(]
[ ]
L :
8
8
S
D
n
@

MINISTERSTVO SKOI_ST\/I OP Vzdélavani
MLADEZE A TELOVYCHOVY pro konk hopnost

INVESTICE DO ROZVOJE VZDELAVANI

* X %
* *
* *
* *

*

EVROPSKA UNIE

AE
M=

Zaklady prace a programovania
CompactRIO systémov pre meracie
aplikacie

Ucebni texty k seminari

Autofi:
Ing. Mgr. Mark Jénds (ANV, s.r.0.)
Datum:

29.6.2012

Centrum pro rozvoj vyzkumu pokrodilych Fidicich a senzorickych technologii CZ.1.07/2.3.00/09.0031

TENTO STUDIJNi MATERIAL JE SPOLUFINANCOVAN EVROPSKYM SOCIALNIM

FONDEM A STATNiIM ROZPOCTEM CESKE REPUBLIKY







(0] ¢ 1Y ] o T TP PP 1
o U V7o o TR 3
2. The RIO ArChiteCUIE . .ueceeceeeeeeee e 4
2.1, CSeries I/O MOAUIES.......uuueeeeeeeieeeeeeeeeee et 4
2.2, FPGA e e e e e e e 5
2.3, REAI-TIME PrOCESSOr oo 5
2.4, Size and WeIght .....coovriiiiiieee e 5
2.5. Application EXampPles.......uceeeeeeieeiieeeecceeee e 6
3. Starting a New CompactRIO Project in LabVIEW ........covveeviiviiiiiieeeeiiiieeeeees 7
4. Select the Appropriate Programming Model........cccooeeveiiiiiiiiiiiiieeneeeeeeeenn, 9
4.1. CompactRIO Scan Mode Tutorial c...ccceeeeeerviiiiiiiiiieeeee e, 10






1. UvoD

Tato broZura poskytuje informdacie ohladne zdkladov prace s CompactRIO
systémom pre meracie a monitorovacie aplikacie. Zaroven ponuka aj prehlad
architektiry a programovacich modelov.

1. The RIO Architecture

2. Starting a New CompactRIO Project in LabVIEW
3. Select the Appropriate Programming Model

4, CompactRIO Scan Mode Tutorial

5. LabVIEW FPGA Tutorial

6. Discussion and Feedback

7. View Additional CompactRIO Development Resources



2. THE RIO ARCHITECTURE

The National Instruments CompactRIO programmable automation controller is
an advanced embedded control and data acquisition system designed for
applications that require high performance and reliability. With the system's
open, embedded architecture, small size, extreme ruggedness, and flexibility,
engineers and embedded developers can use COTS hardware to quickly build
custom embedded systems. NI CompactRIO is powered by National
Instruments LabVIEW FPGA and LabVIEW Real-Time technologies, giving
engineers the ability to design, program, and customize the CompactRIO
embedded system with easy-to-use graphical programming tools.

CompactRIO combines an embedded real-time processor, a high-performance
FPGA, and hot-swappable 1/0O modules. Each I/O module is connected directly
to the FPGA, providing low-level customization of timing and 1/O signal
processing. The FPGA is connected to the embedded real-time processor via a
high-speed PCI bus. This represents a low-cost architecture with open access to
low-level hardware resources. LabVIEW contains built-in data transfer
mechanisms to pass data from the 1/O modules to the FPGA and also from the
FPGA to the embedded processor for real-time analysis, postprocessing, data
logging, or communication to a networked host computer.

10 Medules

— ; Signal V(A
_E_} nae —3 W —3> BN @
PCI Bus :[> ______________________________________________________________________ ,
——n e— S oo,

B e e e e e e J
; - ) Sigral ¥ Cobs ' E, i )
................................... )
Real-Time High-Speed Reconfigurable Digitizers Attenuation Connector SENSOrs
Processor Bus FPGA and |solation and Filtars Block and Actuators

2.1. CSeries [/O Modules

A variety of 1/O types are available including voltage, current, thermocouple,
RTD, accelerometer, and strain gauge inputs; up to 60 V simultaneous-

4



sampling analog I/O; 12, 24, and 48 V industrial digital I/0O; 5 V/TTL digital 1/0;
counter/timers; pulse generation; and high voltage/current relays. Because the
modules contain built-in signal conditioning for extended voltage ranges or
industrial signal types, you can usually connect wires directly from the C Series
modules to your sensors and actuators.

2.2. FPGA

The embedded FPGA is a high-performance, reconfigurable chip that engineers
can program with LabVIEW FPGA tools. Traditionally, FPGA designers were
forced to learn and use complex design languages such as VHDL to program
FPGAs. Now, any engineer or scientist can use graphical LabVIEW tools to
program and customize FPGAs. Using the FPGA hardware embedded in
CompactRIO, you can implement custom timing, triggering, synchronization,
control, and signal processing for your analog and digital I/0.

2.3. Real-Time Processor

The CompactRIO embedded system features an industrial 400 MHz Freescale
MPC5200 processor that deterministically executes your LabVIEW Real-Time
applications on the reliable Wind River VxWorks real-time operating system.
LabVIEW has built-in functions for transferring data between the FPGA and the
real-time processor within the CompactRIO embedded system. Choose from
more than 600 built-in LabVIEW functions to build your multithreaded
embedded system for real-time control, analysis, data logging, and
communication. You can also integrate existing C/C++ code with LabVIEW Real-
Time code to save on development time.

2.4. Size and Weight

Size, weight, and I/O channel density are critical design requirements in many
embedded applications. A four-slot reconfigurable embedded system measures
179.6 by 88.1 by 88.1 mm and weighs just 1.58 kg.



2.5. Application Examples

With the low cost and reliability of CompactRIO, as well as its suitability for

high-volume embedded measurement and control applications, you can adapt

it to solve a wide variety of industry and application challenges. Examples

include:

0 In-vehicle data acquisition, data logging, and control

o Machine condition monitoring and protection

0 Embedded system prototyping

0 Remote and distributed monitoring

o Embedded data logging

o Custom multiaxis motion control

o Electrical power monitoring and power electronics control
0 Servo-hydraulic and heavy machinery control

0 Batch and discrete control

0 Mobile/portable noise, vibration, and harshness (NVH) analysis



3. STARTING A NEW COMPACTRIO PROJECT IN LABVIEW

Begin by creating a new project in LabVIEW, where you will manage your code
and hardware resources.

1. Create a new project in LabVIEW by selecting File » New Project

2. To add your CompactRIO system to the project, right-click on the Project
item at the top of the tree and select New » Targets and Devices...

[ 83 Project Explocer - Untitied Project 1 L)
| [de [dit Yoew Project Qperate Jools Yindow Melp
DS He I
| Rems | Fies

%, [Project: Untitled Project " :

N MyComputer LY  Txget Foider

S Dependencies
'i Build Specification

Save Targets and Devices..
Seve As...
Save All (this Progect)

New..

View »
Find Rems with No Callers
Find Missing ltems

Import »

Expand All
Collapse All

Properties

3. This dialog allows you to discover systems on your network or add offline
systems. Expand the Real-Time CompactRIO folder, select your system, and
click OK. Note: If your system is not listed, LabVIEW could not detect it on the
network. Ensure that your system is properly configured with a valid IP address
in Measurement & Automation Explorer. If you system is on a remote subnet,
you can also select to manually enter the IP address.



{31 Add Targets and Devices on Untitied Project 1

Targets and Devices
o Existing target or device
© Discover an existing target(s) or device(s).
) Specify a target or device by IP address.
 New target or device

T and Dtvkg_s -
) g FieldPoint Network Modules
=) Real-Time CompactRIO

l <RIO-S074-MN
#13 Real-Time Desktop
5 Real-Time FieldPoint
#H Real-Time Industrial Controller
$4) Real-Time PXI
[#4) Real-Time Single-Board RIO

(et ||k ][ concd ][ e ]|




4. SELECT THE APPROPRIATE PROGRAMMING MODEL

LabVIEW provides two programming models for CompactRIO systems. If you
have LabVIEW Real-Time and LabVIEW FPGA on your development computer,
you will be prompted to select which programming model you would like to
use. You can change this setting later in the LabVIEW Project if needed.

Scan Interface (CompactRIO Scan Mode) — this option allows you to program
the real-time processor of your CompactRIO system, but not the FPGA. In this
mode, NI provides a pre-defined personality for the FPGA that periodically
scans the 1I/O and places it in a memory map, making it available to LabVIEW
Real-Time. CompactRIO Scan Mode is sufficient for applications that require
single-point access to 1/0O at rates of a few hundred hertz. To learn more about
scan mode, read the Using CompactRIO Scan Mode with NI LabVIEW white
paper and view the benchmarks.

LabVIEW FPGA Interface — this option allows you to unlock the real power of
CompactRIO by customizing the FPGA personality in addition to programming
the real-time processor, achieving performance that would typically require
custom hardware. Using LabVIEW FPGA, you can implement custom timing and
triggering, off-load signal processing and analysis, create custom protocols, and
access 1/0 at its maximum rate.

)

- .
ﬂ Select Programming Mode \—-
Select the programming mode you want to start programming your selected system(s) with:

Programming Mode

9 Scan Interface

The Scan Interface enables you to use C Series modules directly from LabVIEW Real-
Time. This mode requires NI-RIO software with Scan Engine support on the controller.

LabVIEW FPGA Interface

The LabVIEW FPGA Interface enables you to use C Series modules from LabVIEW FPGA
Vis.

Note: Selecting LabVIEW FPGA Interface mode stops any Scan Interface mode
applications running on the system(s).

(Continue | [ Cancel | [ Help

Select the appropriate programming model for your application.



LabVIEW will now attempt to detect the chassis and C Series 1/O modules
present in your system and automatically add them to the LabVIEW Project.
Note: If your system was not discovered and you choose to add it offline, you
will need to add the chassis and C Series I/O manually.

Once your system has been added to the LabVIEW Project, proceed to either
the CompactRIO Scan Mode Tutorial or LabVIEW FPGA Tutorial below,
depending on which programming model you selected.

4.1. CompactRIO Scan Mode Tutorial

This section will walk you through creating a basic monitoring application on
CompactRIO using scan mode. If you chose to use the LabVIEW FPGA Interface,
see the LabVIEW FPGA Tutorial below. You should now have a new LabVIEW
Project that contains your CompactRIO system, including the controller,
chassis, and C Series 1/O modules. In this tutorial we will be using an NI 9211
Thermocouple input module; however, the process can be followed for any
analog input module.

1. Save the project by selecting File»nSave and entering Basic logging with
scan mode. Click OK.

2. This project will only contain two Vis. First, you will create the real-time
VI, which is the LabVIEW Real-Time application that runs embedded on the
CompactRIO controller. Create this the VI by right-clicking on the CompactRIO
real-time controller in the project and selecting New»VI. Save the VI as RT.vi.

10



ru ﬁo,«xbpb:u-ww”mh»l‘?L@w
._m;ﬁ&,_ﬁr Project Qpenate 1;;;‘@@7&;
VOHG XD X9 KRG

Rems | Files |
= B Project: Basic logging with scan modedvproj
5> N My Computer
%" Dependencies
®. Build Specifications
N I
o @8 Chasss (¢RIO-H0V .
b W) Modl (Slct LN agq p | Virtual Folder
} :’ Dtpltﬂdtﬂbﬂ FRITE Control
®. Buid Specificatior Libeary
Varuble
Unila »
= VO Server
Deploy Class
Deploy All Statechart
Dusable Autodeploy Vaniables
Targets and Devices...
Arrange by »
Expand All
Collapre All
Remave from Project
Rename... F2
Help...
«  Properties
—_—

3.  The basic operation of this application will include three routines: startup,
run, and shutdown. A flat sequence structure is an easy way to enforce this
order of operation. Place a flat sequence structure with three frames on your
RT.vi block diagram as shown below.

JrEsEeisReledeReReieRokeReReteReiotst
Startup Run Shutdown

4, Now add a timed loop to the Run frame of the sequence structure. Timed
loops provide the ability to synchronize code to various time basis, including
the NI Scan Engine that reads and writes scan mode 1/0.

11


http://www.ni.com/white-paper/11199/en

Startup Run Shutdown

5. To configure the timed loop, double-click on the clock icon on the left
input node.

Double-chick

6. Select Synchronize to Scan Engine as the Loop Timing Source. Click OK.
This will cause the code in the timed loop to execute once, immediately after
each I/O scan, ensuring that any I/O values used in this timed loop are the most
recent values.

12


http://www.ni.com/white-paper/11199/en

’ e
Eh | Configure Timed Loop g
Loop Timing Source Loop Timing Attributes
© Use Built-In Timing Source Period Priority
Source Type 1 ¥l ccans 100
Synchronize to Scan Engine Advanced Timing
! > =1 Deadline Timeout (ms)
1 MHz <reset at structure start> = -1 Sl ccans -1 =
Offset / Phase Structure Name
it b Mo 0 &l ccans 112208252
Use Timing Source Terminal Processor Assignment
Mode
Automatic ;_‘
Frame Timing Source '
This structure does not have multiple frames. To add Action on Late Iterations
multiple frames, right click on the border of the loop and 7 Discard missed periods
select one of the "Add Frame" menu items, B
niginal p
OK Cancel || Help ]
—

7. The previous step configured the timed loop to run synchronized to the
scan engine. Now configure the rate of the scan engine itself by right-clicking
on the CompactRIO real-time controller in the LabVIEW Project and selecting
Properties.

8. Select Scan Engine from the categories on the left and enter 100ms as
the Scan Period. This will cause all of the 1/0 in the CompactRIO system to be
updated every 100ms (10Hz). The Network Publishing Period can also be set
from this page, which controls how often the 1/O values are published to the
network for remote monitoring and debugging. Click OK.

13


http://www.ni.com/white-paper/11199/en

r@ Real-Time CompactRIO Properties
Cage -
General
Conditional Disable Symbols -
Vi Server Scan Engine Properties
| Web Server Eoan Period
User Access 3 =
Host Environment LIOO ms (8.4
Network Publishing Period (ms)
100
Scan Engine Priority
Above time critical [+
B
Fault Configuration
Sgc{guvaﬂe Faults Description
| Code Level » | LabVIEW: The NI Scan Engine failed to initislize »
T | wime o on ey [
sufficient time. If the scanned /O in your |
-66460 Unconfigured pplication is not updeting properly, contact -
| 5591 Unconfigured s Cw b 5
i 65612 Unconfigured Occurrence Threshold
‘ 65613 Unconfigured ||
| “65611 Unconfigured Use Time Window
| “65610 Unconfigured Time Window
= ‘ 65609 Unconfigured | a v s o -

9. Now that you have configured the I/O scan rate, it is time to add the 1/0
reads to your application for monitoring. When using CompactRIO Scan Mode,
you can simply drag and drop the I/O variables from the LabVIEW Project to the
block diagram. Expand the CompactRIO real-time controller, chassis, and the
I/0 module you would like to access. Select all of the channels below the
module by clicking on them and using the shift key, then drag and drop them
into the timed loop on your RT.vi diagram as shown below.

[ B Proyect Explorer - Basic lopging with 5. SRR [l 03 K1 v Biock Duwprim cn Basic kngging with o modevproycRIO-G074 * =@ x|
(Bl [t Yo promct Opete Josh Wedow He ll [Fle [0 Yew Proect Opeste look Jindow bep
SSHE | A O Wk (o] o [n] (][] Moler|2 (15 Apphemenront ~|[3o] -] (-] ] ¥

Bema | Fies

> Projct Banic loggng wek 1cas madehpicy
B My Computer tup Run
5 Dependencies
W Buld Speciicaticos
= [R FI0-5074 10960163
W Chasss (cF0-9074)
-0 Mo (Sice 3. N1S2Y)

k3

& S
%

.3
m ETw
+ % Dependencies
= Boiks Spechications

14


http://www.ni.com/white-paper/11199/en
http://www.ni.com/white-paper/11199/en

Tip: Use the Align Objects » Left Edges and Distribute Objects » Vertical
Compress items on the LabVIEW toolbar to organize the I/O variables on your
diagram.

‘o~ ||sa 4| 9 || 2|

-

(o]l T (e ] (][
B R UMY | [&8 J[aa ][ ssa]]aea []=ae
B ({o |l ul o= |0 0% |le=) |[le=] D= |
10. In addition to simply monitoring the 1/O values remotely, we will add

some analysis that runs embedded on the CompactRIO controller. Place four
Mean PtByPt VIs in the timed loop and wire the 1/O variables to their inputs.
Create a constant with a value of 100 for the sample length input. Wire the
results of the mean functions to a Build Array function.

uuuuuuuuuuuuu

Shutdown

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

11. The next logical step would be to write the data to the network using a
shared variable; however, because network communication takes an
undermined amount of time, it is necessary to separate the 1/0 acquisition task
and the network communication. Neglecting this requirement could lead to
losing data, since writing a data packet to the network may take longer than
the 1/O scan, causing a sample to be missed. Place a normal while loop in the

15


http://www.ni.com/white-paper/11199/en

Run frame under the timed loop, which will be used for the network

communication.

uuuuuuuuuuuuu

Shutdown

uuuuuuuuuuuuuuuu

Startup

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

In order write the data to the network in the regular while loop, you need to
transfer the latest result of the mean calculation from the timed loop using a
real-time FIFO. This will provide a buffer between the two loops. The timed
loop will run, synchronized the 1/0 scan, and write the latest result of the mean
calculation to the buffer each time. Then, the regular while loop will read the
data out of the buffer and write it to the network. Separating the 1/0 task and
network communication in this way allows your timed loop to run with “real-
time” performance, meaning that it will always finish on time.

e p—

{ Y e |
Real-Time Task Data Buffer Low priority task

(Real-Time FIFO)

12. In the LabVIEW Project, right-click on the CompactRIO real-time controller
and select New»Variable.

16


http://www.ni.com/white-paper/11199/en
http://www.ni.com/white-paper/11199/en

ruﬁwiwbtm-&skloqgingwnhs-[
i_E-k Edt View Project Qperate Jools Window Hel

|
|NSHY XD XYA|NRK|E
ftems | Files ‘
= B} Project: Basic logging with scan mode.vpeoj ‘
=3 " My Computer ‘
~ % Dependencies |
| % Build Specifications ‘l
]
-+ @B Chassis (¢RIO-9074 - . :lmulFold
50 Modl (St LN Add e =
.
| == Al Connect Cose,
& Libracy
B - Uniities , I
- m‘:‘ VO Server
- %7 Dependencies Deploy Class
% Build Specification  Deploy AN Statechant
V.
Disable Autodeploy Vanables | Torouts sad Devices~
Arrange by »
Expand All
Collapze All
Remove from Project
Rename... R
L =  Properties
e’

13. Name the variable Data buffer, select Single Process as the Variable Type,
and Array of Double as the Data Type. This will create a locally scoped variable
(no network publishing) that contains and array of double precision floating
point numbers. Then select RT FIFO from the menu on the left.

P
# | Shared Variable Properties “
s Name
Update ":\-13 dband Data buffer
Description
Initial Value Single Process leayofquiel v]
Logging " Enable Timestamping Array of Double (1-D array of
Network 20 Numeric (double [64-bit real (~15 digit precision)]
RT FIFO

14. With the RT FIFO category selected, select the Enable RT FIFO check box,
select Single Element for the FIFO Type, and enter 4 for the Number of

17


http://www.ni.com/white-paper/11199/en

elements (if you are monitoring a number of channels other than 4, enter that
instead.) This configures the variable to operate as a real-time-safe global
variable, which can serve as the data buffer between our real-time and low
priority tasks. The variable will hold one array that contains four double
precision numbers. Therefore, we are only keeping track of the latest result of
the mean calculation, not every result calculated. Click OK.

Variable | [7] Enable RTFIFO |

FIFO Type: [Single Elementl

Update Deadband

Déscription

Initial Number of arrays:

Number of elements (type: Array of Double): | 4 .

15. Place a copy of the Data buffer variable in the timed loop and one in the
regular while loop.

16. Create another variable to perform the network communication. Use the
following configuration:

e Name: Temp Averages
e Variable Type: Network-Published
e Data Type: Array of Double

Variable
at Name
Alarming
14 adband Temp Averages
Description Variable Type Data Type
Initial Value Network-Published v] Array of Double I
Logging Ena rk Publishing Array of Double (1-D array of
Network Er n EE] Numeric (double [64-bit real (~15 digit precision)]
RT FIFO
Scaling
Securit

17. Place the Temp Averages variable in the regular while loop and wire the
output of the Data buffer variable to its input.

18


http://www.ni.com/white-paper/11199/en
http://www.ni.com/white-paper/11199/en

18. Also, place a Waveform Chart on the front panel. Use an Array to Cluster
function to format the data for the chart. Right-click on the Array to Cluster
function and select Cluster Size... Enter 4 for the size, since there are four
elements in the array. Wire the diagram as shown.

Doooo000000000000 OO0 0000000000000000000000000000000000000000000000000000000000000000000000000000

Startup Run Shutdown

scans

o) sample length
b2 ]

-

Waveform Chart

]

D000 0000000000000 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000

19. To control the stop condition of the while loops, create a shared variable
with the following properties:

e Name: stop

e Variable Type: Single Process

e Data Type: Boolean

e RT FIFO: Single Element
20. Place the stop variable in each loop and create a Boolean stop button on
the front panel and place it in the regular while loop.

21. To complete the real-time application, place a copy of each variable in the
startup frame with default values wired to them as shown. Also place a Wait
(ms) function in the regular while loop with a value of 100 to time the network
publishing.

19


http://www.ni.com/white-paper/11199/en

000 0000000000000 000 00000000000 00000000000 0000000000000 000000000000000000000000000 00000000000
@ scans
ron e\ e o)
r— |
sample length
b, 0]
2] [tk
MEAN
MEAN
% 0P}
C5 MEAN
MEAN
0 e
o o] e taon comml M |
= ul@ Loop Lo | ar » -b A
< W@ L mm|hf h LaTemp Ave a
Debug Chart Chart
-
000 0000000000000 000 00000 000000000000 0000000000000 00000000000000000000000000000000 00000000000

22. Click Run on RT.vi, click Save for any unsaved items, and click OK on any
dialogs or warnings about applying changes to the CompactRIO system.
LabVIEW will now deploy your VI over Ethernet to run embedded on the
CompactRIO system.

23. Once the VI deploys and begins running, view the front panel of your VI to
see the current I/0 values plotted on the waveform chart. Stop the VI once you

verify it is working.

Now, we will create a host VI that can run on a remote machine and
communicate with this embedded application.

1. Create a new VI under the My Computer item in the LabVIEW Project. Save
the VI as HMl.vi.

20


http://www.ni.com/white-paper/11199/en

y 2
{3 Project Explorer - Basic monitoring...Elﬁu

File Edit View Project Operate Tools Window
HeSH | % 9 Q||| 87w
Items | Files

= B Project: Basic monitoring with scan mode.lvproj

Virtual Folder

» Control
Library
Variable

2. Create a simple VI that reads from the I/O variables and plots them on a
waveform chart, using a Build Array function and an Array to Cluster function,
configured with a Cluster Size of 4. Note that I/O variables can be used directly
on the Windows host VI, since they are automatically network published by the
NI Scan Engine.

3. Use an Index Array function to unpack the Temp Averages and place them
on indicators on the front panel. The completed diagram might look like the
shown. Also, add timing to the loop with a Wait (ms) function.

System Waveform Chart

- Beeq)|TCO
[¥o8L]|TC1
»OBL|TC 2

——pDBL][TC3

21


http://www.ni.com/white-paper/11199/en

4. You have completed this application and can now run it. Run RT.vi first, so
that it is running on the CompactRIO controller. Then run HMI.vi, which will
connect to the shared variables that are hosted on the CompactRIO controller
and display the data.

The host VI in this example could be placed on any computer on the network to
monitor the embedded application running on CompactRIO.

At this point you have successfully created an embedded logging application
with LabVIEW and CompactRIO.

22






Centrum pro rozvoj vyzkumu pokrocilych fidicich a senzorickych technologii
CZ.1.07/2.3.00/09.0031

Ustav automatizace a méfici techniky
VUT v Brné

Kolejni 2906/4

612 00 Brno

Ceska Republika

http://www.crr.vutbr.cz

info@crr.vutbr.cz



http://www.crr.vutbr.cz/
mailto:info@crr.vutbr.cz

