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0] Signals with continuous and discrete time, signal
types

The signal x(t) is a real or complex function of continuous time t. The other definition points to
the fact that signal contains information. Sampling of a signal produces a time series which is a
sequence of samples in the discrete time n. The sequence of samples may be denoted either as an
indexed variable or as a function of an integer number x(n).

AX(1) Sampling may be considered as a mapping
Xg

Sampling: x(t) — [Xg X, Xyo]
The time continuous signal is related to the time series and can be
substituted by the following way

Z S(t—nT;) ZXS - x(t)

where Tg is a sampllng interval for the unlformly sampled data.
The sampling frequency (rate) fq is the reciprocal value

01 23 456 7 n

Signal types of the sampling interval.
Deterministic Random (stochastic)
Periodic Nonperiodic Stationary Nonstationary

Sinusoidal [Complex  |Almost |Transient |Ergodic |[Non-ergodic |Special classification
periodic periodic
(harmonic)

Deterministic signals are defined as a function of time while random signals can be defined

in terms of statistical properties.
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V) Random variables, random signals

Names of random variables and processes: &, &(1), €, &(t), ...
Realization of random variables and processes: X, x(t), y, y(t), ...

Realization of the random Realization of the random
process /variable in time t; Independent variable

(t) '

p(x)

Probability density function

Probability that a random variable & belongs to the interval of values greater than x and less
than x+Ax is proportional to the interval of the length Ax

P{x <& < x+Ax}= p(x)Ax
The coefficient of proportionality is denoted as a probability density function (pdf).
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For a random variable &, it is introduced

Mean value .............. u= E _[ xp d X Expected value (moment in physics)

Centered variable ....... AX = x—E{x } (E{Ax}=0)

The nth central moment M, =E{£*}= _[x" p(x)d x

+00

The nth central moment m, = E{(ﬁ— M)k }= j‘ (x _ M)k p(x)d X

about a mean value p

—00

Variance ...........c....... D{¢}=c”=m,
Crest factor ............... Crest factor = (Peak value)/c

For a random signal (process) &(t), it is defined
Correlation function Ryt t,)=Ed&, (t,) 2(t2 )i=

~+00+00

—H'x )p(x,, %, 1,1, )d x, d X,

—00—00

The two-dimensional probability density function D(X sztl;tg)

| K 5 r"'é, 1
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The covariance between two real-valued random variables X and Y with finite second moments is

cov(X,Y)=E{(X - E{X )Y — E{Y )]

The covariance between random vectors X and Y of dimension mx1 and nx1, respectively
cov(X,Y)=E{(X —E{X )Y —E{ ) |=E{XYT}-EX E{ T

Properties

Let X, and Y be real-valued random variables and a, b be constant ("constant” in this context
means non-random), then it holds

cov(X,a)=0
cov(X, X )=var(X)
cov(X,Y)=cov(Y, X)
cov(ax,bY)=abcov(X,Y)
(

cov(X +a,Y +b)=cov(X,Y)

If X and Y are independent, then their covariance is zero. It follows
E{XY}=E{X}E{Y}

LT ﬁ&llumﬂ
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Y4 Stationary and ergodic signals |

A stationary signal (or strict(ly) or strong(ly) stationary signal) is a stochastic process whose joint
probability distribution does not change when shifted in time or space. As a result, parameters such
as the mean and variance, if they exist, also do not change over time.

An ergodic process is one which conforms to the ergodic theorem. The theorem allows the time
average of a conforming process to equal the ensemble average. In practice this means that statistical
sampling can be performed at one instant across a group of identical processes or sampled over time
on a single process with no change in the measured result.

For example the parameters (mean and If the realizations are sections of the long record and AT
variance) can be computed from values tends to zero or to the interval, which is small enough,
corresponding to random signal them the values across a group of identical processes can
realizations in time t;. be replaced by the samples of the time record.
Random variables in time t, t; AT+t 24T+, 34T+t
3 | : i \L : |
0 -
4
-3 . : :
0 time t, AT 0 AT 2AT 34T time 44T
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The basic properties of stationary
continuous signals x(t) is as follows
p(Xl'tl): p(Xl)
p(X1’ X2't1’t2): p(X1’ X4 _tz)
Rxx (tl’tZ ) = Rxx (tz _tl) = Rxx (T)
For ergodic signals, it is assumed that

the mean value can be replaced by the
time average

:\/Tlirpw%Tj/gx(t)—x)zdt

Root Mean Square = RMS

The correlation function of ergodic S|gnals/

[ x(t)x(t—)dt

-T/2

depends only on the lag R, ( )_ lim =

To+o T

ROZVOJE VZDELAVANI

For discrete ergodic random signals

(x(1),1=0,1, 2,

1=
Mean value X = —Z X(I)
N i=0
1 N 1
Standard + )—(
deviation N ,=O

Auto-correlation

N-1t-1
R, (t)=—— S x(ix(i+1), t=012...
N-—1 i3
Cross-correlation
1 N-t-1
R, (1)= x(i)y(i+1), 1=012,..,
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Mean value and standard deviation (RMS) of a
sine signal

If the signal is harmonic (sinusoidal) than we can calculate

X(t)

Sinusoidal signal ...... x(t)= Acos(z—ntj L2 ;
T 0,8 1 O\
04 £\ o
Mean value ............ 0,0
_0'4 .......... ........
. . 08 4 A&/
The computation of RMS for the sinusoidal signal 1o '
T L 2 VY 0,0 0,5 1,0
== (X(t))2 I ACOS(—'[) GLL:J'E t)dt=0 Time [s]
T4 T 0 T
(x(1))*
1 T TE A2 1,2 :
=— 1+cos( — j dt_— 10 1ty
T.O T 08 4---f-- ...........
06 171 e\
results in the formula o= 04474 X N .
\/E 0’2 - - |
The value of RMS is approximately equal to 70% 0,0 Y
0,0 0,5 1,0

of the harmonic signal amplitude. The amplitude
of this signal is the 1.4-multiple of RMS.

Time [s]
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Filter frequency response

Low pass filter

High pass filter

passband ~_passband
1to, _ _._._..._ Ppasshand |1+, _ _ .. __._ Passhand
1 perrmrmen oY =" ripple () eplniiietnialy S -7 ripple
f 1EIOIO i3 PP
s~ fp |
mag mag | stopband
stopban(_j stopband p E si;(t)pbar}[q
attenuation stopband stop_band [ attenuation
Op | NN S, mple Vv . _
0 0 :
0 fo s frequency 0 fs T frequency
passband
=
]_-|—51 I I
I et 2. =
1- 0 .
mag %PL - f | .fSH o, Band pass filter
+ |1 stopband
0y
00 fsu fpL
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Let X,,X.,X,,X;,... Dbe asequence of samples

The Z-transform of the sample sequence is defined by
+00

X(2)=Z{X J =X + X2+ %2 2+ %2+ =) X, 27"

where z is a complex variable. "

For the k-step delay it is valid Z X,y j=27Z X, |

Examples of the Z-transform of some signals

1 Dirac function
Dirac sequence: 1,0, 0, 0, ... ‘ cec e
X(2)=2{5,}=1+0z"+0z2+..=1 0

0 1 2 3 ->» k
Step function: 1,1, 1,1, ... 1 Step function
X(Z):Z{Sn}:l+2_l+2_2+...: 1_1: . T T T T o000 00
k-1 1-z z-1 0
0O 1 2 3 -> K

Upsampling by k: X, 80— X, 0,0, ..., X,, 0, 0, ...
If X(2)=%,+X2 7 +%,22+... then X,(z2)=X(z")

* L [T
£ |}< 5 YL,V
EVHO UNIE Ef LE | j
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Let the following sequences be denoted by o X
_ ? X, input samples
input samples X,1=0,1,23, .. T cecce i
—> time
impulse response  h.,i=0,1,2,3,...
Xq h
output samples y,,1=0,123,.. o )((J h response to X,
+ OT %(o h, .
The convolution of the input sequence with ? o o —>time
the impulse response is a formula ;
o X hOX response to x;
— _ 1
yn_hn®xn_zhixn Zhn i N + : T ? %(6h2 = time
i=0 i=—o0 | ‘o] O
: L1 X ho
The Z-transform of the convolution sum results in L1 0 < h response to x,
+ | %N, |
{Zhlxn |} glzhn iXiZ \i/ \i/ T 2? Q =>time

o
<<
[EEN

2
_ (Z hz™" j (Z X z—”j y 7 output samples
n=0

-> time

IIIII[IJ

INVESTICE DO ROZVOJE VZDELAVANI cwroroAiNG =



® Digital filter as the discrete-time linear systems

A digital filter can be considered as a discrete time linear system with one input and one output.
The input sequence is designated by x, n =0,1,2, ... while the output sequence byy,, n=0,1,2, ...
The present input sample is x(n) and the next output sample is y(n) in the alternative notation.

Let a constant coefficient linear difference equation with zero initial conditions be given
Yo =~ Yo T8 Yon T boxn + blxn—l Tt bM Xn-m

or
yn + a’lyn—l +ot aN—1yn—N+1 + aN yn—N = bOXn + ban—l +.o.t bM —lxn—M +1 + bM Xn—M

The Z-transform of the difference equation of the order N gives
Y(z)i+azt+.+ay,z VP rayz )= X(2)by +0z 7t +.+by 2 M by 2 )

The transfer function of the linear system in the Z-domain is in the form of two polynomials
composed from the power of z1

N2 bbb, b,
X2 1+az'+..+a,z"va,z"

A stable filter assures that every limited input signal produces a limited filter response. The zeros
of the denominator polynomial

H(2)

" +az" t+..+ay,z+a, =0

have to fulfill |z <1. If the input squence is the Dirac function then the output sequence is called

as the impulse response.
-Ef i<§F|’ 3 M- 14
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IIR - Infinite Impulse Response
H(z)= Y2

X(z)

-1 -M+1
by +bz7 4+ +by 2

+b, z7"

1+az +..+ay,z "M +a,z "

Direct form

IR filter output of the order N
Yo = bOXn + blxn—l +...t bM Xoom —

. - alyn—l __"' - aN yn—N
Filter properties

Positiveness — low order

Negativeness — filter can be unstable

INVESTICE DO ROZVOJE VZDELAVANI

FIR - Finite Impulse Response
H(Z):LZ):
X(2)

-1 ~M+1
=b,+bz"+..+b, ,Z

+b, z7"

R e

Delay =

element
X1 —p

FIR filter output of the order M
Yo =Xy +B X5 By X v By Xy

Filter properties
Positiveness — always stable
Negativeness — requier high order

=

v ﬁ. [T
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0] Mapping of the s-plane imaginary axis onto the

z-plane
The basic notation and assumptions are as follows
Sampling interval T, sampling frequency fs= 1/ T, sampling angular frequency o, = 27/T,

Onestep delay z7'=exp(—sTy), z'=exp(-joT,) or z=exp(sT;), z=exp(joT)

The Nyquist—Shannon sampling theorem is a fundamental result in the field signal processing.
Shannon's version of the theorem states (see wikipedia):

If a function x(t) contains no frequencies higher than f, hertz (og = 2= f, radians per a second), it is
completely determined by giving its ordinates at a series of points spaced 1/(2 f ) seconds apart.

The imaginary axis of the s-plane ranges from minus infinity to plus infinity —oo <Q < +o0
Sufficient frequency range of a sampled signal is in radians per a second or just in radians as follows

—0s/2<0<0/2 —-n=-04,T;/2<0T;<0,T;/2="1
jiQ Digital plane
Analog plane y Im j[m

The unit circle is the locus

Re / % Re L

:> T of points in the complex
plane, where

z=exp(joT,)

Margin of regions for denominator zeros corresponding to the stable —00 < ® < 400

transfer functions
Ef ’\ﬁr . )& 16
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Digital filter frequency response

Let frequency properties of a filter be described by the transfer function
H(z)= Y(z) _b, +blz_‘l +..+b, z_‘M
X(z) 1+az'+..+a,z"
Mapping of the s-plane imaginary axis onto the unit circle in the z-plane is ensured by substitution
27 =exp(- joT)
where Ty is the sampling frequency. This formula relates the variables z and w. After substitution
we obtain

_ - Y (e1eTs b. +be s 4 4 p e MeTs
R o e

The value of H(z) for z located at the unit circle is related to the value of the frequency response

The frequency range for computing the transfer Im
function is as follows Digital plane j
in frequency ............. —fy/2<f<fg/2 » / Angle oTg
in angular frequency ... —w,/2<0<w/2 \ 1 Re
inangle ... —t=-0,7;/2<0T;<o,l;/2=1 Unit circle
z =exp(joT)

Ef%r . M- 17
| 4
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Computation of the magnitude and principal
value of phase

Magnitude of the frequency response function

(e | = (Refr e )+ (miH (e Jf

The principal value concerns a logarithm of a complex non-zero number z. The principal value Log
z is the logarithm whose imaginary part lies in the interval (n,x].

If the one-argument function arctan (atan in MATLAB) produces an angle in radians from the
interval (-/2, +m/2) that the principal value of phase from the interval (-w, +7] can be computed by
the following formula

(arctan(Im{H }/Re{H }), for Re

H}>0
n+arctan(Im{H }/Re{H}), for Re{H}<0,Im{H}>0
o)) |arctan(Im{H }/Re{H })-m, for Re{H}<0,Im{H}<0
Arg(H(e ))_<+n/2, for Re{H }=0, Im{H}>O
-7/2, for Re{H }=0,Im{H} <0
undefined, for Re{H } =0, Im{H}:O

The MATLAB two-argument function atan2 produces an angle in radians from the interval (-x, +n]

. > gy [[TLIITTT]

* * » |
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Mapping the plane ,,s* onto the plane ,,z“ depends on algorithm, which is used to approximate a
definite integral. We deals with the algorithms, which are based on the rectangle and trapezoidal rule.

1 1 {
| |
Yo=Yoa+T !
i Y2 | |x(r) Trapezoidal rule
4\ T _ I
i Y(z)1-2 l)=?5X(z)(1+z N = [— X
|
i Y(z) T1+z? 1 i ol
]
| X(z) 21-z" s T i
| 217" z~ | (k-D)Ts kTs ¢
|
| - |
| |

[TTITT

!
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Mapping the s-plane imaginary axis to the z-plane for the transform based on the rectangle rule

The stable region
of the s-plane

Analog plane
(s-plane)

Transform based

on the rectangle rule

jQ

K_H

The unit circle as a region margin surrounding the zero
locations of the of the stable transfer function denominator

i
Re

e,

Digital plane (z-plane)
1

1

—— —<Q <+
1-JT,Q

{j:t} Efwr m‘é&ll“][lﬂ
EVROPSKA UNIE e LE %j
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rapezoidal rule

Mapping the s-plane imaginary axis to the z-plane for the transform based on the trapezoidal rule

jQ
The bilinear % Im .
transform maps - ___
the s-plane _
to the z-plane by
_21-77
T 1477
1 jTZSQ 1- jTZSQ
1+j- 1+j3Q
s=jQ 2
Stability margin for analog and digital systems sin(wT, /2)

| L 21-g )
2= s=jO Q= :
i) ] T, 1+e7)0%

U

:> JQT Je“‘”s/z(l e J(”TS)/ZJ

1—T—Ss
7= 2
1+-25

jmTS/2(1+e joTg )/2

cos(wT, /2)

Analog ( JQ)

Digital (Ja))

INVESTICE DO ROZVOJE VZDELAVANI
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The bilinear transform maps the infinity interval of frequency Q to the finite interval of
frequency o, which results in distortion

Frequency (Discrete time system)

Difference in frequencies due to the in the z-plane

distortion called the frequency warping oTs H oo (1) =Hpii (@)
na (zg Igital

(Continuous time system)

=

* ok s [TTILIITTT
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The bilinear transform maps the s-plane to the z-plane by H (s)z H

[EEN
|
[EEN
N——

i _
T 1+

Correction factor

Introducing a correction

27 fp/tg(ﬂ fp]
fS

factor K > 1
Klg—»T, — +mz KQ—>0, Ks—>s
Ks—i1 =
T.1+2
-1
QT—S:tg( 2 1-z
: = KT 1+z7%

The bilinear transform can accept an parameter that specifies prewarping frequency f, in Hz,
that is a match frequency, for which the frequency responses before and after mapping match exactly.

H(s)= H( 2n f, 1_21]

tan(n f, /fg)1+2"

[TTITT
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The first order linear filter

Frequency response

dg Cut-off
log ®
Roll-off 20 dB/dec
1 1

Y(s)

Transfer function of s

orf=t = f-_T_
T P o0aT

An example

The cut-off and
sampling frequency

Is as follows
fo =20 Hz
fs =2000 Hz

IHGw)| [

107 b=

X(s) 1+sT

Filter
coefficients

Difference
equation

Transfer function of z

— H(2)=

b, =b, =

Y(z)

1

by +bz”

1

X(Z) 1+

2 1-z771

LI
@1+ 77t

tg(T; /2T) _to(Ty/2T)-1

tg(T/2T)+1

V,=bx,+bx.,—-ay,,

10- F-—-

______

______

T
______
[

______

—————

arg(H(w))

-0.5

Analogovy
filtr

NN —
"

-1

Cislicovy
filtr

tg(Ts /2T )+1

||||||
...........

________

||||||
___________

L TCN
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Notch filter transfer function

CY(s)  1+5%/0)
H(s)= X(s) 1+2Es/,+5%/ 0’

H(ja)o):O
Mg

o, =2nf,=2nf, = f,=—

T 2n
KT, = 2tg£2‘°’woj/coo

The transfer function od the digital filter
-1 -2
H'(2)= Y(z) _b, +blz_1 +boz_2
X(z) 1+az'+a,z
Yo = bOXn + b1Xn—1 + bOXn—Z —a Y~

An example f, = f, =50 Hz
fs =200 Hz
¢&=0.05

a2 yn—2

ROZVOJE VZDELAVANI

o, ... the frequency to be filter out

10°

HGDOI

FIR filter coefficients

o (KT P4t
D (KT, P +4E KT, /o, + 4/
a1:b1: Z(KTS)Z_A’/C‘)S .
(KT, Y +4& KT, /a, + 4/ o
(KT, ) —4E KT, Ja, + 4/}

2:

(KT, ) +4E KT, /o, + 4/ f

Magnitude of the frequency response




® Filter of the moving average type

A moving average of M samples corresponds Frequency response function
to the difference equation of the normalized frequency (f / f;)
1,2 , . . .
ynzﬁ(xn+xn—1+"'+xn—M+l) 10+ _________ _________ _________
Z-transform R I U R T S
E 06 -y
H(z)—i(1+z‘1+ +z—(M—1))_ 12" +2" 4. 41 §0,4—----- SLIRERRRRR e PP
M M ZM_l = 024------ L S I
The sum of the finite numbers in a geometric progression 0.0
M 00 02 04 06 08 10
H(Z):il_z . . Normalised Frequency [-]
M 1-77 Logarithmic scales are used for both
_ the frequency- and magnitude- axes
Frequency transfer function 1,00
: 1 1-exp (- joTM _ ST
Hlio)=y (1—e>F:|o((_J ol ))) s
3 £ 0,10 A
Note that it can be shown g
H(z)  =H(jo) =1  LPfilter 111
Ll )L”:O LP filter zeros 0,01 — —
H(j2rnf)=0 = f/f,=k/M, k=12,.,M 001 0,10 1,00

Normalised Frequency [-]

. > gy [[TLIITTT]
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) Delay line Euler’s formulas
n i Gl Sl oo COS(OL)+ jsin(a)= exp(joc)
S taps eee T cos(a)— jsin(ot) = exp(- jou)
sin(a) = (exp( o) exp(~ jr))/2
cos(a) = (exp(jo)+ exp(- jou))/2
Coefficient even symmetry 4, =6,,, 6, =0,, ,,...

Difference equation (M+1 taps on a pipe) H(jo)=exp(- joT, M/2)

Yo = 00X, +00X, 5+ 4By X,y [b, cos(wT, M /2)/2 +b, cos(wTs (M /2-1))/2+..]
Z-transform

H(z)=b, +bz*+..+b,z ™ Coefficient odd symmetry b, =-h,,, b, =-b, _,....
Frequency transfer function H(jo)=exp(- j(0T, M/2+7/2))

H (joo)= by +b exp(~ joT )+... [b, sin(wT, M/2)/2+b, sin(wT, (M/2-1))/2+..]

+Db,, exp(- joTM)
After rewriting ......
H(jo)=exp(~ joTs M/2)
[b, exp(joTs M/2)+b,, exp(— joTs M/2)+ (p(@)z{
+b, exp(joT(M/2-1))+b,, , exp(- joT,(M/2-1))+...]

It can be concluded that the FIR filter phase
is a linear function of frequency ®

—oT; M/2, even symmetry
—oT; M/2-7/2, odd symmetry.

INVESTICE DO ROZVOJE VZDELAVANI



An example of the linear phase filter or system is a delay

X(t)

L X(t-7)

T

The time delay transfer function H(o)=exp(- joT,) (only delay, no distortion of the signal)

The phase of the delay transfer function (p(oa): —oTy isa linear function of w

The time delay does not distort signal in the pass band frequency

Signals are not distorted by filtration if the phase is a linear function of frequency

Group delay Ty (0)) = _d(dp_go) Time delay: T4 (60) =Tp
Phase delay TQ(@):_M T(0)=T,
®

=

* ok s [TTILIITTT
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The FIR filter is described by the difference equation
Yo =BoX, £0X 5+ By Xy F 00Xy

Any input sequence, containing the samples of the limited value, produces the output
sequence, which is limited as well. The FIR filter is a stable system.

Properties of the FIR filter coefficients by, b,,...,b,,_;,b,,

Filter Type | Order M Coefficient symmetry | H(0) H(f,/2)
Type | even even _ arbitrary
Type Il odd by =by, b =Dy, arbitrary H(f,/2)=0
Type Il even Odd (anti-symmetry) | H(0)=0

Type IV odd by =-b,,,6=-0,,,. arbitrary

=

v ﬁ. [T

: : Ef W" .. i |
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The ideal low pass filter can be designed in the frequency domain. The impulse response is
obtained by the inverse Fourier transform.

The Nyquist frequency is equal to half

H(jo) i
The frequency response 1 the sampling frequency

of the ideal low pass filter /

—0s/2 —wy, 0 +o, tog/2

W)=
/ 0, w;/2>0>0, —0s/2<0<-0,.

The inverse Fourier transform of the frequency response results in

fs

TS
h, Zi-[ jo)exp(jonT,)do = IH j2nf )exp(j2nfnTy)d f = jexp j2nfnT,)d f =

_fd

2
The ideal low pass filter is a non-causal system
= S|n(2nndeS) , N=0,£1+2,.. of the infinity grder. ’

mn

o
R

Ef i
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FIR low-pass filter

The ideal low pass filter of the corrected order, which is restricted to the finite number, can be
used as a sufficiently good low pass filter.

The impulse response

of the ideal low

pass filter
0.3

h
Non-causal n

system

0.2

Delay transforms
non-causal system
to a causal system

_sin(2znf,T,)

h

n

mn

Symmetry of coefficients

IS determining the linear
phase of the filter

FolhHh @ 0 0 0 O

0.2

0.1

(

-0.1

C'SE‘
&

|H(f/fs)|
10°

10"

10°}

10°

02 03 04 05

fifs

of the low-pass filter

20 1he frequency response

+M/2

Yo = Zhi Xn_i

i=—M/2

Causal FIR filter

M
Yo = Z X,
i—0

Non-Causal FIR filter

+ *
*oak

EVROPSKA UNIE

L TCe



Windowing of the impulse responses improves the frequency response of the FIR filters

The low pass filter
design using the
Haning window
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® Frequency transform

High pass, band-pass and band-stop filters are derived from the low pass filter by using frequency
transformation

Mapping Sonto S ... S= F(8)
The transfer functions HD(S): Hip (s)(s:m)
are related through H,o(s)=H, (§)1A_F1( )
1 1 " 1 S
Example: H.(s)=— = HLP(szHHP( )J=——=—
Transform of LP 148y s 1+1s  1+5 X
: . 1 .y .A 1 iO
to HP filter HLP(JQ):1+ i) = HLP(EJZHHP(JQ):]_ ]7/'52:1 A
1230- /4 +14) +JQ
;'I't%r;pass 2.0, o 00, 0<0<0, = -0<O<-O,
§ Q ~0,<0<0=Q, <Q<w
Bandpass §2 102 02— Q) A n A
: S=Q, o0 Q=-0, =2 Q,Q,, =0Q,Q, =02
filter 0 §(QP2 _QPI) P Q(QPZ _QPI) P1=<pP2 $1°452 0
Bandstop do.. —O oo —o A oA A A A
filter s =0, (§282+g"2281) Q=Q, (ézsz é281> QpQp, = Q4 Q) = Qg
0 0

EvHOPSKA UNEE ? I I
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Design of IIR digital filters

T T
The following steps are suppressing the frequency distortion Q?S = '[g(wzS j

Step 1: Prewarp the specified digital frequency specification of the desired digital filter G,(z) to
arrive at the frequency specifications of an analog filter H(s) of the same type

Step 2: Convert the frequency specifications of H(s) into that of a prototype analog lowpass
filter H, p(s) using an appropriate frequency transformation

Step 3: Design the analog lowpass filter H, x(S)

Step 4: Convert the transfer function H, 5(s) into Hy(s) using the inverse of the frequency
transformation used in Step 2

Step 5: Transform the transfer function H(s) using the bilinear transformation to arrive at the
desired digital IR transfer function Gy(z)

S_il—z‘1
T 1+ See [Mitra]
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Butterworth

Magnitude

Chebyshev type 2
1
0.8
0.6 -
04 -
02 =
ol 4 VN
0 0.2 0.4 0.6 0.8
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Chebyshev type 1

Elliptic
| -
—

0.8 = -
0.6 —
0.4 — —
0.2 —

o b T
0 0.2 0.4 0.6 0.8 1

Frequency

* *
* *
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http://upload.wikimedia.org/wikipedia/commons/5/5c/Electronic_linear_filters.svg�

The gain G(w) of the n-th order
Butterworth low pass filter is
given in terms of the transfer
function H(s) as:

Gy

+(o/oc )"

where

n ... order of filter

o, ... cutoff frequency
(approximately the -3dB
frequency)

G, ... the DC gain (gain at zero
frequency)

Gain (dB)

Phase (degrees)

The first order filter

i ' (Cutoff frequency 3
RS S <. 1) N ) : S B U S S
i Slope -20 dBJ’decade
L Wi ket
[ Passband i
1000

See [http://en.wikipedia.org/wiki/Butterworth_filter ]
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http://upload.wikimedia.org/wikipedia/commons/6/66/Butterworth_filter_bode_plot.png�

—20 Eilter order
A —40
=
T
= \\ :
< 60

3
_so} 4
| 5 \
—100 e 9 010

w/rad s~

See [http://en.wikipedia.org/wiki/Butterworth_filter ]
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We wish to determine the transfer function H(s) where s= ¢ + jo. Since H(S)H(-s)
evaluated at s = jo is simply equal to |H(jw)|?, it follows that:

G2
H(SH ()= ——2—
_ B 1+ (— s? /o2 )
The k-th pole is specified by:
1 i — i —
The transfer function may be written in terms of these poles as:
H(s)= G, The denominator is a Butterworth
. olynomial ins.
H (S — Sy )/(Dc Py
Normalized Butterworth polynomialsk=1
_ [ 2 _
oc =1 I1]s*-2s cos(M n) +1J forn even
k=1 2n
BS)=) T 2k +n-1
s+) ] (sz ~2s cos(z— n] +1] forn odd
| k=1 n

See [http://en.wikipedia.org/wiki/Butterworth_filter]
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INVESTICE DO ROZVOIJE VZDELAVANI EVROPSKA UNIE. el L1 =

=




S
O

I

[T

Factors of Polynomial B_(s)

(s+1)

s2+1.4142s+ 1

(s+1)(s®+s+1)

(s2+0.7654s + 1)(s? + 1.8478s + 1)

(s + 1)(s? + 0.6180s + 1)(s2 + 1.6180s + 1)

(s2 + 0.5176s + 1)(s? + 1.4142s + 1)(s2 + 1.9319s + 1)

(s + 1)(s? + 0.4450s + 1)(s2 + 1.2470s + 1)(s? + 1.8019s + 1)

O |IN|[OO|O B |W|IDN]|F |5

(s?2 +0.3902s + 1)(s% + 1.1111s + 1)(s? + 1.6629s + 1)(s? + 1.9616s + 1)

See [http://en.wikipedia.org/wiki/Butterworth_filter ]
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The gain (or amplitude) response as a function of angular frequency o of the n-th order low

pass filter is o’ H( , 1
(@)=|Hy(0) 1+ (0/o,)

where ¢ is the ripple factor, o, is the cutoff frequency and T,(...) is the Chebyshev polynomial
of the n-th order.

Ty (X) =1 10

Tl(x) =X

Tn+1(X) = 2XTn (X)_Tn—l(x) ’ =TT t
Trigonometric definition 1 \ \s=v%€2

T (x)= {cos(n cos(x) X<l

cosh(ncosh™(x)), [x|>1

G(w) / dB
S8
T
HEEEEEE RN RN IR AR

T,(cos(v))=cos(nv) 50 N

RippleindB  20log,, 1 N\

V1+ 82 ‘ w/wo

See [http://en.wikipedia.org/wiki/Chebyshev_filter]

=
—
—
—
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http://upload.wikimedia.org/wikipedia/commons/c/c2/Chebyshev_Type_I_Filter_Response_(4th_Order).svg�

The gain (or amplitude) response as a function of angular frequency o of the n-th order low

pass filter is

1

Gf(co)z‘Hn((o)(z

T14 1 (s T2/, ))

where ¢ is the ripple factor, w, is the cutoff frequency and T,(...) is a Chebyshev polynomial

of the n-th order.
10

0

N

Stop band ripple  20log,, — 10
1+¢° 20

Gain (dB)

-30

\ Gain=

€

V1+é

-40

-50

-60

Passband \ { Stopband

0.1

W/

See [http://en.wikipedia.org/wiki/Chebyshev_filter ]
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http://upload.wikimedia.org/wikipedia/commons/b/ba/ChebyshevII_response.png�

The gain (or amplitude) response as a function of angular frequency w of the n-th order low

pass filter is

G(0)=|H, (o)’

1.0

0.8

0.6

G(w)

0.4

0.2

0.0

1

:1+82R:(§,w/030)

where ¢ is the ripple factor, & is the selectivity factor , w, is the cutoff frequency and R, is the n-th
order elliptic rational function of angular frequency .

See [http://en.wikipedia.org/wiki/Elliptic_filter ]

N
N Vi+él ]
B G= —1 ]
/ Vitelll
[]
[ (\\//——________
Olo:l||||||£|)‘5|||||||E|lo\lf||||||:||!"5||||||||2|‘0|||||||||2‘5|||||||510
w/wy
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® Comparison of FIR and IIR filters

Advantages Disadvantages Digital signal processors (DSP)
FIR | Always stable High order ADSP 2185 type (fixed point math), special
filters | Linear phase Large number unit MAC for computation of a formula
Possible to design of coefficients 3 tapilb “
any frequency Yo = &y "1
response
-p : — MAC statements
lIR Possible instability | Low order (F cond] MR = X*Y: or = X*X; (S) or (SU) or
filters | Small number Non-linear phase or |AF| = MR+X*Y; or = MR+X*X;  (US) or (UU) or
of coefficients | Overflow of - m );LYSOT = MR-X*X; (RND)
an accumulator P RNDJL
En example of the code for a FIR filter IF MV SAT MR;
14=Afir_coefs; M4=1; L4=taps; DSP Hardware tools for filters
CNTR=taps-1; .
MR=0, MXO=DM(10,MO), MYO=PM(14,M4); - Cyclic buffers
_ DO firloop UNTIL CE; - Indirect addressing using pointers
Firloop: MR=MR+MXO*MYO(SS), MX0=DM(10,MO), MYO=PM(14,M4); _ _
{ IF NOT CE JuMP firloop;} - Index registers with
MR=MR+MXO*MYO(RND) ; automatic indirect address
_I..F_,.MV SAT MR increments

** %
* *

* *

-Ef%r o M- 43
[~ 4
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The transfer function G(z) of a IIR filter is called an allpass transfer function if the
magnitude of the frequency response is equal to unit for all frequencies

Gl ™)=1 forallo
An M-th order causal real-coefficient allpass transfer function is of the form
d,+d, 2z +...+dz "4z
Gy (Z): . _i/l_l —1IVI+1 M
1+d,z7 +...+d,, ;27" +d,,Z
If we denote the denominator as

Dy (2)=1+d,z 7 +..+dy ;2" +dy, 27" Digital plane ,,z*
Then G,(z) can be written Unit circle
6, (2)- 2Pulz’) m|; z=exp(joT,)

Dy (2)
If z=rexp(jo) is a pole of a real-coefficient allpass
transfer function then it has a zero z = 1/r exp(-jo) |d,]

The first order allpass filter

d,+z* zd, +1
Gl(z)zlld 77 Gi(z)= zidl
1

See [Mitra] ‘Gl(eijs )

s o ‘P ||||[|j
* * O y
t!‘*_t
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=1




FIR filter differentiator (Kaiser window)

Impulse response

0,15

0,10 ----------- L 3 e Feeeeeee
0,05 ---mmmrrdnee gt g b
0,00 A TR TS : Z
20,05 -eeeeeees oo N ) ST Feeeeee
“0,10 -
-0,15 .' .' :

0 10 20 30

Index
Input signal

0,0 0,2 0,4 0,6 0,8 1,0
Time [s]
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Frequency response
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] ] ] ]

Magnitude

............................................

.........................................

o
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Frequency [Hz]

The first derivative with respect to time
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05 TT
0.0 ¢

x(n)

0.5 1.0

x(n)
© o =
o (@] o
A S N
—E: )
oJ° i

0.5 1.0

Time Index [-]

_ Xn/L’
yn _{ O,

—>

n

L

=0,+L,+2L,...
otherwise 1° ;
1,0 1- :
0,5 A ‘
An up-sampler § 0,0 ¢ :
-0,5 1
> 1,0 f
15 . . . :
5 00 02 04 06 08 10

L=

Time Index [-]

Vo = e TTTT?

An down-sampler

—»>

y(n)

o O

o1 O
o |
9_4
o——
G

..................

Y

M=
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A standard for vibration testing of rolling-

bearings requires the pass-band filter for
50 to 300 Hz
300 to 1800 Hz
1k8 to 10k Hz

Design of three individual separate filters requires
the FIR filter type of a large order, multirate filters

seem to be an optimal solution

Input signal fg =44,1 kHz

En example of multirate filters

Frequency response of the passband filter

IIR1 FIR64|2 FIR64|6
{20 HzF*»10 kHz| (k8 Ha|
Integration of an
acceleration signal
in the frequency
range above 50 Hz

FIRG64
—»|1k8 Hz

dB DIN 5426-1
0
-20
-40
-oQ= APTET
10k
Frequency [Hz]
FIR64|6 FIR64 RMS :
300 Hz‘& =0 Ha b 50-300 Filter ty!oe ar_1d order
Hz Decimation factor
FIRG64 RMS FIR64|6[ Decreasing of
300 Hz »300-1k8 foo Hz ‘L the sampling
Hz A frequency
RMS l \
»|1k8-10k Low pass
Hz Cut-off frequency

*
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Cascaded integrator-comb (CIC) filter

An integrator is simply a single-pole IIR
filter with a unity feedback coefficient

-1

yn = yn—l + Xn Z

1 +
H (z)= +
I( ) 1_ Z—l
This integrator is known
as an accumulator

Three stage (N = 3) decimating CIC filter

c»c»c—»

Three stage (N = 3) decimating CIC filter

->C>C>C L 1 b

See [Donaldio]

> 1P

A comb filter running at the high sampling rate, f,
for a rate change of R is an odd symmetric FIR filter
described by R=1

yn = Xn + Xn—RM

H.(z)=1-z"™

where M is a design parameter and is called
the differential delay (usually M =1 or 2) and
the positive integer R is designating a rate change.

(5

Frequency characteristics

()= 02

Gain of CIC decimators G =(RM )"

Advantages:
- linear phase,
- utilize only delay and addition and subtraction

The CIC filter uses only fixed point math

e [ ] | T
** ok —ily - IRERIEN
* Pl 1 [
* * ™ |
* * —
** * ) (E 48
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® Polyphase decomposition of sample sequences

Consider an arbitrary sequence of samples x(n) with a Z-transform X(z) given by

+00

X(z)= > x(n)z™"

N=—o0

The Z- transform of the polyphase decomposition of samples sequences is given by

XK@D= 2K ) K= Tx )2 = uMn k) o<iezm -1

N=-—00

The subsequences X, (n) are called the polyphase components of the parent sequence x(n)
The functions X, (z), given by the Z-transforms of x,(n), are called the polyphase components of X(z)

The relation between the subsequences x,(n) and X« (n) _Té\l'M —> %o (n)= Xk(Mn)

the original sequence x(n) is given by S

x (n)=x (Mn+k), 0<k<M -1 t_%'v' 5 x,(n)=x (Mn+1)

In matrix form we can write - X (") - - . Downsampling by M

M [ ]
X (z) = [1 A z‘(M‘l)] Xl(,z ) _$_ * —M =
: 1
Xy (2" ] Xy-1(n) =
See [Mitra] I_>\1'M — =x (Mn+M -1)

. b ..' [ L0

* * » ]

* * ™ |

* * —
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0] Polyphase decomposition of the transfer
| function

An L-branch polyphase decomposition of the transfer function
of order N is of the form

L1 Eo(z'—)
D=2, E() :
where nz;, L Z
Ea(z)= 2hltn+m)z?, 0<m<L-1 $| E(2)
with h(n) =0 for n > N. 771 o
Linear phase FIR are characterized by a symmetric or \2 ° i
antisymmetric impulse response. \'[, i
h(n)=h(N-n) or  h(n)=-h(N-n) - T
An example —> EL—l(ZL)
H(z)=h(0)+h@)z " +h(2)z2 +h(2)z° +h()z™* +h(0)z
Polyphase decomposition
H(z)= Eo(2*)+ 27°E, (2% )+ 2 °E, (%)
Ey(2)=h(0)+h(2)z", E(z)=h@)+h()z", E,(z)=h(2)+h(0)z"  see [Mitra]
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0} Lth-band filters, half-band filter

Low pass filters with a transfer function that has certain zero-valued coefficients is called Nyquist or
Lth-band filters. An Lth-band filter for L = 2 is called a half-band filter. The transfer function of a

half-band filter is given by a formula Im

H(z)=a+ z‘lEl(zz) . Digital plane ,,z“
The even samples of the impulse response are as follows L Z
o, n=0 oT; ; oT;
h(2n)= _ ' Re
0, otherwise oT. \\! /1
The sum of transfer functions % Unit circl
1 1 ) nit circle
H(z)= §+ Z 1E1(22) and H(-2)= 57 Z 1E1((— 2) ) z =exp(joT;)
gives Generally, if H(z) has real coefficients,
H(z)+H(-2)=1 then H(z) = H*(z")
If H(z) has real coefficients, then ‘H (&) ‘H "(eIFeTs)y
H (_eijS) _ H (ej(n+(s)Ts)) — H *(ej(n—wTs)) 10,000 + * T *
Hence | o _ 1000 .
HEe* )+ H (e!™°™)) =1 B 02004 A T N
ST O .
The above equation implies that 0,010 1 e - AN - XN - T
H (ej(n/Z—Q)) —H *(ej(n'/2+§2)) 0,001 |
o (o 0,000 1,571
‘H (e Q))‘ = ‘H (e Q))‘ See [Mitra] wTs[rad] T

. > gy [[TLIITTT]
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0] Quadrature mixing in amplitude and phase
demodulation

Let x(t) be a signal in so-called envelope-and-phase form  x(t)

Alt)sin(w,t + D(t))
1 (t)sin(w,t)+Q(t)cos(e,t)

The quadrature-carrier form of the signal is as follows .... x(t)

where f, = wy/2x is a carrier frequency and I(t) and Q(t)
are modulation of a pure carrier wave sin(®gt) .............. 1(t)= A(t)sin(@(t)) Q(t)= At)cos(d(t))

The component that is in phase with the original carrier sin(w,t) is referred to as the in-phase
component while the out-of-phase component cos(wt) is referred to as the quadrature component.

Re{y(t)} = A(t)sin(oyt + ®(t))cos(w,t) =

= A(t)(sin(d(t))+sin(2w,t))/2

The quadrature mixing

he input signal x(t) is transformed in mplex -

!_ig?\al If/(tt) agde}[hes)filt(:r:d b;)/ 2 low ptz?ss fitor 'm{y(t)}z 282220;: (:);Ii (i)gg((’zso(ﬁ‘))t))/;

y(t)= Alt)sin(egt + @(t)fcos(ogt) - jsin(wt)) After low pass filtration 0

Re{y(t)} Re{ (t) = At)sin(@(t))/2

X(t) »| X »| Low pass filter —» Re{z(t)]  Im{z(t)}= A(t)cos(®(t))/2
Envelone

HLX Low pass filter F— Im{z(t)} mag(z(t)) = [z(t)] = At)/2= Alt)=2z(t)
Phase

T Im{y(t)} { (t)}/Im{z(t)} = tan((t)) =

WRAPPED arctan(Re{z(t )}/ I m{z (t )} )

. Ef
* * , Wy .
* *
* *
gk
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— jsin(w,t) cos(amyt)=sin(w,t +m/2)




0] Amplitude demodulation with the use of
| quadrature mixing

Time History : Sine 10 Hz /AM 2 Hz

At)=1+0.5sin(m,,t)
d(t)=0
Sampling frequency
fs=64 Hz

° Carrying frequency
fo=10 Hz
Amplitude modulation

index 0.5
frequency f,,= 2 Hz

00 olz 0'4 ole ols 1,0

_ Low pass filtered (cut -off frequency 5 Hz)
y(t) = x(t)cos(aqt)— jsin(wt)) : : : ;
0,4

0,3 — :
024 Frequency shift

-25-20-15-10 -5 0 5 10 15 20 25
Frequency [Hz]

RMS

i
gk
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Goertzel algorithm

The algorithm solves a problem of identifying a frequency component in a signal (Dr. Gerald
Goertzel, 1958) by focusing at specific, predetermined frequencies.

For a given sequence x(n) the Goertzel algorithm computes a sequence s(n), n=...,-2.-1,0,1,2,...
s(n)=x(n)+2cos(w,Ts )s(n-1)-s(n-2) o, — angular frequency,
The Z-transform of the previous difference equation results in Ts —sampling interval
Im :
S(Z) = L = 1 Z, = eXp(J(DoTs)

Unit circle

X(z) 1-2c0s(wgTs )z +272  (L—e™™ 7z )[l—e ™ 27 /\O\

The poles of the transfer function lies on the unit circle. The

frequency response tends to infinity for o = +o, and o = -o, \//{/ Re
Let the sequence s(n) be filtered by a FIR filter with the zero at ® = -, Z, = exp(— joaoTS)

Y(2)

=1-exp(— jo,T:)z™ s(n) n
5(2) P- JooTs) P oL
The corresponding difference equation -
y(n)=s(n)—exp(- jo,Ts )s(n-1) -
The transfer function relating Y(z) to X(z) is as follows 2¢08(e,Ts ) <—i—> —glerts
Y(z) 1-g sz 1 2"

-1 |

Efm T 54
|~ 4

X(2) (l—ejmoTS z‘l)(l—e‘j“’OTS z‘l) R
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Goertzel algorithm — cont’d

The time-domain equivalent of the previous transfer function

y(n): X(n)+ejons y(n_l): anx(k)ejﬂ)o'rs n- k eJ(DTsn ZX e —joy Tg

k=—o0 k=-o0

Assuming x(k) for all k <0, we obtain

y(n): eijTanX(k)e—jmoTsk _ ploTony (@0) (X (030): y(n)e—ijTsn)

k=0
Except of the scale factor exp(+joTgn) the sample y(n) depends on DFT of the (n+1) samples of x(n).

Evaluation of y(n) requires only the last two samples of s(n) (the output of the FIR filter), which can
be used to compute the DFT of x(n) corresponding to X(w,)

X ()= (s(n—1)—e 1T 5(n—2))e ™" = glovTs"s(n —1)— g™ (" V(n - 2)
where

s(n)=x(n)+2cos(w,T, )s(n—1)—s(n—2)
The algorithm starts assuming s(-1) = s(-2) = 0.

The power at the frequency o, can be computed using the formula

X (0y )X "(@,) = (s(n—2))* +(s(n—1))* = 2cos(w, T )s(n —2)s(n—1)

See http://en.wikipedia.org/wiki/Goertzel algorithm

. b ..' [ L0

* * » ]

* * ™ |

* * —

i * ) (E 55
EVROPSKA UNIE el i




Rudolf Emil Kalman, born on May 19, 1930, in
Budapest, Hungary, is a Hungarian-American
electrical engineer, mathematical system theorist,
and college professor, who was educated in the
United States, and has done most of his work there.

KALMAN FILTER
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Y4 An example of a recursive filter

Assume that we have a system whose one-dimensional state x we can measure at successive steps:
X(1), x(2), ..., x(k). The problem is to compute the average p(k) of the time series given k samples.

1 :
The solutlon is M(k):EZX(')

Adding a new measurement x(k+1) the few average value is obtained

u(k+1):i§x(i):i(1§k:x(i)+1x(k+1)j
k+14 k+1\ k 5 K
and so, u(k+1) can be written

k+1) =)+ x(ke+ 1) =)+ K (xk+2)- ()

where K = 1/(k+1) is a gain factor. The new average u(k+1) is a weighted average of the old estimate
w(k) and the new value of x(k+1). If k is approaching to infinity, the gain factor tends to zero.

We can also recalculate recursively the variance of the time series. Given k samples, the variance is
computed by 02<k>:§z<x<i>—u(k>>2

1
If a new sample x(k+1) IS measured the new variance adopts to the value

2(k+1)= —Z u(k +1)) =—Z ~K(x(k+1)-puk)) =...=
=<1—K>(c (k)+K (X(k+1)—u(k))2)

The gain factor, independend on k, controls the value of the variance and enables to follow

a slow variation of the average p in time. < Sy [T
Ef ’\ﬁr . )& 57
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Y4 Conditional expected value or mean value

Let a set X(n) of measurements be given by a sequence of samples x(k)

X(n)={x(i)1<i<n}
Conditional probability density function of a discrete random variable (k) conditioned on the set
of measurements X(n) (in fact a random vector Z(n) = {&(i) , 1 <=1 <=n}) is given by

e Pl XA E) = X)) )
Pl(n +1x(n) )= XD el = x()
p(e(K)= x(K)E() = X(0)

()= X(0)

where the probability of the occurrence of X(n) is a positive value, i.e. P(X(n)) > 0. Similarly for
continuous random variable can be defined p(x(n+1)| X(n)). Instead of & = x the random variable &
belongs to the interval 1(x) = {x <& <= x +Ax}

o+ 1Y A P(E(n+1)el(x(n+1)nE@R) e 1(x(2))N...nEn)e 1(x(n)))
plx(n+2px(n)la P < 1(x0) Ao () < 1))

The conditional expected value, or mean value, of a continuous random variable &(n+1) conditioned
on the set of measurements X(n) is defined as

{x\x _[xp X|X(n ))

— "o B—
e - v [ LI
* * »
R o ¢
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@ ﬁ

Minimum Mean-Square Error

The mean value of the squared difference between the random variable x and the estimate of x (mean-
square error - MSE) is given by

E{x—) |= E{(x— B+ (Ex)- %)= Ex— B} 20— ENEX}- %)+ (Ex) -2 |=
= E{x—E{f |- 2(E{x}- RE{(x~ Ef+ E{EX)-XF [= 07 -0+ (E{x}- %

According to the fundamental theorem of the estimation theory the minimum value of MSE is reached
If the estimate of x is equal to the mean value of x

E{x}-x=0 = ™ =E{x} and cizE{(x—f()z}

The variance of MMSE is the same as the variance of the random variable itself. Both the definitions,
MMSE and the variance of MSE, may be written as

+00

KMMSE — _[x p(x)d X PMMSE — &2 :E{(x—i)z}: I(X—X)Z p(x)d x

The estimate of x conditioned on X(n) and the minimum value of the mean square error

+00

KMMSE = E{x | X} = J‘x p(x|X)dx  P"E =g? = E{(x— R)Z\X(n)}: j(x— %) p(x|X(n))d x

—0o0

The minimum of the MSE variance can be found by taking the derivative of the function with

respect to x and setting that value to 0.
Ef ’\ﬁr J M- 59
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Kalman filter - Process and measurement models

The Kalman filter addresses the general problem of estimating the n x 1 state vector x of a discrete
time process that is governed by difference process equation

x(k)= Ak x(k —1)+ B(k )u(k )+ v, (k)

with the measurement (observation) vector y that is defined by a measurement equation,
describing the observation as

y(k)=H(k)x(k)+v,(k)
where random variables v, a v, represent the process and measurement noise (respectively). It is

assumed that the random variables are independent of each other and with normal probability
distribution

p(v;) ~ N(0,Q(k))  p(v,)~ N(0,R(k))
The correlation matrices are defined as
T _ Q(n)’ n=Kk T _ R(n)’ n=Kk
O P A VSIS M
E{v,(nvI(k)}=0 forallnandk

The n x nmatrix A is the state transition model which is applied to the previous state x(k -1), the
matrix B is the control-input model which is applied to the control vector u(k) and the m x n matrix
H is the observation model which maps the true state space into the observed space.

B o 7 e &
| 4
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0} Kalman filter - Evolution of states in time

The evolution of states in time is shown in the following diagram

The various matrices are constant with time, and thus the designation of time steps is dropped

The Kalman filter may be considered as a recursive estimator. This means that only the estimated
state from the previous time step and the current measurement are needed to compute the estimate

for the current state.
Ef ’\ﬁr g Y 61
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Kalman filter - Basic notation

Let a special notation be introduced. The term f((n\m) represents the estimate of x at time n given
observations up to, and including at time m.
Let a set Y (k) of measurements (observations) be given by a sequence of samples y(k)

Y(k)={y(i)1<i<k}
An a priori state estimate f((k\k —1) at step k is given by knowledge of the process prior to step k
and an a posteriory state estimate R(k\k) at step k is given by measurement y(k) at step k

For this set Y(n) of measurements it is possible to define
K(k[k —1)= Efx(k)[ Y (k -2)} The a priori state estimate
%(k|k )= Efx(K)[ Y (k)} The a posteriori state estimate

The a priori estimate error covariance is given by
P(klk 1) = cov{x(k)—%(k|k —1))= E {x(k)— %(klk ~1))x(k)- &(Kk ~1)] |

We can then define the a posteriori error covariance matrix (a measure of the estimated accuracy
of the state estimate) as

P (k)= cov{x(k) &(k|k )= E (k) (kK )\x(k)- (k)T |

The covariance matrices are symmetric PT(k | k) = P(k | k), PT(k | k -1) = P(k | k - 1).

. > gy [[TLIITTT]
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@ ﬁ

Time and measurement update

The process model updates the estimate of the next value of x

P(x(k)y(@).....y(k)) = P(x(k +1)|y(@)..... y(k))
As it was stated before the estimate for the minimum value of MSE is as follows

%(k +1k )= E{AKx(K)+B(K)u(k)+ v, (k)} = Ak)E{x(k)}+B(k)u(k)+0 =
= A(K)%(k|k )+ B(K)u(k)
Note, that the estimation of the state vector x at step k +1 does not reflect the new observation

at step k+1.
The new measurement (observation) updates the probability function parameters

P(x(k)1y(L).... y(k =1)) > P(x(k) y(L)..... y(k))

The a priori estimate error covariance (taken before the new observation) is updated
P(k|k —1)= cov(x(k) - X(k|k —1))=
= cov(A(k —~1)x(k —1)+ B(k —1)u(k 1)+ v, (k —1)— %(k|k —1))=
= A(k —1)cov(x(k —1))AT (k —1)+cov(v,(k —1)) =
= A(k—2)P(k ~k ~1)AT (k 1)+ Q(k —1)
After substituting k+1— K it is obtained
P(k +1k )= A(k)P(k|k )AT (k)+Q(k)

. > gy [[TLIITTT]
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Innovation of measurement residual

The difference between an actual measurement y(k) and a measurement prediction )A’(k‘k —1)
at step k is given by knowledge of the process prior to step k is called as an innovation of

measurement residual
alk)=y(k)-5(kk 1)

where the estimate of the measurement prediction is as follows
J(klk —1)= Efy(k )Y (k -1)} = EH(k )x(k)+ v, (k] Y (k —1)} = H(k)x(k|k —1)
The innovation a(k) has several important properties
1) The innovation a(k) , associated with the observed random variable y(k) is orthogonal to the past
observations y(1), y(2), y(3), ..., y(k -1), as shown
E{a(k)y(i)}=0, 1<i<k-1
2) The innovation a(1) , a(1) , a(2), ..., a(k) are orthogonal to each other, as shown
E{a(k)a(i)j=0, 1<i<k-1 The innovation process is white.
3) There is one-to-one correspondence between the observed data [y(1), y(2), y(3), ..., y(k)] and the

innovations [a(1) , a(2) , a(3), ..., a(k)], in that the one sequence may be obtained from the other
by means the causal and causally invertible filter without any loss of information.

Using the Gram/Schmidt orthogonalization procedure it is possible to prove this property. The
procedure assumes that the observations [y(1), y(2), y(3), ..., y(k)] are linearly independent

in an algebraic sense.
_ E\J‘FIOPSK UNIE U? I
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We first put

a(t)=y(1)

Next we put
a(2)=y(2)+a,,y(1)
The coefficient a, ; is chosen such that the innovation o(1) and o(1) are orthogonal
E{e(2)e@)}={y(2)+a,yOhO)=0 = a,=-Ely)yQ)yE{yQ)y)
Next we put
a(3)=y(3)+2,,y(2)+a,,y(1)

In general, we may transform of the observed data [y(1), y(2), y(3), ..., y¥(k)] and the innovations
[a(1), a(2), a(3), ..., (k)] by writing

al)] [ 1 0 .. 0][y@®]
a2)| | a1 .. 0]y

al(k) (Qgr {gpp o L y(k)

The matrix is nonsingular since its determinant is equal to one. The transformation is therefore
reversible.
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© Innovation of measurement residual — cont’d 2

Now we turn attention to the a posteriori state estimate f((k\k) . 1T x(Kk) is a vector n x 1 then
the diagonal elements of the covariance matrix P(k|k) are variances of the difference between the true
value of the components of the state vector x and its a posteriori estimate given the observed data

[y(1), ¥(2), ¥(3), .., Y(K)]. - _

O,
Pkk)=| . = tr(P(kk))=o0? +..+ o
S,
It is obvious that the smaller the trace of the matrix P(k|k), the more accurate (less variance) estimate
of the a posteriori state estimate X(k|k) given the observed data [y(1), y(2), y(3), -.. , y(K)].

Let the a posteriori state estimate to be the minimum mean-square estimation of x(k) given
the observed data [a(1) , a(2) , a(3) , ..., a(k)] as well due to the correspondence between
the observed data [y(1), y(2), y(3), ..., y(k)] and the innovations [a(1) , a(2) , a(3), ..., a(K)].
The minimum mean-square estimation of x(k) given the observed data may be defined as a
linear combination of the innovations [a(1) , a(2) , a(3), ..., a(k)]

k
K(kk)= > b0
As the innovation are orthogonal to gach other the coefficient b(i) may be determined by
b(i)= Exk)ali)l oy

~ Efa(i)a(i)}’
. E\J'FIPSKUNIE Ef
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© Innovation of measurement residual — cont’d 3

The recursive form for the linear combination of innovations
k-1
KKk )= Zb (i)er(i)+b(k)er(k)

f((k ~1k - 1)+b(k) (k)

£ (o)
)= E el

This is a reason that the a posteriori state estimate f((k\k) can be computed as a linear combination
of an a priori estimate ﬁ(k‘k _1) and the innovation of measurement residual as shown below

(k[ )= x(k|k —1)+ K (k)a(k)=
= (K ~1)+ K(k)(y (k) H(k )kl ~ )

where K(Kk) is a Kalman gain replacing the coefficient b(k).

where

The Kalman gain is a tuning button which adjust the process of filtration to trace variation of the
system state to minimize the difference between the true state and its estimation.

The optimal Kalman gain is given by solving of the matrix equation resulting from the zero valu of
the first partial derivative with respect to the Kalman gain 8tr(P(k\k))

oK (k)

. e gy [[TLIITTT]
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Process noise Measurement noise A priori statistics Q, R

\L System state \L Observations \L State estimate
X(K K X(klk
Process (k) > Measurement y(k) S| Kalman filter ( ‘ ) >
equation equation

The time update equations can also be considered as predictor equations, while the measurement
update equations can be considered as corrector equations. The final estimation algorithm
resembles that of a predictor-corrector algorithm for solving numerical problems as shown below

Time update Measurement update
“Predict” “Correct”

=

* ok s [TTILIITTT
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Kalman filter — cont’'d 1

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the state
estimate from the previous timestep to produce an estimate of the state at the current timestep. This
predicted state estimate is also known as the a priori state estimate because, although it is an estimate
of the state at the current timestep, it does not include observation information from the current
timestep. In the update phase, the current a priori prediction is combined with current observation
information to refine the state estimate. This improved estimate is termed the a posteriori state
estimate.

Predict phase  (k|k —1)= A(k)%(k ~1k —1)+B(k)u(k)  Predicted (a priori) state
P(k\k ~1)= Ak)P(k -1k ~1)AT(k)+Q(k) Predicted (a priori) estimate covariance

Update phase

a(k)
()

y(k)-H(k)x(k[k 1) Innovation of measurement residual

H(k)P (k\k 1)H" (k)+R(k) Innovation (or residual) covariance S(k)=cov(a(k))
= P(klk ~1)H (k)S (k) Optimal Kalman gain

(k\k) R(k[k —1)+ K( Ja(k) Updated (a posteriori) state estimate

P(kjk)=(E-K(k)H(k))P(kk —1) ~Updated (a posteriori) estimate covariance
(E is an identity or unit matrix)

*‘ Z.. L—
* * \ W4 .
*
* *
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Derivations — a posteriori estimate covariance

matrix

If the model is accurate, and the values for ?(0‘0) and P(O‘O) accurately reflect the distribution of
the initial state values, then the following invariants are preserved: (all estimates have mean error

zero) Ex(k)-&(kk )} = Efx(k)-&(k|k ~1)} =0

E{z(k);=0 where E{...}is the expected (mean) value.
Deriving the a posteriori estimate covariance matrix

P(k|k )= cov(x(k ) (k|k))
K

-

o
o—
=

T

-
=
=

o
=
=

~
~
~— — — — — ~—

(
(
(
(
(
(

-

kik
P(kk)=(E - K(k)H(K))P(k|k ~1)E - K(K)H(K))" + K(K)R(K)K (k)
http://en.wikipedia.org/wiki/Kalman_filter
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Derivations — the Kalman gain

The Kalman filter is a minimum mean-square error estimator of the error in the a posteriori state
estimation, that an objective function is as follows

E{‘x(k)—&(k\k]z}—) min
This is equivalent to minimizing the trace of the a posteriori estimate covariance matrix P(k | k).
By expanding out the terms in the equation above and collecting, we obtain
P(k[k)=P(kk —1)- K (k)H(k)P(k|k —1)- P(k|k —L)HT (K )K™ (k )+
+K(kK)YHK)P(k|k —1HT (k)+R(K))K (k)
= P(k|k 1) K(k)H()P(k|k —1)- P(k|k —L)HT (kK (k )+ K (k)S(k )KT (k)

The minimum mean-square error corresponds to trace of matrix P(k | k). The trace is minimized
when the matrix derivative is zero atr(P(k\k))

oK (k)
Solution of the previous matrix equation results

= —2(H(k)P(k[k -1))" +2K(k)s(k)=0

in the formula for the Kalman gain /atr(AC) _c7 Notefor AC to be
K(k)s(k)=(H(k)P(kk-1) =P(kk-)HT(k) | oA square, dim A = dim CT
(=Pl -DH" (k)5 () P(ABAT)_ppg (whereBis
symmetric)
http://en.wikipedia.org/wiki/Kalman_filter - J
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0] Simplification of the a posteriori error

covariance formula
Multiplying both sides of the Kalman gain formula

K(k)S(k)=P(k|k —1)HT (k)
on the right by KT(k), we get

K(K)S(k)K™ (k)= P(k|k ~L)HT (k)K" (k)
When analyzing the expanded formula for the a posteriori error covariance

P(k|k )= P(k[k —1)— K(k)H(k)P(k|k —1)— P(k|k —1)H™ (kKT (k )+ K (k)S(k KT (k)
we find that the last two terms cancel out

P(kk)=P(k|k —1)- K(k)H(K)P(k|k —1)= (E - K (K H(k))P(k|k —2)

This formula is computationally cheaper and thus nearly always used in practice, but is only correct
for the optimal gain. If arithmetic precision is unusually low causing problems with numerical
stability, or if a non-optimal Kalman gain is deliberately used, this simplification cannot be applied;
the a posteriori error covariance formula as derived above must be used.

http://en.wikipedia.org/wiki/Kalman_filter
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® Kalman filter - Algorithm

l Initial estimate for

N-4-1) PEE-) N

Predict phase (starting phase for k = 0) Measurement Update phase (Correct)

1) Project the state ahead
%(k[k —1)= A(Kk)x(k —1k -1)+ B(k )u(k)

1) Compute the Kalman gain
K(k)=P(kk —1)H" (k)
(HK)P(k|k —1)H™ (k)+ R(k))"
2) Update estimate with measurement y(k)
K(k[k)= x(k|k —1)+
KKyl HK Rk 1)
3) Update the error covariance
Pk )= (€ - K(OH(K )Pl 1)
k+1—>KkK

2) Project the error covariance ahead

P(klk -1)= A(k)P(k -2k ~1)AT (k)+ Q(k)

http://en.wikipedia.org/wiki/Kalman_filter
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Estimating a random constant with the use of

Kalman filter

We assume that the measurement process is governed by difference equation

x(k +1)=x(k)+v,(k) arandom walk

y(k) = x(k)+v, (k)
Algorithm
Initial values for process noise covariance Q
and measurement noise covariance R
Initial estimate for i(—ﬂ—l) and P(—ﬂ—l)
0—Kk
)“((k\k—l):f((k—ﬂk—l) : predict
P(kjk -1)=P(k -1k 1)+ Q
K(k)=P(k|k ~1)(P(k[k —1)+ R)™ ; update
Input y(k)
k) = #lk ~1h+ K )y~ ~1)
P(klk)= (1 (k))P(k\k —1)
output %(k|k ), K (k), P(k[k)
k+1—>k
\_/ See [Welch & Bishop]

Let’s assume that from experience we
know that the true value of the random
constant has a standard normal
probability distribution, so we will
“seed” our filter with the guess that the
constant is zero.

Similarly we need to choose an initial
value for x. If we were absolutely certain
that our initial state estimate x was correct,
we would let P(-1]-1) = 0. However given
the uncertainty in our initial estimate for x,
choosing would cause the filter to always
believe this value. As it turns out, the
alternative choice is not critical. We could
choose almost any and the filter would
eventually converge.

*‘ Z.. L—
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X(1)

® Starting the Kalman filter

Let a random constant (zero) be measured repeatedly in a time sequence with an error of the unity
covariance. We assume that the measurement process is governed by equation

x(k+1)=x(k), y(k)=x(k)+v,(k

The initial values are as follows: Q =1, R = 1000, initial guess of the state is 0 and initial guess
of a posteriori error covariance is 1 as well
3 ;

The covariance of the measurement noise v,(k) is equal to 1 while covariance of v,(k) is equal to O
Time History : Noise

Kalman Filter : Error Covariance
40 , \
72 T S S S S
. 14 [ ' """"" l ) ) TR '
< o N I ‘ YT IVEML 20 4
e ELE N RN AR R N 1 N R A A
24 , :
-3 : . . - ' ' E
0,0 0,2 0,4 0,6 0,8 1,0 0,4 0,6 0,8 1,0
Time [S] Tlme [S]
Kalman Filter : State Estimate 0.04 Kalman Filter ;: Gain
0,03 -
0,02 A
0,01 ¢,
0,00 7 ; ;
0,0 0,2 0,4 0,6

*
*oak
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® Example for estimating a random constant

ADC wideband noise due to the thermal effect Grounded-input histogram

0 Statistics : datal : Col 1

Time History : datal : Col 1

482
481
480
479
478
477
476
475 1

Number

k
Cumulative difference Y (Y(i)—x(i))
i=0
Difference.l :datal: Kalma.n Filter (Col 1)
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® Position and velocity of vehicle

Let the position of a vehicle be measured every At seconds, but these measurements are imprecise;
we want to maintain a model of where the truck is and what its velocity is. The position and velocity
of the truck is described by the linear state space

(k) {X(k)}

(k)
where X is the position and X is the velocity. It is assumed that between the (k — 1)th and kth timestep

the vehicle undergoes a constant acceleration of a(k) that is normally distributed, p(a(k)) ~ N (0, ci) :
From Newton's laws of motion it is possible to conclude that

x(k){(l) ﬂ x(k—l){Azt/Z}a(k) (k)= Ax(k-1)1Gak) = x(K)=Ax(k-1)+v,K)

h (k) ~ N(O, 4 ’
where p(v,(k)) ~ N(0,Q) 0-GG’ 2_{At /4 At /2}02

a a

TIAt2 At

At each time step, a noisy measurement of the true position y(k) of the truck is made. Let us suppose
the measurement noise v, (k) is also normally distributed, p(V, (k)) ~N (0, Gi)

y(k)=[t 0]x(k)+v,(k) = ylk)=Hx(k)+v,(k)

where R=E{v, (kW] (k)}=[c?] )A((_u_l)zm P(_]J_l){o o}
0

The initial starting state of the vehicle with perfect precision 0 0

. e gy [[TLIITTT]
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The Kalman-Bucy filter is a continuous time version of the Kalman filter. A mathematical model is
of the state space type

Sx(t) = A+ v, 1)
y(t)=H(Ex(t)+v.(t)

where the covariances of the noise terms Vv, (t) and v, (t) are given by Q(t) and R(t), respectively.

The filter consists of two differential equations, one for the state estimate and one for the covariance

(1) = AR+ KO- HEXO)

t
—P(t)=At)P(t)+ P(t)A" (t)+Q(t)- K(t)R(t)K ()

where the Kalman gain is given by

K(t)=PHHT(HR™(t)

LT ﬁ&llumﬂ
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® Example - Inertial navigation system (1 DOF)

The continuous time Kalman filter used for planar motion Wlth a single bias compensated gyro
Unknown (hidden) quantities —) <€ Measured = : (— Estimation

quantities
Error n,
Angle sensor l - :
True - 0 = Angle

Accelerometers _>O_\_> : o
| —

Kalman filter >
b
Drift-rate bias

Gyroscope

(4

m

Angular velocity sensor

Error n

r

b

True

Drift-rate bias

Continuous time t, angle ®, angular velocity o, drift-rate bias b
Measured quantities ®,, o,

Unknown quantities Oe, Orrye
Gauss white-noise error covariances E{(nr(t))z}: N,, E{(ng (t))z}: N,
See [Roumeliotis & Sukhatme & Bekey]
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® Kalman Filter — Process equation

®True = (Dm + bTrue + nr d ®True 0 1 ®True 1 r]r 2
: — = Ein,(t)’ =N
o " = oo ol o) ori-.

The term o, is like a control input u to the system and needs to be eliminated. This can be done
either to add it to the state and estimate it or to formulate the estimation algorithm as an Indirect
Kalman filter since the orientation error is estimated instead of directly estimating orientation. The
orientation estimate obtained by integrating the gyro signal (assuming constant bias b;) is given by

O, =o, +b d{e| [0 1][e;] |1
1 m 1 — o — + (Dm
05 = Sl olla o

Subtracting both the models we obtain A® =b; +n,

A mathematical model and a matrix form corresponding to the block schema on the previous slide

The variable A® is the error in orientation and Ab is the bias error. Subtracting the equations for

b, and b; the bias error can be written as b =n,, . These error propagation equations for the
Indirect (error state) Kalman filter can be rearranged as

alwl o ol ]

A®
or in a more compact formas ........ AX = {Ab} — aax = AAX+nN

. > gy [[TLIITTT]
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INVESTICE DO ROZVOJE VZDELAVANI

We assume that the measurement provided to the Indirect Kalman filter is
Ay=0_ -0,=0 Ng — 0, =AO+ny

where O, is available through the gyro signal integration and ®,, , is the absolute orientation
measurement. This equation in matrix form becomes

True

A©®
Ay =1 O]|:Ab:|+n® = Ay=HAx+n,

The continuous Kalman filter equation for the covariance P is
- T Tp-1 N, 0
P=AP+PAT+Q-PH'R'HP  where Q=| ' | R=[N,]

The Kalman gain at the steady-state operation

P=0 = KPHTRllJ(NrHAJ%) N@]{kl}

The estimate propagation equation with the added correction is as follows

22 e

BRER:\Cr 7 e
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Substituting the error state estimates

A®=0-0, Ab=b-b
we have

P—0. 11le-0.| [k A
a4]0-6;)_ 0 =01, % (Ay—A@)
dt| b-b, | [0 OJ| b=b | |k,

Separating the estimated and integrated quantities results in

416 10 116 + N (Ay—

dt| b 0 0 b_ K,
Notice that A A

Ay_A®:(®m_®i)_(®_®i):

A@)i[iﬁﬂﬁ )

®, -0

After substitution of the term resulting from integration we get

HEHHEE

¢ 0,0

The Laplace transform of the angle estimate results in

Bls)e— S Dals),

k;s +K,

0,(5) F(s)=o—

s? +

s> +ks+k, s

INVESTICE DO ROZVOJE VZDELAVANI

k;s+k, s2+ks+k,

9 !E!fPK§$r
* *
* *
* *
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The previous formula can be rewritten as

6(s)=F(5) 228, 1_F(s)) o, 5)

S\
integration

After replacing s = jo we get a frequency response

dB

0 —
Roll-off:
+20 dB/dec **1

+40 dB/dec ~

See [Roumeliotis & Sukhatme & Bekey]
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Extended Kalman Filter

Let us assume that the process again has a state vector x, but that the process is now governed
by the non-linear stochastic difference equation

x(k)= f(x(k~1)u(k) v, (k))
with the measurement (observation) vector y that is defined by a measurement equation,
describing the observation as

y(k)=h(x(k), v, (k) o
where random variables v, a v, represent the process and measurement noise (respectively). It is
assumed that the random variables are independent of each other and with normal probability

distribution.
In practice of course one does not know the individual values of the noise and at each time

step. However, one can approximate the state and measurement vector without them as

X(k)= f(x(k-1),u(k)0)
y(k)=h(x(k)0)

After linearization we get w(k

)
(k)
y(k) = 9(k)+H(x(k)-&(k))+Vv,(k)
) 0

of, (%(k ), u(k),0 W, _ (&K u(k)o) |, _ o (%(k)0) |, _ oh(%(k)O)
OX, oV, . " ox. M oV, |

i o~ .-'
* * »
* * .
*‘**i .
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where Au. —

See [Welch & Bishop]
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Extended Kalman filter - Algorithm

l Initial estimate for

N-4-1) PEE-) N

Predict phase (starting phase for k = 0)

1) Project the state ahead

%(klk —1)= f (x(k -1k —1), u(k))

2) Project the error covariance ahead
P(kjk —1)= Ak )P(k —1k —2)AT (k) +

+W(k)Q(k)W' (k)

http://en.wikipedia.org/wiki/Kalman_filter

Measurement Update phase (Correct)

1) Compute the Kalman gain
K(k)=P(klk —1)HT (k)
(H)P (i ~2)HT i)+ VIOR (VT (k)
2) Update estimate with measurement y(k)
R(k|k) = x(k|k —1)+

+K(K)(y(k)-h(x(k[k -1))0)
3) Update the error covariance
P(Kk)=(E - K(k)H(K)P(KKk -1
k+1—>KkK

. e gy [[TLIITTT]
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Havard Vold, Ph.D. *1947

VOLD-KALMAN ORDER TRACKING
FILTER
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Kalman filter vs. Vold-Kalman filter

———
- ~

The Kalman filter __--"""" o TTes ~< - -~
ke Process equation Sl .- Measurement >~
’ N 4 H \
// X(n+1) X(n)\ ,/ equatlon y(n)\\
/ \Y; \
/ _ A
I Vi (n) 2'E ,|> H(n) \I
\ 1)
\ ¥ I'
\ /7 \
\\ // \\ ,/
S An+1n) ———~ N v,(n) It
~ - ~ -
where 0 @ TT=—e___o-=---" S _ - -

V,(N) is uncorrelated excitation vector of process equation
Vv, () isuncorrelated excitation vector of measurement equation

Input parameters: matrix A defining a process equation, matrix H defining measurement equation,
covariance matrices V,(/7) and Vv, (/)

The Vold-Kalman filter
Input parameters: structural equation as an equivalent of the process equation,

data equation as an equivalent of the measurement equation, and

relationship between the norm of both the excitation vectors.

-Ef%r y M- 87
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0} Software for the Vold-Kalman order filtration

The Vold-Kalman order filter is a bandpass filter, the center frequency of which can be continuously
changed according to the instantaneous rotational frequency of a machine. The Vold-Kalman filter
tracks the spectrum components of the input signal, called as orders, the frequency of which are
multiples of the mentioned rotational frequency. It is assumed that the rotational frequency is defined
for each sample of the input signal . Because the rotational frequency is usually measured with the use
of a tacho signal producing the average rotational speed during a time interval, for estimating the
instantaneous value of RPM the cubic spline curve fitting method has to be used for example.

The Wold-Kalman filter was developed in two generations. The output of the first generation is the
filtered signal while the output of the second one is the envelope of the filtered signal.

The second generation only

= Briel & Kjer, LabShop PULSE, Software Type 7703

= MTS Systems Corporation, I-DEAS

The first and second generation
= VSB - Technical University of Ostrava
e M-functions in MATLAB including crossing orders (open code)
» Signal Analyzer, indor software (VB6 - without crossing orders)
=  Axiom-EduTech Sweden & VSB — TU Ostrava, M-functions in MATLAB (open code)

See [Vold & Leuridan]
Ef %%T J M- 88
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0] Data equation (eq. to Kalman’s measurement
equation)

The data equation decomposes a signal y(n), where n =1,..., N, into two parts: the filter output

and an error term n(n).
Data equations for extraction of one component (P = 1), which is modeled by a structural equation

The first generation The second generation T —sampling interval
An)=x(n)+n(n) | An)=x(n)exp(jo(n)+n(n) ©(Nn)=> oli)T,
. . i=0
X(n) - filter output as a real signal ®(n) — signal phase, o(n) — angular frequency
X(n) — complex envelope as the filter output
Data equations for extraction of P signal components, each of them is modeled by individual structural

equation ()= Zpl:X‘ M)+n() | yi)=3 x(n)exp(j©,()+n(n)

=1
The vector form of the input and output data

Y =[y@... YN n=[n@)..n(N )", % =[x (). x; (NI, C; = diag{exp(j©;(1)).... exp(j©;(N))}

n

The matrix form of data equations -
©;(n)=> o,(i)T
y— (X, +.+Xp ) =1 | y—(Cx, +...+CpX, ) =1 = ;
To asses difference between y(n) and x;(n), the square of the error vector norm is introduced
nTn = (yT _XI _.“_XL)(y_Xl _"'_XP) | an = (yT —XIC;| —...—XLCE )(y—Clxl—...—Cpxp)
See [Vold & Leuridan] The matrix C is the unit matrix for the first generation filtr.

*‘ Z.. L—
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0] Solution of the homogenous difference

equations

The structural equation is a generator of a signal

The first generation of the Vold-Kalman order filter
x(n)—c(n)x(n—1)+x(n-2)=0

The solution of the homogeneous difference equation
x(n)=az! +bz), c(n)=2cos(wT;)

Z, =17, complex conjugate roots of a characteristic equation

x(n)= A, cos(w nT, + o)

Approximation by a harmonic function

— rotational speed (interpolated),

Ts—sampling interval

Zl_

p(jst)

Unit circle

N
N2

Z,

=exp(- joT;)

The second generation for the one-pole filter
x(n)-x(n-1)=0 = z=1

n

X(n): Z — x(n):l

Piecewise approximation by a constant

T?e second generation for the two-pole filter
)=2x(n=1)+x(n - 25:0 = z,=1 double root

x(n)=az +bnz! = x(n)=a+cnT,, (cTs =b)

Piecewise approximation by a strait line

Unit circle

Z =

o
/

Re

1

EVROPSKA UNIE el
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Structural equation (eq. to Kalman’s process

equation)
The first generation of the Vold-Kalman order filter To simplify formulas the index
x(n)— 2cos(mT, )x(n _1)+ x(n — 2) _ g(n) of the signal component is omited.

c(n)=2cos(wT;)

o — rotational speed (interpolated),
X(n) — filtered signal, &(n) — error term, N —sample number, T — sampling interval

The second generation

x(n)-x(n-1)=&(n) ... one-pole filter
x(n)-2x(n-1)+ x(n-2) = &(n) ... two-pole filter
x(n)=3x(n—1)+3x(n—2)-x(n-3) = &(n) ... three-pole filter
x(n)—4x(n—1)+6x(n—2)—4x(n-3)+x(n—4)=g(n) ... four-pole filter

The matrix form of the structural equation for the i-th component is as follows

A X =g

To asses the error term g(n), as an exciting function for the structural function, the sum of the error
term square (the square of the vector norm) is introduced

le. =x ATA X A, =A ... for the second generation filter

o > a® [T
* Pl 1 [
* * ™ |
* * —
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The first generation of the Vold-Kalman order filter

x(n)—c(n)x(n—1)+x(n-2)=&(n)

n=3,..N:

1 -¢ 1 O 0
0O 1 -c¢ 1 0
0 0 0O O 1

The second generation, the example for the two-pole filter
n=3..,N: x(n)-2x(n-1)+x(n—-2)=&(n)

A"

1 -2
0 1
0 0

1 O 0
-2 1 0
0 O 1

0

0

07

0

AL |
A2)

XN)]

2)

INVESTICE DO ROZVOJE VZDELAVANI

Sparse band matrix

A

N-2 rows

0

> AX=¢

N columns

L ]
-i“*i- I ' !
* * ..
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0} Global solution

The unknown vector x is composed from N samples. The count of the structural and data equations is
greater than the count of unknown quantities. The system of the linear equations is over-determined.
To find a solution of the equations, an objective function is added to reach the required relationship
between influence of the data and structural equations on the result. Minimizing the objective function
can be done by putting the first derivative with respect to the unknown vector to zero.

The objective function is as follows The solution is as follows
J=r€’e+n'n— min The first generation filter
where 0 .
r — weighting coefficient ax 2r’ATAX+2(x-y)=0
AT A .
x=(r’ATA+E)y
0 N 0 — The second generation filter
0J
0 0 —=(r’ATA+E Jx-C"y =0
TA ... a symmetric matrix ox
A'A ... asy x=(r2ATA+E)_1CHy B = RRATA+E
70 Adding unity to the matrix main diagonal turns
B / a symmetric matrix to the Symmetric Positive Definite
- 4 matrix (SPD)
0 See [Ttima,2005]

. > gy [[TLIITTT]
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1) The high selectivity of the Vold-Kalman filter requires to assign a value of the weighting
coefficient r to hundreds or even thousands

2) Elements of ATA are as follows

The first generation

1 —C,

—-c, ¢+l

ATA=| 1 —¢ —c,
0 1

<2

1
—C -G,
CZ+2
—C,— G

0
1

_%_%

cZ+2

The second generation (3-pole filter)

ATA =

r’ATA is generally only a positive semidefinite matrix, adding the unity matrix E turns it

to the positive definite matrix

INVESTICE DO ROZVOJE VZDELAVANI
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INVESTICE DO ROZVOJE VZDELAVANI

The second generation filter of the Vold-Kalman order filter

The value of the weighting coefficient r should be limited not to lost the effect of adding the unit to
the main matrix diagonal by rounding due to the limit number of bits (double precision number is
assumed) for saving quantities in a computer memory

Number p=1 p=2 p=3 p=4
of poles

(rPATA); ; 2r2 6r? 20r2 70r2
Fyax = 7x106 4x10° 2x106 1.1x1068
100Af > 7x10%% 0.025% 0.5% 2%

The number of poles is designated as p and the relative bandwidth is definedas A f =2f,, /f,

(7]

QL 4

(@]

o

§ 3

= 2 HEEEHE: EHE- BNE- EHE-EHE B

o

o 1 HIR R b HERRE HIRHE R T HEFRREH - IR = B R

S 1E6 1ES 1E4 1E3 1E2 1E1 1E+0 1B+l 1E+2
See [Tima,2005] Range of the pass-band filter bandwidth in %
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0] Cholesky factorization for solution of the linear
| equation system

B=LU L=UT U={u;} L,U triangular matrices
D 0 0 0 LUx=y
3\\ — * Substitution U x = z
0 0 0 givesLz=y

z=Lly => x=Ulz
The algorithm for the 1%t generation filter

u,=hb, /U11 Fot the first generation filter the matrices
' — L and U have 3 non-zero diagonals
Uy =+ b,
U, , = bz,z - U12,2
j=3,.. N The Cholesky factorization of a positive
Ui, = j—2,j/Uj—2,j—2 definite matrix saves the band property of

resulting triangular matrices
Uji;= (b/—l j Ui U/—z,/)/ Ujs ja

\/ 2
/1/ /2,/'

o > a® [T
* Pl 1 [
* * ™ |
* * —
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0] Solution of the linear equation system as a
filtration process

Forward reduction Lz=y (L=UT) Backward substitution U x =z
Z, = yl/ul,l Xy = Zl/uN,N
Z, = (Y2 _ul,ZZl)/UZ,Z Xnog = (ZN—Z _uN—l,NXN )/UN—l,N—l
j=p+1..,N j=N-(p+1)..1  (reverse order)
2; =) —Ujaj Zja—Yjp,; zj_p)/uj,j X, =(z, _uj,j+1xj+1"-‘uj,j+pxj+p)/uj,j
Steady-state values ... U, —U; ;, U —>U; 5, .. Uy —>U;

The transfer functions of the p-order IIR filter in the Z-transform
Z(z 1 X(z 1
HF(z)z ( ): - — HB(Z): ( ): p
Y(z) ugtuzt+.+uz Z(z) Ug+Uz+..+U,Z

The forward reduction and backward substitution results in the zero-phase digital filter, which is
analogous to the filtfilt function in Matlab

Y(2) 2(2) X(2)

——{ Forward reduction He(z) ——»| Backward substitution Hg(z) |——»

. e gy [[TLIITTT]
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0] The first generation VK-filter, the steady-state
values of the filter coefficients

The values of the matrix elements B =r’ATA+E are given by
b, =b,  =r?(2+c¢?)+1, b =b, ,=b ,=-2cr? b,=b ,=b

J12

The Cholesky factorization of B resultsin u, =b,/u,, u, =(b, —uu,)/u,, U,= \/bo —u/

uu, =b,, uu, +uu,="b, u;+u’+u’=h,
By using the substitution e ' = cos(Q)- jsin(Q) it is obtained
‘H (ejgr —T 2, 2, .2 -
uZ +u? +u? + 2(uyu, +u,u, )cos(Q)+ 2u,u, cos(202)
The 3-dB bandwidth A f =2(f, — f.)/f; of the filters H-(z) and Hg(z), connected in series,
may be obtained by substitutions u,u, =h,, u,u, +uu, =b, and uZ-+u’+u’ =b,
b, +2b, cos(Q)+2b, cos(2Q) 2
Solution of the previous equation gives (Ts— the sampling interval, o — the filter central frequency)

A f :%(arccos [cos(ooTS) V2 -1 / ZVJ arccos [COS (T) / ZrD

Assuming Q= .T, +AQ, cos(AQ) ~1,sin(AQ)~ AQ  we obtain  r ~—— V21
w8 T 1~ (cos(ocT, )f

. e gy [[TLIITTT]
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The second generation VK-filter, the steady-state
values of the filter coefficients for the one-pole filter

The values of the matrix elements B=r?ATA+E are given by

b, =b; ;= 2r*+1, b, = b, =0 4= —r?

The Cholesky factorization of the matrix B results in
2
Uy =05 /Upaja, Uy = \/bj.j —Uja
For the steady-state values of the filter coefficients we obtain

2
ulzbl/UO’ Uy = bO_ul

= U, =b, uZ+ul=Dh,
The 3-dB bandwidth of two one-pole low pass in series filter results from the value of the frequency

response 2
‘G(ejQ)LP . ‘ =1

B u, +u1e“'9‘ 2

Solution gives a value of the weighting coefficient r as a function of the relative bandwidth

J2-1

r =
2(1— cos(rA f))

The relative bandwidth of the low pass filter is equal to A f =2f,, /f,

B o 7 e o
| 4

‘ 2
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0] Relationship between the filter bandwidth
and the weighting coefficient

The first generation Tg - the sampling interval,
1 V2 -1 o — the filter central frequency,
I~ Af —the relative bandwidth
At \/1_ (COS ((’OCTS ))2
The second generation AT = Z(fH - fs)/ fs
Number Weighting coefficient r as the exact function of the filter Approximation
of poles | relative bandwidth A f
I V2-1 - . 0-2048624
~\2(1—cos(naf)) Af
2 J2-1 0.0652097315
r = r ~ 2
6—8cos(rA f )+ 2cos(2nA f) Af
3 J2-1 - 0020756902
r = ~
20— 30cos(nA f )+12cos(2rnA f )—2cos(3nA f ) Af°
cos(nA f )z (1—(nA f )2/2) The relative bandwidth is definedas A f =2f, /f

See [Ttma2005]
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First generation

r*r*A**A +speye(N,N);
AA\y;

function x = MyVoldKalmanl(y,dt,f,r) Sparse matrix functions
) speye — i1dentity matrix
c = 2*cos(2*pi*f*dt); ) ) )
N = max(size(y)); N2 = N-2; spdiags — diagonal matrix
e = ones(Nz2,1); \ - left matrix divide
A = spdiags([e -2*c(1:N2) e],0:2,N2,N);
AA
X

Second generation
function x = MyVoldKalman2(y,dt,f,r,filtord)

N = max(size(y));
iT filtord==1, NR = N-2; else NR = N-3; end;
e = ones(NR,1);
it filtord==1,

A = spdiags(Je —2*e €],0:2,NR,N);
else

A = spdiags(Je —3*e 3*e -e],0:3,NR,N);
end;

AA = r*r*AT*A +speye(N); yy = exp(-j*2*pi*cumsum(f)*dt).*y;
X = 2*AA\yy;

=

ey . ’P TITT
* * L4
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o) Effect of the weighting coefficient value on filter

selectivity
The frequence response H(jf) of the V-K filter

The first generation filter

2f If,

0.51

Band-pass Filter
1

0

0

Multiplication of the equation
right side by exp(-jm,t) turns
the band pass filter to the low

pass filter

1 .-"( E

0 _J¢ R
0 fo f

10% |-

107"
10°

The second generation filter
2-pole filter

I1I;:I:|'E 10" o 10
2f If

The low-pass filter roll-off
= -40 dB * pole number

EvHOPSKA UNEE
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Time History

Swept sine
frequency

— — V-K Filter centre
frequency

Time [s]

Vold-Kalman Filter : Generator : SweptSine

The second generation
of the V-K filter

RMS dB/ref 0,70710 U

filter

1 11 21 31 41 51 61 71 81 91
Time [s]
| —— 1-pole filter =—=—2-ple filter —— 3-pole filter —— 4-pole filter

Signal Analyser, MATLAB

=

o rﬁ{llﬂ][l.
Eflﬁr R
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Example no.2: Run-up of a motor

73728 samples = 73728 equations B
Time History : Interpolated RPM : RPM w1 ord
8000 , . )
—3ord
0 1 1 I
1 1
0 5} | 0 5 Time [s]
Time [s]
7 _oId—KaIman : Vibration - Input : Vibration
6 -
§ 5 7 m— 9 ord
E 47 ——10 ord
0 31
=
x 2 -
l -
0 4
0

Time [s]

** %
*

* *

~—

*
* gk
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Multicomponent filtration

For extraction of P components from the measured signal, the objective function is as follows
J= rz(slal +...+£Lsp)+ n'n— min
The global minimum of the objective function is resulting from solving the linear system of equations

0J
oxH

P
J
k=1
k=i

where E is the unity matrix, B, =r°AA_, for the 1st generation is C;= E and for the 2nd generation

A=A
/% B,+E C'c, .. c'"c,) (x,) (cly |
P matrix C;C. B,+E .. CCp [[% _ Cy Bx, =b
blocks <
cic, cic, .. B,+E) \x,) \Cly
-
N J - /
Y ~N
P matrix blocks PxP-block matrix

The large-scale system of linear equations Bx; = b is solved by using the Preconditioned Conjugate
Gradients (PCG) method. This method combines the iterative solution of B M1u=b and x; = M-u
where M is a preconditioner matrix, which is easily inverted. The iterative part requires the initial
guess of Xy See [Feldbauer& Holdrich]
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f [Hz]

2

1

200

180 |
160 |
140
120}

100

Example no.3: PCG algorithm in decomposition

of two combined signals

The sum of two harmonic signals
with the same unity amplitude

0.2 0.4 0.6 0.a

The'freque'ncy of the 1st

component
N

... the 2nd component

0.2 0.4 0.6 0.8
t[s]

1000 samples * components
= 2000 equations

x1, %2

P

®l, %2

Envelope
1.04
FCG — x1
— x2
1.02 \Q/K//
1 —-— P
L~
0.98 :
a 0.5 1
1.04
MWyFegl — I
- \Q/%?
1 —
L~
098
a 0.5 1
1.04
MyPcg2 —
— uZ
N \Q,/%/
1 R,
P
0.9s
a 05 1
Time

Time

RESWEC

RESVEC

RESVEC

** %
* *

* *
+ *
*oak
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Residuum
PCG
0 5 10 15 20
MyPcgl
K
5 10 15 20
hyPeog2
2
5 10 18 20
[terace
Iterations
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David Hilbert (January 23, 1862 — February 14,
1943) was a German mathematician, recognized
as one of the most influential and universal
mathematicians of the 19th and early 20th
centuries. He discovered and developed a broad
range of fundamental ideas in many areas,
Including invariant theory and the axiomatization
of geometry. He also formulated the theory of
Hilbert spaces, one of the foundations of
functional analysis.

ANALYTIC SIGNALS AND HILBERT
TRANSFORM
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* * » 7/
* * L ] —
q )&

EVROPSKA UNIE el i

107



® Analytic signals

The analytic signal is a complex signal with an imaginary part, which is the Hilbert transform
of the signal real part. The decomposition of a real signal into harmonic components results
in the sum of harmonic functions. Each of this function can be decomposed into the pair

of the phasors, which are rotating in the opposite direction. The analytic signal creates

the phasors rotating in the positive direction.

The analytic signal is a tool for amplitude and phase demodulation of the modulated
harmonic signals.

Real harmonic signal Complex analytic signal
x®
.-

Real 0, =27 f

To obtain the analytical signal the phasor X, has to be removed and the phasor X, has to be

multiplied by 2.
E‘f i<§Fr W 108
4
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® Analytic signals in the 3D-space

The position vector is rotating in the complex plane. If the 2D space is extended to 3D space
with the third axis as a time axis then the vector end point moves on the helix trajectory.

Helix
.
14 **'EEEF

Real

0+

~r” e —
- v [T

l. |
- Ef ’\KE?F ST e
EVROPSKA UNIE el i
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The complex position vectors as phasors, which are corresponding to a harmonic signal.

X =X,+Xy A 4

XN

The complex plane

jYP:_ijP:XP

2 Yo =—]Xp

Yy =Xy h¥
v T JYn =11 Xy =—Xy
Time signal + J  Hilbert transform
X =X+ Xy Y=Y +Y, =
== Xp+]Xy=
:_J(XP_XN)

Evaluation of the Hilbert transform
using ...

e Fast Fourier Transform (FFT)
« Digital filters

Analytic signal

Z=X,+Xy+jYo+Y,)
= X, + X, +(Xp = X,
=2X,

The phasors Y associated to the Hilbert transform of a pair of phasors X are obtained by rotation
these phasors by the angle of +/- n/2 radians.
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principal value integra

The Cauchy principal value (P.V.) expands the class of certain improper integrals for which the
finite integral exists as for example the integral

Iimrff(x)dx+ if(x)dx:l where Ee<(a,b)

£—0+
E+e

S YA

f(x)d x = oo, ?f(x)dx=$oo
:

The Hilbert Transform can be defined as the principal value integral
y(t)=2 P.\/.j@dfc
e s t-1

Let X(t) be an impulse Dirac function d(t), then the Hilbert transformer impulse response is as

follows
os1 g(t)
1T e) 1 E'EIL
g(t):EP.\/._jw—t_Td«::H | o | | t.
-15 -10 -5 - 4 5 10 15
_0'
-0,6

Eflﬁr |||||[|j
v 5
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The Hilbert transform as a transfer function

The Hilbert transform of a time function to another time function can be described by the standard
transfer function in the frequency domain. Let X(jo) and Y(jo) be the Fourier transform of the
original continuous time signal x(t) into the same signal y(t), respectively.

) _Y('Q))_ —j, >0
HHT(J(D)_X(Jj(D)_{ J, ©<0

To turn the non-decaying function to the decaying function, let the frequency transfer function
be extended

. —je”, ©>0 . . :

H(jo)=1 * limH (jo)=H,; (jo)
je®”, <0 o0

The impulse response is an inverse Fourier transform of the frequency transfer function

+o 0 +o0
g(t)zzi IH(Jw)ertd®=i|:J J.ecw+jwtdw_jjecm+jwtdwj|:
T —o0 0

21

J J

o . . 1 . 1 ] t
—_J e—cw—jcot _ e—cs(oﬂ(ot d(,O — . e—(cs+ jt)o + e—(c—]t)w —
2T j( ) 27‘C|: c+ jt c— |t . Tcic52+t2i

: . t 1
gHT(t):Ilngg(t):“ng 2 12) . :
o o 7‘(5 +t ) mt See [http://w3.msi.vxu.se/exarb/mj_ex.pdf]
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Analytic signals and the Hilbert transform of
some signals

The envelope and phase of the harmonic signals

Hilbert transform

Real part | Imaginary part | Envelope Phase Signal Tgyg‘f)rrtm
X(t) y(t) E(t) B(t) X(t) y(t)
Asin(ot) | — Acos(wmt) A ot — /2 sin(ot) ~cos(ot)

Acos(wt) | Asin(wt) A ot cos(ot) sin(ot)
Y(t? +1) t/(t? +1)
sin(t)/t (1—cos(t))/t

5(t) 1/t
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0] The use of FFT for computing the Hilbert
| transform

The algorithm for computing the Hilbert transform is broken down into three steps

I.  The Fast Fourier Transform (FFT) of the real input time record to obtain phasors rotating in
positive and negative directions

il.  Rotation the phasor Xy, in the positive direction by the angle of + /2 radians and the phasor X,
in the negative direction by the angle of - /2 radians (exchanging the real and imaginary parts)

ili. The Inverse Fast Fourier Transform (FFT) of the rotated phasors Y and Y, to obtain the Hilbert
transform of the input record.

X(jo)=FFTk)} = [V X(jo)o>Y(io) [ = yk)=IFFT{(jo)

Diagram showing how to transform the phasors X, and X, to the phasors Y, and Y

Y, = j(Re(xN)+_j Im(X,,))= ...... Y . Ye=- j(Re(xP_)+ jim(X,))=
=—Im(X, )+ jRe(X,) - L =Im(X,)- jRe(X;)

Exchanging the real and imag parts Exchanging the real and imag parts

f Fl‘eq
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0] The use of digital filters for computing the
| Hilbert transform

Let X(e J©TS) and Y(e ©T5) be the Fourier transform of the original sample sequence X, into the
sample sequence y,, respectively.

Frequency response function Impulse response
joT Y(ejst) -1, +m> 0Ty >0 gHT(n):iIGHT(eijS )ejstnd(st):
GHT(e S):W: : 2m =,
e ), —n<ols<0

B 0, n =2k
~|2/7n, n=2k+1

Impulse Response of the Ideal Hilbert transformer
1,0

— 00 €&— -50 -40 -30 -20 -10 0 10 20 30 40 50 — + 00
Index n

The nonzero response for the negative index n means that the impulse response corresponds to
a non-causal system. Response precedes the change at the system input.
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0} Hilbert transformer filters

The impulse response of FIR filters is the same as these filters non-zero coefficients. If the infinite impulse
response is shorten to a finite number of non-zero samples then the this response will corresponds to a FIR filter.
Due to the linearity of the filter phase the symmetric or anti-symmetric coefficients are preferred. As in the case
of FIR filter the impulse response has to be delayed in such a way that the impulse response of the non-causal
system is changed to the response of the causal system. The filter is called as a Hilbert transformer or a 90-degree
phase shifter.

The digital filter acts as a Hilbert transformer only for a frequency band in which the magnitude of the frequency
response function is equal to unit. The impulse response which is corrected with the use of the Kaiser window
smooths the frequency response function.

The 160-order FIR filter with the finite impulse Frequency response function of the Hilbert
response n = -80,...,+80 transformer

O Kaiser —Ideal — Kaiser — Ideal

0,8
0,6 1
0,4 1
0,2 A
£ 0,0 %
(@]
-0,2 A
-0,4 A
-0,6 1 ; : : : : : : : ;
-0,8 r T T .' .' T T T T
-20 -16 ‘12 -8 4 0O 4 8 12 16 20 0,0 02 0,4 0,6 0,8 1,0
Index n

Magnitude

Normalised Frequency [-]

v‘.*
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Order of the Hilbert transformer

1000 -

Passband
IS = ripple

N
100 A —

W

s —-0,1

S =-0,01

=~ S --0,001
~-0,0001
-+-0,00001
--(0,000001
—+0,0000001

/
i

0,01 0,1 1

Normalized lowpass frequency

AL Fﬁ &I I]I][Iﬂ
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Creation analytical signals with the use of the

digital filter

Consider the complex analytic signal z, composed
of the real part x; and its Hilbert transform as the
Imaginary party, z =x + jy,
The discrete Fourier transform of the sample
sequences is as follows

Z(ej‘”TS ): X (ej“’TS )+ jY(e‘“”Ts )
and its conjugate symmetric formula

Z (e )= X" (e ) jy (e )
Two previous formulas may be added together or
subtracted each other. It results in

X (e )=(z(e*™ )+ z"(e 7™ ))/2
Y )=(zler™)-z" (e )2
If these formulas are added together and since by
assumption, Z(e ™) =0 for-n<wTs<0,
then the transfer function, relating Z(e iT5) to
X(e 1©TS), is obtained
2,
0,

H(ej“’Ts): Z(eijS) +1>0T, >0

XeF™)

—t<oly <0

This formula confirms the previous result
obtained with the use of phasors.

The frequency response H(e i©TS) of the
discrete-time filter is as follows

H (e ijS) G (e j(,OTS)

1

——

F@ T ol

-7

0 = -1-n20n2n
Consider the half-band lowpass filter with the
frequency response G(e 1©TS), which is obtained
by shifting the frequency response H(e 1TS) by
n/2 radians and scaling by a factor 1/2.

_ . 1, O<|oT.|<m/2
G(ej(oTS):lH(eijSHt/Z): ‘ S‘ /

2 0, m/2<|wTs|<m

The filter H(e 1©TS) is referred to as a complex

half-band filter while the filter G(e 1©TS) is
referred to as a real half-band filter .

** “ /B
Bk N/ K
*
* *
**
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FIR complex half-band filters

The relationship between the transfer function of a complex half-band filter H(z) and a real half-
band filter G(z) is as follows

H(z)= j2G(- jz)
FIR complex half-band filter

Consider a wideband linear-phase filter F(z) of degree (N-1)/2 with a passband from 0 to 2wy,
a transition band from 2w, to 7, and a passband ripple 25. Since (N-1)/2 is odd, F(z) has a zero
at z = -1. Define

60)- L 7 ()

G(z2) is the desired half-band lowpass filter and has an impulse

response (o/2) never [ e > Re()
0ye(n)=10, nodd, n# (N -1)/2 Xy —>
Y2,  n=(N-1)2 > F(-22) F—=>1m(z)

where f (Tgn) is the impulse response of F(z). FIR realization of a complex
After substitution, we obtain the FIR complex half-band filter half-band filter

H(z)= |- 2 "2+ Fo22)|= 292 4 (- 22) See [Mitra]

. e gy [[TLIITTT]

* * » ]

* * . b

y M- 119
EVROPSKA UNIE el i




Y]

The use of Matlab in design of the Hilbert
transformer

The wideband linear-phase filter F(z) of degree 13 The Hilbert transformer F(-z?) of degree 26
>> b=remez(13,[00.850.91],[1100],[20.05]);  >>Dbb=remez(26,[0.1 0.9], [1 1],'Hilbert');

Manitude

Impulse response of wideband filter Impulse response of Hilbert transformer
0,8 0,8

i 0,6 -
0.0 0,4 -
0,4 0,2 -
0,2 0,0 €

d 0,2 -
00 0.4 1
-0,2 A 0,6 -
'0,4 1 1 1 1 1 1 '0,8 T T T T T T T T T 1 1 1

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16 18 20 22 24

index index

Frequency response of wideband filter Frequency response of Hilbert transformer
1,2 . . . 1,2
1,0 - 1,04---; : : : :
0,8 - 8081 frrioe e A b\
0.6 1 B 0B ofrreeriieeee ARRREEEEE SRREEEEE e :
04 R i S A SRR
02 1 0,2 4f++e-ermirerrerrendeenes e Lo
0,0 - - - - 0,0 ' ' ' '

0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0

Normalized frequency Normalized frequency

Note that the filter has only 13 non-zero coefficients
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A large class of stable IIR real coefficient half-band filter of odd order can be expressed as
1 _
G(z)= E[Ao(zz)+ Z 1Al(zz)]
where A,(z) and A,(z) are stable allpass transfer functions. After substitution,

H(z)= j2G(- jz)
we obtain the transfer function of a complex half-band filter

H(z)= AO(— 22)+ jz‘lAl(— 22)

X, ﬂ% A(-2%) > Re()

—> Al(— 22) —> Im(z,)

IIR realization of a complex half-band filter

See [Mitra]
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0] The use of Matlab in design of the Hilbert

transformer
Frequency response of a real coefficient half-band filter designed for wp = 0.4n, ®g = 0.6m, 5 = 0.0155
G(Z) = 1 [Ao (22)+ Z_lAl(ZZ)] A,(2) and A,(z) are allpass filters of order 1
2
10,0000 T . .
1,0000 - : AO(Z) _0.2368041466 + 2t
5 010007 1+0.2368041466z™*
O 0,0100 A : N :
0,0010 - ; ; A(z)= 0.7149039978 + z™
0,00 " " ‘ 1+0.7149039978z"
0,0000 11,5708 3,1416 4,7124 2T
wTs Phase difference between the allpass functions
Frequency response of a complex half-band filter A,(-2%) and A,(-2?).
H(z)= A~ 22)+ jz A (- 2?) 360 . . .
10,0000 : : : SPYLR S A . _
1,0000 : ' : > | o /i L
£ 0,1000 1 = 180 g 5 g
O 0,0100 1 £ NV ; S A
0,0010 A : : 0 ; .' .'
0,0001 ; ; T 0,0000 1,5708 3,1416 4,7124
0,0000 11,5708 3,1416 4,7124 o wTs o
wTg
Note that the phase difference is 90° for the positive frequency band and 270° for the negative frequency
band . See [Mitra]
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Time History : Generator ; Sing1/AM - 1

00 02 04 06 08 10
Time [3]

HARMONIC SIGNAL MODULATION
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Nomenclature

Carrying component .............cc.een.e, Xo(t)= Acos(w,t + @)
(harmonic signal without modulation)

Amplitude A

Phase (p(t) =t + 0,

Initial phase @,

Amplitude modulation signal ............ XA(t)= B am cos(coAMt + Oy )
Phase modulation signal ................... Xo (1) =B oy COS(@pyt +Ppyy )

Mixed modulation (amplitude and phase)

Modulated signal Modulation signals Carrying component phase

l @< AN
4 N 4 N

X(t) = A(l"' Baw COS(O‘)AMt T Qam ))COS((DO'[ + @y +Ppy COS n((’OPMt + Qpy ))

/ \— /)
Y Y

Amplitude Phase

See [Ttima, 1997]
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Modulated signal Modulation signal Carrying component

AN
4 R

X(t) = AL+ COS(@ 4+ @ ))cOS(et)

Time History : Generator : Sinel/AM - 1

Time [s]

Carrying component Sideband components fy+fay, fo-fam

\Autospectr/u% Generator : Sinel/AM - 1

08
=20
20
b : :
@ 02 4oy 1
0,0 ' .' .'
0 100 200 300 400
Frequency [HZ]

Bav Modulation index
modulation frequency
Oy = 27 5

carrying frequency

o, =2nf,
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® Spectrum of the amplitude-modulated signal

Decomposition of the modulated signal on the carrying component and its sidebands
X(t) = AL+ P 4y COS(0 gyt + P g ))COS(00, 1) =
= Acos(@pt )+ AB .y, COS(@ 4yt + @ oy, )COS(00,t) =
= Acos(eot)+ AB y /2(0S((02 — @y )t = Py )+ COS(( + @y )+ P )
X(t): ASin(wot)"' ABaw /2 COS((C‘)O — Wam )t Y )"‘ ABau /2 COS(((DO T Opy )t T Pam )

—— ~N = ~ ~

Lower sideband component,
frequency f, - fo\,, amplitude ABay, /2
The carrying component, Upper sideband component,

frequency f,, amplitude A frequency f, + f5, amplitude ARy, /2

Phasor model
Rotational

frequency

Ef%r . ) {E 126
|~ 4
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Modulated signal Carrying coMulatlon signal
x(t)= Acos(o,t +BPM COS(@py t + Ppyy )) B,, Modulation index

modulation frequency
Time History : Generator : Sinel/PM

i . Wpy = 27fpy
ol THATHA I i i I A _
g LAY USRI UL carrying frequency
2 s .= s s |
0,0 0,2 0,4 0,6 0,8 10 o, =2nf,
Time [s]

Carrying component The family of the sideband components fy+foy, ..., fo—

PM:
0 3\ Automr Sinel/PM

D 02 - Ll 5 ------------------- :- -------------------
n: 01 A--------e-- AWy RN
0,0 ' '
0 200 300 400
Frequency [HZ]
TR
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® Spectrum of the phase-modulated signal

Let x(t)=cos(w,t +Spy, (t)) be a phase-modulated signal, where Sy, (t) =By COS(@), @ = @pyt +@py
x(t)=p.(t)+ p_(t)

p. (t)= "> exp(j(wgt +Bey COSCD))=%exp(jwot)exp(jﬁm cos )

0.0)= 235 b0+ 336, ) @0l +10) s o9l -i9)

where J;(B) is the Bessel function of the first kind, for integer orders 1=0, 1, 2, ...

+

PN

(B, 2k+i (_1)k
Ji(BPM):kZ(;( 2 j k!(k+i)! .
J (BPM ): (_l)i ‘]i(BPM ) J‘(BPB"; [

Phasor model

Rotational Bom 10
frequency
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Effect of the phase modulation index on the
sidebands

The carrying component 100 Hz, amplitude 1, modulation signal frequency 5 Hz

Autospectrum : Sinel/PM - Beta =5

) 0,2 - BPM =3
=
01 -t l h ----------------
0,0 . II |
0 200
Freq uency [Hz]
Autospectrum : Sinel/PM - Beta =1
N 04- ----------------- Bem =1
= 5 5
as 0,2 gt | ---------- AR
0,0 —
0 50 100 150 200
Frequency [HZ]

Autospectrum : Sinel/PM - Beta = 0.5

S 06 freeeeden e Bew = 0.5
g 04- --------------------- SREEEEEEEEE
X 0,2 o SRRRRREEEEE EEREEEEEEE S ESEEEEEEEE, e
0,0 : 1L E
0 50 100 150
Frequency [HZ]
Autospectrum : Sinel/PM - Beta = 0.1
D 0,6 froreeeeieeeeee Bpy = 0.1
g 04- --------------------- SREEEEEEEEE
X 0,2 o SRRRRREEEEE EEREEEEEEES EEREEEEREE, e
0,0 E L E
0 50 100 150
Frequency [HZ]
BRI Ch e
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Modulation signals are in phase
Modulated signal Modulation signals Carrying component

—

A
(£)= AL+ B, sin( t+ 0 )Sin(on + B, sin(ant+ oy )

) Time History : Generator : Sine1l/PM+AM BAM ’BPM modulation
N T . M e . indexes
0 ' i l il l I ”
A1 AR R R R . .
o . . . . | modulation frequencies
0,0 0,2 0,4 06 0,8 1,0 _
Time [s] Oy = 2m fM
Symmetric sidebands
03 \Autospectrum : Generator : Sinel/PM+AM carrying frequency
W 024 T Wy = 2n 1:0
Z 0.1 1|| -----------------------------------------------------
0,0 1 } II
0 100 200 300 400

Frequency [Hz]

[TTITT

INVESTICE DO ROZVOJE VZDELAVANI



_J-3%

Modulation signals are out of phase

Modulated signal

X(t)= AL+ Bpy sin(oy,t+ @,

Modulation signals Carrying component

—

-

Time History : Generator : Sinel/PM+AM

;)sin(oaot + [3;, sin(w,, t+@,, + n/Z)?

...........

----------------------------------------------------------

0,0

Non-symmetric sidebands

0,6 \

0,2 0,4 0,6 0,8

Time [s]

Autospectrum : Generator : Sinel/PM+AM

U) -]
Z 0,4
@ 0,2 1

..............................................................

0,0

ROZVOJE VZDELAVANI Evmf*smwegf ijll

|||| I, ...................

100 200 300 400
Frequency [Hz]

Baw:Pew modulation
indexes

modulation frequency
o, = 2f,

carrying frequency

o, = 27f,
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mit) 0

¢ (t) for AM

c_ (i) for FM

¢, [tl for P

A PR VA
_1/\/ \/\/
===y
‘}M MATA / Tl /”\ Y /

ST A T E

0. 2.5

0 25

Vil

_,,_w

AMPLITUDE AND PHASE DEMODULATION

(a)

(b)

]

{d)

fe)
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Let x(t) be a real amplitude modulated harmonic
signal described by envelope-and-phase form

i

Modulation signal

Analytic signals and amplitude modulation

/ Analytic signal
(DO-(DM A

%

Carrying

x(t)ffmt

[eq components
2
1 | | O O, | I | I | I R
O -
1 -
-2 T T T T T | T T T
0 0,1 0,2 0,3 04 0,6 0,7 0,8 0,9 1

[ ]
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® Analytic signals and phase modulation

Modulation signal

0t + A,
Let x(t) be a real phase modulated harmonic pers T Analytic signal

signal described by envelope-and-phase form ! )
; eal /
X(t)= Acos(w,t + Ao,, ) : R :

/\(—‘ : Carrying
: component
Phase (__.-" | f«— P

\ Sideband
components

0 01 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Time [s]
EELf i/\/;Fr ] | 134
|~ 4

[ ]

EVROPSKA UNIE



® Demodulation of the modulated harmonic signal

Firstly the carrier component and its adjacent sidebands have to be filtered using the band pass
filter. The output signal is designated by x(t)

Secondly the Hilbert transform y(t) of the x(t) signal has to be evaluated using either the FFT
transform or the Hilbert transformer to create the analytic signal

2(t)=x(t)+  y(t)
The amplitude modulation signal referred to as envelope is as follows

Alt)=z(t) =/x()

The principal value of the phase modulation signal is as follows

@p (t) = Arg(z(t)) = arctan(y(t)/x(t))

The phase in radians can be computed by the previous formula while taking into the count the value
sign of x(t) and y(t). The result will be in the wrapped form which is limiting the angle to the
interval < Qpy ()< 47

To finish the phase demodulation process the wrapped phase has to be unwrapped into
arg(z(t)) = Arg(z(t))+ 27n(t)

where n(t) is a sequence of integer numbers, which depends on time t, for that arg(t) is without

discontinuities larger than a permissible value.
frast Ef i<§Fr . M- 135
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£ e phase
It is assumed sampling a continuous harmonic signal
x(t) = cos(wt)=cos(2n f t)
The phase of the mentioned harmonic signal is as follows
o(t)= ot =2n ft

Let the phase difference during the sampling interval be written in the form
2n f

Ap=0, -0, , =0At=2nf At =

The Shannon — Nyquist theorem requires

2f <Ay :LSE:
fo 2
A(p:27tf <7
fs

It can be concluded that the phase change during the sampling interval has to be less then & radians

‘A(p‘STC

27rf<27z

S

fS

=7

-2

This phase change property is basic for unwraping phase signal.
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0] Unwrapping phase and removing the linear
| trend

Algorithm of the phase unwrapping is based on the phase sampling theorem
The phase demodulation results in in the following signal, which is of the sawtooth wave form.

+T 4 A\

7 ) : ; : : : : :
2mrad |0 YA HAA I/ M A H W VA

V / | ! : ; : . !
—T A4 E E E E E E E E .

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Nominal Revolution
Removing discontinuities (Zf < oot = ‘A(p‘ < n)

Unwrapping algorithm
APp<—T=0Q+2T > Q,Ap>+T = @—2T —> @

8 . , . y 0,15 . ; . .
: : : : 0L 4oyt R SR A
° : ;' “; ;’ 0,05 -} £ iR \ERRRE X £\
rad 4 q---------- AERERERERE P T Frenenees rad 0 f----\--- JRREE SERE RN AR - SRR NEE
: : : : 005 4----\-F . W CA Y . T . S
24 i e R AEERCEE L SRR R ' : : : :
. : : : |:> 0,1 oM A proses M A s :
0 .' .' : .' -0,15 .' .' .' :
0 0,2 0,4 0,6 0,8 1 0 0,2 04 0,6 0,8 1
Nominal Revolution Nominal Revolution
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0] An alternative procedure for computing
| instantaneous frequency

It is not always necessary to calculate the unwrapped phase. To calculate the instantaneous
frequency of the modulated harmonic signal it is possible to use the following formulas

Phase .............c..... o(t)= arctan(%j
Envelope .............. e(t) =/ X2(t)+ y(t) 0
arctan ) X
Angular frequency ...  oft)= dep(t) _ d£ t (X(t)j] _ dolit)y(t)_x(t)d}(;it)
dt dt x*(t)+y°(t)
Phase ..........c....... o(t)= g o(t)dt

Let the frequency of the swept sine signal be running-up from 10 to 30 Hz

Generator : SweptSine - 1 Frequency : SweptSine - 1 20 Time : Generator 1 : SweptSine - 1
2 40 , . . : .
1- 30 {Rectangular window ---.... 30 1Hanning window ------- e -
01 20 4------- feeanss LT 20 e I e
'1_ 10— R LR 10' """""""""""""""""""""
-2 0 . | 0

0,0 0,2 04 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0
Time [s] Time [s]
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The amplitude demodulation is referred to as envelope analysis. The examples shows
computing the envelope for a broadband signal or signal zoomed around a resonance frequency

with the use of the bandpass filter.

The envelope is computed for the full The envelope is computed for narrow
frequency spectrum band part of frequency spectrum
Time History : Sine / AM 12 Decaying vibration
' 1,04 -- ------- ARRED
— Real 2081 R [—original
Envelope ® 04 & W —o— Filtered
0,21 G :';: IEEEEE
0’0 SEEss R sy — IR
0 20 40
Frequency [HZz]
Decaying vibration
—Rea| —Real
—— Envelope — Envelope

0,0 0,5
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Time History : Sine 20 Hz / PM 2 Hz

15

101 i
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Time [s]

Phase modulated signal

!

Frequency spectrum of the
modulated signal

Autospectrum : Sine 20 Hz /PM 2 Hz
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20’ ....................................
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1 I
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00 50
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Phase demodulation

Wrapped phase
(principal values
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=

Unwrapped phase

i)
©
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Detrend phase

4 Time : Phase : Sine 20 Hz / PM 2 Hz
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0] Conversion of the frequency modulated impulse
| signal to the harmonic signal

Time : Expanded Time(Encoderl) Autospectrum
6 : : : © 140
O R s S A A A A @
'2 1 I I 40
0,000 0,001 0,002 0,003 0 10000 20000
Time [s] Frequency [HZ]
The original impulse signal Frequency responsem
20 . .
0 A """"
Band pass filtration e I Band pass filter -
'60 1 T
The resulting harmonic signal 0 10000 20000
Frequency [HZz]
Timer : Time: Real (Expanded Time(Encoderl)) Autospectrum
4 , > :
2 B e L
0 © 20 -
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0,000 0,001 0,002 0,003 0 10000 20000
Time [s]
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