

Základy práce a programovania

CompactRIO systémov pre meracie

aplikácie

Učební texty k semináři

Autoři:

Ing. Mgr. Márk Jónás (ANV, s.r.o.)

Datum:

29. 6. 2012

Centrum pro rozvoj výzkumu pokročilých řídicích a senzorických technologií CZ.1.07/2.3.00/09.0031

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

TENTO STUDIJNÍ MATERIÁL JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM

FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

1

OBSAH

Obsah ... 1

1. Úvod ... 3

2. The RIO Architecture .. 4

2.1. C Series I/O Modules ... 4

2.2. FPGA ... 5

2.3. Real-Time Processor ... 5

2.4. Size and Weight .. 5

2.5. Application Examples .. 6

3. Starting a New CompactRIO Project in LabVIEW .. 7

4. Select the Appropriate Programming Model .. 9

4.1. CompactRIO Scan Mode Tutorial .. 10

2

3

1. ÚVOD

Táto brožúra poskytuje informácie ohľadne základov práce s CompactRIO

systémom pre meracie a monitorovacie aplikácie. Zároveň ponúka aj prehľad

architektúry a programovacích modelov.

1. The RIO Architecture

2. Starting a New CompactRIO Project in LabVIEW

3. Select the Appropriate Programming Model

4. CompactRIO Scan Mode Tutorial

5. LabVIEW FPGA Tutorial

6. Discussion and Feedback

7. View Additional CompactRIO Development Resources

4

2. THE RIO ARCHITECTURE

The National Instruments CompactRIO programmable automation controller is

an advanced embedded control and data acquisition system designed for

applications that require high performance and reliability. With the system's

open, embedded architecture, small size, extreme ruggedness, and flexibility,

engineers and embedded developers can use COTS hardware to quickly build

custom embedded systems. NI CompactRIO is powered by National

Instruments LabVIEW FPGA and LabVIEW Real-Time technologies, giving

engineers the ability to design, program, and customize the CompactRIO

embedded system with easy-to-use graphical programming tools.

CompactRIO combines an embedded real-time processor, a high-performance

FPGA, and hot-swappable I/O modules. Each I/O module is connected directly

to the FPGA, providing low-level customization of timing and I/O signal

processing. The FPGA is connected to the embedded real-time processor via a

high-speed PCI bus. This represents a low-cost architecture with open access to

low-level hardware resources. LabVIEW contains built-in data transfer

mechanisms to pass data from the I/O modules to the FPGA and also from the

FPGA to the embedded processor for real-time analysis, postprocessing, data

logging, or communication to a networked host computer.

2.1. C Series I/O Modules

A variety of I/O types are available including voltage, current, thermocouple,

RTD, accelerometer, and strain gauge inputs; up to ±60 V simultaneous-

5

sampling analog I/O; 12, 24, and 48 V industrial digital I/O; 5 V/TTL digital I/O;

counter/timers; pulse generation; and high voltage/current relays. Because the

modules contain built-in signal conditioning for extended voltage ranges or

industrial signal types, you can usually connect wires directly from the C Series

modules to your sensors and actuators.

2.2. FPGA

The embedded FPGA is a high-performance, reconfigurable chip that engineers

can program with LabVIEW FPGA tools. Traditionally, FPGA designers were

forced to learn and use complex design languages such as VHDL to program

FPGAs. Now, any engineer or scientist can use graphical LabVIEW tools to

program and customize FPGAs. Using the FPGA hardware embedded in

CompactRIO, you can implement custom timing, triggering, synchronization,

control, and signal processing for your analog and digital I/O.

2.3. Real-Time Processor

The CompactRIO embedded system features an industrial 400 MHz Freescale

MPC5200 processor that deterministically executes your LabVIEW Real-Time

applications on the reliable Wind River VxWorks real-time operating system.

LabVIEW has built-in functions for transferring data between the FPGA and the

real-time processor within the CompactRIO embedded system. Choose from

more than 600 built-in LabVIEW functions to build your multithreaded

embedded system for real-time control, analysis, data logging, and

communication. You can also integrate existing C/C++ code with LabVIEW Real-

Time code to save on development time.

2.4. Size and Weight

Size, weight, and I/O channel density are critical design requirements in many

embedded applications. A four-slot reconfigurable embedded system measures

179.6 by 88.1 by 88.1 mm and weighs just 1.58 kg.

6

2.5. Application Examples

With the low cost and reliability of CompactRIO, as well as its suitability for

high-volume embedded measurement and control applications, you can adapt

it to solve a wide variety of industry and application challenges. Examples

include:

o In-vehicle data acquisition, data logging, and control

o Machine condition monitoring and protection

o Embedded system prototyping

o Remote and distributed monitoring

o Embedded data logging

o Custom multiaxis motion control

o Electrical power monitoring and power electronics control

o Servo-hydraulic and heavy machinery control

o Batch and discrete control

o Mobile/portable noise, vibration, and harshness (NVH) analysis

7

3. STARTING A NEW COMPACTRIO PROJECT IN LABVIEW

Begin by creating a new project in LabVIEW, where you will manage your code

and hardware resources.

1. Create a new project in LabVIEW by selecting File » New Project

2. To add your CompactRIO system to the project, right-click on the Project

item at the top of the tree and select New » Targets and Devices…

3. This dialog allows you to discover systems on your network or add offline

systems. Expand the Real-Time CompactRIO folder, select your system, and

click OK. Note: If your system is not listed, LabVIEW could not detect it on the

network. Ensure that your system is properly configured with a valid IP address

in Measurement & Automation Explorer. If you system is on a remote subnet,

you can also select to manually enter the IP address.

8

9

4. SELECT THE APPROPRIATE PROGRAMMING MODEL

LabVIEW provides two programming models for CompactRIO systems. If you

have LabVIEW Real-Time and LabVIEW FPGA on your development computer,

you will be prompted to select which programming model you would like to

use. You can change this setting later in the LabVIEW Project if needed.

Scan Interface (CompactRIO Scan Mode) – this option allows you to program

the real-time processor of your CompactRIO system, but not the FPGA. In this

mode, NI provides a pre-defined personality for the FPGA that periodically

scans the I/O and places it in a memory map, making it available to LabVIEW

Real-Time. CompactRIO Scan Mode is sufficient for applications that require

single-point access to I/O at rates of a few hundred hertz. To learn more about

scan mode, read the Using CompactRIO Scan Mode with NI LabVIEW white

paper and view the benchmarks.

LabVIEW FPGA Interface – this option allows you to unlock the real power of

CompactRIO by customizing the FPGA personality in addition to programming

the real-time processor, achieving performance that would typically require

custom hardware. Using LabVIEW FPGA, you can implement custom timing and

triggering, off-load signal processing and analysis, create custom protocols, and

access I/O at its maximum rate.

Select the appropriate programming model for your application.

10

LabVIEW will now attempt to detect the chassis and C Series I/O modules

present in your system and automatically add them to the LabVIEW Project.

Note: If your system was not discovered and you choose to add it offline, you

will need to add the chassis and C Series I/O manually.

Once your system has been added to the LabVIEW Project, proceed to either

the CompactRIO Scan Mode Tutorial or LabVIEW FPGA Tutorial below,

depending on which programming model you selected.

4.1. CompactRIO Scan Mode Tutorial

This section will walk you through creating a basic monitoring application on

CompactRIO using scan mode. If you chose to use the LabVIEW FPGA Interface,

see the LabVIEW FPGA Tutorial below. You should now have a new LabVIEW

Project that contains your CompactRIO system, including the controller,

chassis, and C Series I/O modules. In this tutorial we will be using an NI 9211

Thermocouple input module; however, the process can be followed for any

analog input module.

1. Save the project by selecting File»Save and entering Basic logging with

scan mode. Click OK.

2. This project will only contain two VIs. First, you will create the real-time

VI, which is the LabVIEW Real-Time application that runs embedded on the

CompactRIO controller. Create this the VI by right-clicking on the CompactRIO

real-time controller in the project and selecting New»VI. Save the VI as RT.vi.

11

3. The basic operation of this application will include three routines: startup,

run, and shutdown. A flat sequence structure is an easy way to enforce this

order of operation. Place a flat sequence structure with three frames on your

RT.vi block diagram as shown below.

4. Now add a timed loop to the Run frame of the sequence structure. Timed

loops provide the ability to synchronize code to various time basis, including

the NI Scan Engine that reads and writes scan mode I/O.

http://www.ni.com/white-paper/11199/en

12

5. To configure the timed loop, double-click on the clock icon on the left

input node.

6. Select Synchronize to Scan Engine as the Loop Timing Source. Click OK.

This will cause the code in the timed loop to execute once, immediately after

each I/O scan, ensuring that any I/O values used in this timed loop are the most

recent values.

http://www.ni.com/white-paper/11199/en

13

7. The previous step configured the timed loop to run synchronized to the

scan engine. Now configure the rate of the scan engine itself by right-clicking

on the CompactRIO real-time controller in the LabVIEW Project and selecting

Properties.

8. Select Scan Engine from the categories on the left and enter 100ms as

the Scan Period. This will cause all of the I/O in the CompactRIO system to be

updated every 100ms (10Hz). The Network Publishing Period can also be set

from this page, which controls how often the I/O values are published to the

network for remote monitoring and debugging. Click OK.

http://www.ni.com/white-paper/11199/en

14

9. Now that you have configured the I/O scan rate, it is time to add the I/O

reads to your application for monitoring. When using CompactRIO Scan Mode,

you can simply drag and drop the I/O variables from the LabVIEW Project to the

block diagram. Expand the CompactRIO real-time controller, chassis, and the

I/O module you would like to access. Select all of the channels below the

module by clicking on them and using the shift key, then drag and drop them

into the timed loop on your RT.vi diagram as shown below.

http://www.ni.com/white-paper/11199/en
http://www.ni.com/white-paper/11199/en

15

Tip: Use the Align Objects » Left Edges and Distribute Objects » Vertical

Compress items on the LabVIEW toolbar to organize the I/O variables on your

diagram.

10. In addition to simply monitoring the I/O values remotely, we will add

some analysis that runs embedded on the CompactRIO controller. Place four

Mean PtByPt VIs in the timed loop and wire the I/O variables to their inputs.

Create a constant with a value of 100 for the sample length input. Wire the

results of the mean functions to a Build Array function.

11. The next logical step would be to write the data to the network using a

shared variable; however, because network communication takes an

undermined amount of time, it is necessary to separate the I/O acquisition task

and the network communication. Neglecting this requirement could lead to

losing data, since writing a data packet to the network may take longer than

the I/O scan, causing a sample to be missed. Place a normal while loop in the

http://www.ni.com/white-paper/11199/en

16

Run frame under the timed loop, which will be used for the network

communication.

In order write the data to the network in the regular while loop, you need to

transfer the latest result of the mean calculation from the timed loop using a

real-time FIFO. This will provide a buffer between the two loops. The timed

loop will run, synchronized the I/O scan, and write the latest result of the mean

calculation to the buffer each time. Then, the regular while loop will read the

data out of the buffer and write it to the network. Separating the I/O task and

network communication in this way allows your timed loop to run with “real-

time” performance, meaning that it will always finish on time.

12. In the LabVIEW Project, right-click on the CompactRIO real-time controller

and select New»Variable.

http://www.ni.com/white-paper/11199/en
http://www.ni.com/white-paper/11199/en

17

13. Name the variable Data buffer, select Single Process as the Variable Type,

and Array of Double as the Data Type. This will create a locally scoped variable

(no network publishing) that contains and array of double precision floating

point numbers. Then select RT FIFO from the menu on the left.

14. With the RT FIFO category selected, select the Enable RT FIFO check box,

select Single Element for the FIFO Type, and enter 4 for the Number of

http://www.ni.com/white-paper/11199/en

18

elements (if you are monitoring a number of channels other than 4, enter that

instead.) This configures the variable to operate as a real-time-safe global

variable, which can serve as the data buffer between our real-time and low

priority tasks. The variable will hold one array that contains four double

precision numbers. Therefore, we are only keeping track of the latest result of

the mean calculation, not every result calculated. Click OK.

15. Place a copy of the Data buffer variable in the timed loop and one in the

regular while loop.

16. Create another variable to perform the network communication. Use the

following configuration:

•

o

 Name: Temp Averages

 Variable Type: Network-Published

 Data Type: Array of Double

17. Place the Temp Averages variable in the regular while loop and wire the

output of the Data buffer variable to its input.

http://www.ni.com/white-paper/11199/en
http://www.ni.com/white-paper/11199/en

19

18. Also, place a Waveform Chart on the front panel. Use an Array to Cluster

function to format the data for the chart. Right-click on the Array to Cluster

function and select Cluster Size... Enter 4 for the size, since there are four

elements in the array. Wire the diagram as shown.

19. To control the stop condition of the while loops, create a shared variable

with the following properties:

 Name: stop

 Variable Type: Single Process

 Data Type: Boolean

 RT FIFO: Single Element

20. Place the stop variable in each loop and create a Boolean stop button on

the front panel and place it in the regular while loop.

21. To complete the real-time application, place a copy of each variable in the

startup frame with default values wired to them as shown. Also place a Wait

(ms) function in the regular while loop with a value of 100 to time the network

publishing.

http://www.ni.com/white-paper/11199/en

20

22. Click Run on RT.vi, click Save for any unsaved items, and click OK on any

dialogs or warnings about applying changes to the CompactRIO system.

LabVIEW will now deploy your VI over Ethernet to run embedded on the

CompactRIO system.

23. Once the VI deploys and begins running, view the front panel of your VI to

see the current I/O values plotted on the waveform chart. Stop the VI once you

verify it is working.

Now, we will create a host VI that can run on a remote machine and

communicate with this embedded application.

1. Create a new VI under the My Computer item in the LabVIEW Project. Save

the VI as HMI.vi.

http://www.ni.com/white-paper/11199/en

21

2. Create a simple VI that reads from the I/O variables and plots them on a

waveform chart, using a Build Array function and an Array to Cluster function,

configured with a Cluster Size of 4. Note that I/O variables can be used directly

on the Windows host VI, since they are automatically network published by the

NI Scan Engine.

3. Use an Index Array function to unpack the Temp Averages and place them

on indicators on the front panel. The completed diagram might look like the

shown. Also, add timing to the loop with a Wait (ms) function.

http://www.ni.com/white-paper/11199/en

22

4. You have completed this application and can now run it. Run RT.vi first, so

that it is running on the CompactRIO controller. Then run HMI.vi, which will

connect to the shared variables that are hosted on the CompactRIO controller

and display the data.

The host VI in this example could be placed on any computer on the network to

monitor the embedded application running on CompactRIO.

At this point you have successfully created an embedded logging application

with LabVIEW and CompactRIO.

Centrum pro rozvoj výzkumu pokročilých řídicích a senzorických technologií

CZ.1.07/2.3.00/09.0031

Ústav automatizace a měřicí techniky

VUT v Brně

Kolejní 2906/4

612 00 Brno

Česká Republika

http://www.crr.vutbr.cz

info@crr.vutbr.cz

http://www.crr.vutbr.cz/
mailto:info@crr.vutbr.cz

