilych fidicich a senzorickych technologii
CZ.1.07/2.3.00/09.0031

Ustav automatizace a méFici techniky
VUT v Brné

Kolejni 2906/4

612 00 Brno

Ceska Republika

http://www.crr.vutbr.cz

info@crr.vutbr.cz

http://www.crr.vutbr.cz/
mailto:info@crr.vutbr.cz

