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Signals with continuous and discrete time, signal 
types

2

x(t)

x0

x1

x2
x3 x4

x5

x6
x7

0 1 2 3 4 5 6 7

The signal x(t) is a real or complex function of continuous time t. The other definition points to 
the fact that signal contains information. Sampling of a signal produces a time series which is a 
sequence of samples in the discrete time n. The sequence of samples may be denoted either as an 
indexed variable or as a function of an integer number x(n). 

Deterministic Random (stochastic)
Periodic Nonperiodic Stationary Nonstationary
Sinusoidal Complex 

periodic
(harmonic)

Almost 
periodic

Transient Ergodic Non-ergodic Special classification

where TS is a sampling interval for the uniformly sampled data. 
The sampling frequency (rate)  fS is the reciprocal value 
of the sampling interval.

TS

The time continuous signal is related to the time series and can be 
substituted by the following way

Signal types

Deterministic signals are defined as a function of time while random signals can be defined 
in terms of statistical properties.

( ) [ ]Txxxtx ,...,,:Sampling 210→

( ) ( ) ( ) ( )txnTtxnTttx
n

Sn
n

S →−δ=−δ ∑∑
t
n

Sampling may be considered as a mapping
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Random variables, random signals
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Names of random variables and processes:  ξ, ξ(t), ε, ε(t), … 

{ } ( ) xxpxxxP ∆=∆+≤ξ<

Probability that a random variable ξ belongs to the interval of values greater than  x and less 
than  x+Δx is proportional to the interval of the length Δx

t
1

t

Realization of the random 
process

Realization of the random 
variable in time t

x
Independent variable1

Realization of random variables and processes:  x, x(t), y, y(t), … 

The coefficient of proportionality is denoted as a probability density function (pdf).

( )xp

( )tx1

( )tx2

( )tx3

( )tξ

Probability density function
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Probability density function
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Continuous random variable  <          >  Discrete random variable
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Probability density function for 
the normal (Gaussian) distribution

Gaussian function (bell curve)
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Mean value, variance and correlation function
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Centered variable ….…

Mean value ……….….

The nth central moment

The nth central moment 
about a mean value μ

Variance ….……..…….

Correlation function

( )2121 ,,, ttxxpThe two-dimensional probability density function

Expected value (moment in physics)

For a random variable  ξ, it is introduced

For a random signal (process) ξ(t), it is defined

( ) σ= valuePeakfactorCrestCrest factor ……..…….
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Covariance
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( ) { }( ) { }( ){ }YEYXEXYX −−= E,cov
The covariance between two real-valued random variables X and Y with finite second moments is

The covariance between random vectors X and Y of dimension mx1 and nx1, respectively
( ) { }( ) { }( ){ } { } { } { }TTT YEXEXYEYEYXEXYX −=−−= E,cov

Properties

Let X, and Y be real-valued random variables and a, b be constant ("constant" in this context 
means non-random), then it holds

( ) 0,cov =aX
( ) ( )XXX var,cov =

( ) ( )XYYX ,cov,cov =

( ) ( )YXabbYaX ,cov,cov =

( ) ( )YXbYaX ,cov,cov =++

If X and Y are independent, then their covariance is zero. It follows

{ } { } { }YXXY EEE =



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Stationary and ergodic signals I
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For example the parameters (mean and 
variance) can be computed from values 
corresponding to random signal 
realizations in time t1.

If the realizations are sections of the long record and ΔT 
tends to zero or to the interval, which is small enough, 
them the values across a group of identical processes can 
be replaced by the samples of  the time record.  

time time

An ergodic process is one which conforms to the ergodic theorem. The theorem allows the time 
average of a conforming process to equal the ensemble average. In practice this means that statistical 
sampling can be performed at one instant across a group of identical processes or sampled over time 
on a single process with no change in the measured result. 

Random variables in time t1 t1 ΔT+t1 2ΔT+t1 3ΔT+t1

4 signal realizations 

0 ΔTt1
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A stationary signal (or strict(ly) or strong(ly) stationary signal) is a stochastic process whose joint 
probability distribution does not change when shifted in time or space. As a result, parameters such 
as the mean and variance, if they exist, also do not change over time.
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Stationary and ergodic signals II

τ
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The basic properties of stationary 
continuous signals x(t) is as follows

( ) ( )21212121 ,,,,, ttxxpttxxp −=

( ) ( ) ( )τ=−= xxxxxx RttRttR 1221,
For ergodic signals, it is assumed that 
the mean value can be replaced by the  
time average
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The correlation function of ergodic signals 
depends only on the lag

Root     Mean      Square  =  RMS

Mean value

Standard 
deviation

Auto-correlation

Cross-correlation

( )∑
−

=

=
1

0

1 N

i
ix

N
x

( )( )∑
−

=

−=
1

0

21 N

i
xix

N
s

( ) ( ) ( ) 2,...,2,1,0,1 1

0
−=ττ+

τ−
=τ ∑

−τ−

=

Niyix
N

R
N

i
xy

( ) ( ) ( ) 2,...,2,1,0,1 1

0
−=ττ+

τ−
=τ ∑

−τ−

=

Nixix
N

R
N

i
xx

For discrete ergodic random signals 
(x(i), i = 0, 1, 2, …), the formulas take the form

( ) ( )111, xptxp =
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Mean value and standard deviation (RMS) of a 
sine signal
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Sinusoidal signal ……

Mean value …………

The computation of RMS for the sinusoidal signal

results in the formula

The value of RMS is approximately equal to 70% 
of the harmonic signal amplitude. The amplitude 
of this signal is the 1.4-multiple of RMS.

x(t)

(x(t))2

If the signal is harmonic (sinusoidal) than we can calculate
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DIGITAL FILTERS
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Filter frequency response
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Z-transform of a sequence of samples
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The Z-transform of the sample sequence is defined by

Examples of  the Z-transform of some signals

Dirac sequence: 1, 0, 0, 0, …

Step function: 1, 1, 1, 1, …

For the k-step delay it is valid

where z is a complex variable.

1

Discrete time

0 1 2 3
0

1

0
0 1 2 3

k

k

Dirac function

Step function

( ) ( )k
k zXzX =

Upsampling by k: x0, 0, 0, …, x1, 0, 0, …, x2, 0, 0, … 

If ( ) ...2
2

1
10 +++= −− zxzxxzX then 

k-1 
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Convolution in the discrete time domain
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impulse response
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The Z-transform of the convolution sum results in

x0
x1

x2

x0 h0

x0 h1x0 h2

x1 h0x1 h1x1 h2

x2 h1x2 h2

y0
y1

y2

input samples

time

time

time

time

time

output samples

response to x0

response to x1

response to x2
x2 h0

Let the following sequences be denoted by 

The convolution of the input sequence with 
the impulse response is a formula
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Digital filter as the discrete-time linear systems
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The transfer function of the linear system in the Z-domain is in the form of two polynomials 
composed from the power of  z-1

A stable filter assures that every limited input signal produces a limited filter response. The zeros 
of the denominator polynomial

have to fulfill             .  If the input squence is the Dirac function then the output sequence is called 
as the impulse response.  

Let a constant coefficient linear difference equation with zero initial conditions be given

1<iz
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10
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The Z-transform of the difference equation of the order N gives

A digital filter can be considered as a discrete time linear system with one input and one output. 
The input sequence is designated by xn, n = 0,1,2, … while the output sequence  by yn, n = 0,1,2, … 
The present input sample is x(n) and the next output sample is y(n) in the alternative notation.
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IIR versus FIR filters
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IIR - Infinite Impulse Response

FIR filter output of the order M
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Negativeness – requier high order
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Negativeness – filter can be unstable

Filter properties Filter properties
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Direct form
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Mapping of the s-plane imaginary axis onto the 
z-plane 
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22 SS ω≤ω≤ω− π=ω≤ω≤ω−=π− 22 SSSSS TTT

+∞<Ω<∞−

( ),exp1
SsTz −=−

Sampling interval TS , sampling frequency  fS = 1/ TS , sampling angular frequency  

One step delay ( ),exp SsTz =
The Nyquist–Shannon sampling theorem is a fundamental result in the field signal processing. 
Shannon's version of the theorem states (see wikipedia):

( )STjz ω= exp( )STjz ω−=− exp1 or

Ωj
Analog plane

Digital plane

„s“ „z“
Re Re

Im Im

1

j

Margin of regions for denominator zeros corresponding to the stable 
transfer functions

SS Tπ=ω 2

( )STjz ω= exp

The unit circle is the locus 
of points in the complex 
plane, where

+∞<ω<∞−

The basic notation and assumptions are as follows 

If a function x(t) contains no frequencies higher than fm hertz (ωS = 2π fm radians per a second), it is 
completely determined by giving its ordinates at a series of points spaced 1/(2 fm) seconds apart.

The imaginary axis of the s-plane ranges from minus infinity to plus infinity 
Sufficient frequency range of a sampled signal is in radians per a second or just in radians as follows 



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Digital filter frequency response 

17

22 SS ω≤ω≤ω−
π=ω≤ω≤ω−=π− 22 SSSSS TTT

The value of H(z) for z located at the unit circle is related to the value of the frequency response
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Let frequency properties of a filter be described by the transfer function
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where TS is the sampling frequency. This formula relates the variables z and ω. After substitution  
we obtain

22 SS fff ≤≤− STωAngle

Mapping of the s-plane imaginary axis onto the unit circle in the z-plane is ensured by substitution

The frequency range for computing the transfer 
function is as follows  

in frequency ………….
in angular frequency …
in angle …
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Computation of the magnitude and principal 
value of phase
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Magnitude of the frequency response function

The MATLAB two-argument function atan2  produces an angle in radians from the interval (-π, +π]
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0Im,0Reforundefined,
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0Im,0Refor,ReImarctan
0Im,0Refor,ReImarctan

0Refor,ReImarctan

Arg

HH
HH
HH
HHHH
HHHH

HHH

eH STj

If the one-argument function arctan (atan in MATLAB) produces an angle in radians from the 
interval (-π/2, +π/2) that the principal value of phase from the interval (-π, +π] can be computed by 
the following formula

The principal value concerns a logarithm of a complex non-zero number z. The principal value Log 
z is the logarithm whose imaginary part lies in the interval (−π,π]. 
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Approximation of the numerical integration
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Bilinear transform 

Mapping the plane „s“ onto the plane „z“ depends on algorithm, which is used to approximate a 
definite integral. We deals with the algorithms, which are based on the rectangle and trapezoidal rule.
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Integration approximation with the use of the 
rectangle rule 
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Integration approximation with the use of the 
trapezoidal rule 
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Frequency warping  due to the bilinear 
transform

22

2
ST

Ω

2
STω

2π+

2π−

Frequency in the s-plane

Frequency 
in the z-planeDifference in frequencies due to the 

distortion called the frequency warping
Ω=ω

(Continuous time system)

(Discrete time system)

( ) ( )ωjHjH DigitalAnalog =Ω

The bilinear transform maps the infinity interval of frequency Ω to the finite interval of 
frequency ω, which results in distortion
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How to face to the frequency warping?

23

The bilinear transform maps the s-plane to the z-plane by
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The bilinear transform can accept an parameter that specifies prewarping frequency  fp in Hz,
that is a match frequency, for which the frequency responses before and after mapping match exactly. 
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The first order linear filter

24
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Notch filter as a tool to filter out a spectrum 
component

25
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Filter of the moving average type

26
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to the difference equation

Z-transform
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FIR filters

27
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Properties of linear phase filters

28

( ) ( )
ω
ωϕ

−=ωτ
d

d
gGroup delay

( ) ( )
ω
ωϕ

−=ωτΦPhase delay

The time delay transfer function ( ) ( )DTjH ω−=ω exp

The phase of the delay transfer function ( ) DTω−=ωϕ is a linear function of ω

(only delay, no distortion of the signal)

Signals are not distorted by filtration  if the phase is a linear function of frequency

( ) Dg T=ωτ

( ) DT=ωτΦ

Time delay:

An example of the linear phase filter or system is a delay

0 τ

x(t)

x(t-τ)

t

The time delay does not distort signal in the pass band frequency 
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FIR filter summary

29

Properties of the FIR filter coefficients

( )0H ( )2SfH

,..., 110 −== MM bbbb ( ) 02 =SfH

,..., 110 −−=−= MM bbbb
( ) 00 =H

Filter Type Order M Coefficient symmetry

Type I even even
arbitrary

arbitrary

Type II odd

Type III even Odd (anti-symmetry)

Type IV odd arbitrary

The FIR filter is described by the difference equation

MM bbbb ,,...,, 110 −

Any input sequence, containing the samples of the limited value, produces the output 
sequence, which is limited as well. The FIR filter is a stable system.

MnMMnMnnn xbxbxbxby −+−−− ++++= 11110 ...



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Ideal low pass filter

30
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The Nyquist frequency is equal to half  
the sampling frequency

The inverse Fourier transform of the frequency response results in

The ideal low pass filter can be designed in the frequency domain. The impulse response is 
obtained by the inverse Fourier transform.

The frequency response 
of the ideal low pass filter

The ideal low pass filter is a non-causal system 
of the infinity order. 
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FIR low-pass filter
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of the ideal low 
pass filter
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of the low-pass filter

Non-causal 
system

Delay transforms 
non-causal system 
to a causal system

Symmetry of coefficients 
is determining the linear 
phase of the filter

delay

The ideal low pass filter of the corrected order, which is restricted to the finite number, can be 
used as a sufficiently good low pass filter. 
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Time windows for the filter impulse response
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The low pass filter 
design using the 
Haning window

Windowing of the impulse responses improves the frequency response of the FIR filters
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Frequency transform
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High pass, band-pass and band-stop filters are derived from the low pass filter by using frequency 
transformation

Highpass 
filter

Bandpass 
filter

Bandstop 
filter
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Design of IIR digital filters

34

Step 1: Prewarp the specified digital frequency specification of the desired digital filter GD(z) to 
arrive at the frequency specifications of an analog filter HD(s) of the same type 

Step 2: Convert the frequency specifications of HD(s) into that of a prototype analog lowpass
filter HLP(s) using an appropriate frequency transformation

Step 3: Design the analog lowpass filter HLP(s)

Step 4: Convert the transfer function HLP(s) into HD(s) using the inverse of the frequency 
transformation used in Step 2

Step 5: Transform the transfer function HD(s) using the bilinear transformation to arrive at the 
desired digital IIR transfer function GD(z)

1
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1
12

−

−

+
−

=
z
z

T
s

S See [Mitra] 

The following steps are suppressing the frequency distortion 





 ω=Ω

2
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Analog low pass linear filters

35

Frequency

Butterworth Chebyshev type 1

Chebyshev type 2 Elliptic

M
ag
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tu

de

http://upload.wikimedia.org/wikipedia/commons/5/5c/Electronic_linear_filters.svg�
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Butterworth filters

36

See [http://en.wikipedia.org/wiki/Butterworth_filter ]

The gain G(ω) of the n-th order 
Butterworth low pass filter is 
given in terms of the transfer 
function H(s) as:

where
n ... order of filter 
ωc ... cutoff frequency 

(approximately the -3dB 
frequency) 

G0 ... the DC gain (gain at zero 
frequency) 

( ) ( )
( ) n

C

GHG 2

2
022

1 ωω+
=ω=ω

The first order filter

http://upload.wikimedia.org/wikipedia/commons/6/66/Butterworth_filter_bode_plot.png�
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High order Butterworth filters

37

See [http://en.wikipedia.org/wiki/Butterworth_filter ]

Filter order

http://upload.wikimedia.org/wikipedia/commons/c/cd/Butterworth_Filter_Orders.svg�
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Butterworth polynomials

38

See [http://en.wikipedia.org/wiki/Butterworth_filter] 
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We wish to determine the transfer function H(s) where s = σ + jω. Since H(s)H(-s) 
evaluated at s = jω is simply equal to |H(jω)|2, it follows that:

The k-th pole is specified by:
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The transfer function may be written in terms of these poles as:
The denominator is a Butterworth 
polynomial in s.
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Normalized Butterworth polynomials

39

See [http://en.wikipedia.org/wiki/Butterworth_filter ]

1=ωC

n Factors of Polynomial Bn(s)

1 (s + 1)

2 s2 + 1.4142s + 1

3 (s + 1)(s2 + s + 1)

4 (s2 + 0.7654s + 1)(s2 + 1.8478s + 1)

5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)

6 (s2 + 0.5176s + 1)(s2 + 1.4142s + 1)(s2 + 1.9319s + 1)

7 (s + 1)(s2 + 0.4450s + 1)(s2 + 1.2470s + 1)(s2 + 1.8019s + 1)

8 (s2 + 0.3902s + 1)(s2 + 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9616s + 1)
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Chebyshev filters of the type 1

40

See [http://en.wikipedia.org/wiki/Chebyshev_filter] 

where ε is the ripple factor, ω0 is the cutoff frequency and Tn(...) is the Chebyshev polynomial 
of the n-th order. 

The gain (or amplitude) response as a function of angular frequency ω of the n-th order low 
pass filter is
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http://upload.wikimedia.org/wikipedia/commons/c/c2/Chebyshev_Type_I_Filter_Response_(4th_Order).svg�
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Chebyshev filters of the type 2

41

See [http://en.wikipedia.org/wiki/Chebyshev_filter ]

where ε is the ripple factor, ω0 is the cutoff frequency and Tn(...) is a Chebyshev polynomial 
of the n-th order. 

The gain (or amplitude) response as a function of angular frequency ω of the n-th order low 
pass filter is
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Elliptic filters

42

See [http://en.wikipedia.org/wiki/Elliptic_filter ]

where ε is the ripple factor, ξ is the selectivity factor , ω0 is the cutoff frequency and Rn is the n-th
order elliptic rational function of  angular frequency ω. 

The gain (or amplitude) response as a function of angular frequency ω of the n-th order low 
pass filter is
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Comparison of FIR and IIR filters

43

Advantages Disadvantages

FIR 
filters

Always stable
Linear phase
Possible to design 

any frequency 
response

High order
Large number 

of coefficients

IIR 
filters

Possible instability
Small number 

of coefficients

Low order
Non-linear phase
Overflow of 

an accumulator

……
I4=^fir_coefs;  M4=1;   L4=taps; 
CNTR=taps-1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M4);
DO firloop UNTIL CE;

firloop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
{ IF NOT CE JUMP firloop;}
MR=MR+MX0*MY0(RND);
IF MV SAT MR;
……

[IF cond] MR 
or |AF|   

= X*Y; or = X*X; (SS) or (SU) or 
(US) or (UU) or 
(RND)

= MR+X*Y; or = MR+X*X;
= MR- X*Y; or = MR- X*X;
= MR[(RND)];
=0;

IF MV SAT MR;

∑
−

=
−=

1

0

taps

i
inin xby

Digital signal processors (DSP)
ADSP 2185 type (fixed point math), special 
unit MAC for computation of a formula

MAC statements

En example of the code for a FIR filter

DSP Hardware tools for filters
- Cyclic buffers
- Indirect addressing using pointers
- Index registers with 
automatic indirect address 
increments
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Allpass filters

44

The transfer function G(z) of a IIR filter is called an allpass transfer function if the 
magnitude of the frequency response is equal to unit for all frequencies

An M-th order causal real-coefficient allpass transfer function is of the form 

( ) M
M

M
M

MM
MM

M zdzdzd
zzdzddzG −+−

−
−

−+−−
−

++++
++++

= 1
1

1
1

1
1

1
1

...1
...

If we denote the denominator as 
( ) M

M
M

MM zdzdzdzD −+−
−

− ++++= 1
1

1
1 ...1

The first order allpass filter

( ) 1
1

1
1

1 1 −

−

+
+

=
zd
zdzG

( ) ω=ω allfor,1STjeG

Then GM(z) can be written

( ) ( )
( )zD

zDzzG
M

M
M

M

1−−

=

If  z = r exp(jφ) is a pole of a real-coefficient allpass
transfer function then it has a zero z = 1/r exp(-jφ)

Digital plane „z“

Re

Im

1

j ( )STjz ω= exp
Unit circle

STωz

d1

( )
1

1
1

1
dz

zdzG
+
+

=

d1z
z+d1
1+zd1|d1|

|d1|

11 1 dzzd +=+Congruency of triangles shows that

See [Mitra]

|d1|

( ) 11 =ω STjeG
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FIR filter as a differentiator

45

FIR filter differentiator (Kaiser window)
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Up-sampler & down-sampler

46

An up-sampler

L
-1.5

-1.0

-0.5

0.0

0.5
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0.0 0.5 1.0

Time Index [-]

x(
n)
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0,0 0,2 0,4 0,6 0,8 1,0

Time Index [-]

y(
n)

L = 2



 ±±=

=
otherwise,0

,...2,,0,/ LLnx
y Ln

n
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An down-sampler

M

M = 2

nMn xy =
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En example of multirate filters

47

Frequency response of the passband filterA standard for vibration testing of rolling-
bearings requires the pass-band filter for

50 to 300 Hz
300 to 1800 Hz
1k8 to 10k Hz 

dB
20

0

-20

-40

-60

DIN 5426-1 

100 1k 10k
Frequency [Hz]

Design of three individual separate filters requires 
the FIR filter type of a large order, multirate filters 
seem to be an optimal solution

IIR1
20 Hz

FIR64
10 kHz

2 FIR64
1k8 Hz

6 FIR64
300 Hz

6 FIR64
50 Hz

FIR64
1k8 Hz

FIR64
300 Hz

RMS 
50-300 

Hz

Input signal

FIR64
300 Hz

6

Filter type and order

Cut-off frequency

Decimation factor 

Low pass

Decreasing of 
the sampling 
frequency

RMS 
300-1k8 

Hz

RMS 
1k8-10k 

Hz

Integration of an 
acceleration signal 
in the frequency 
range above 50 Hz

fS = 44,1 kHz
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Cascaded integrator-comb (CIC) filter

48

An integrator is simply a single-pole IIR 
filter with a unity feedback coefficient

This integrator is known 
as an accumulator

where M is a design parameter and is called 
the differential delay (usually M = 1 or 2) and 
the positive integer R is designating a rate change.

( ) 11
1

−−
=

z
zH I

z-1

Σ
++ ( ) RM

C zzH −−=1

z-M

Σ
-+

R = 1

A comb filter running at the high sampling rate, fs, 
for a rate change of R is an odd symmetric FIR filter 
described by

Three stage (N = 3) decimating CIC filter

I I I C C CR

Three stage (N = 3) decimating CIC filter

C C C I I IR

See [Donaldio] 

Frequency characteristics

( ) ( ) ( ) ( )
( )

NRM

k

k
N

NRM
N
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N
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N
I z

z
zzHzHzH 
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
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−

−
== ∑

−

=

−

−

− 1

0
11

1

The CIC filter uses only fixed point math

Gain of CIC decimators

Advantages: 
- linear phase, 
- utilize only delay and addition and subtraction

nnn xyy += −1
RMnnn xxy −+=

( )NRMG =
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Polyphase decomposition of sample sequences

49

See [Mitra]

Consider an arbitrary sequence of samples x(n) with a Z-transform X(z) given by

( )∑
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n
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n

n
kk zkMnxznxzX )( 10 −≤≤ Mk

The functions Xk (z), given by the  Z-transforms of xk(n), are called the polyphase components of  X(z)
The subsequences xk(n) are called the polyphase components of the parent sequence x(n)

The relation between the subsequences xk(n) and 
the original sequence x(n) is given by

( )nxk

In matrix form we can write

The Z-transform of the polyphase decomposition of samples sequences is given by
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( ) ( ) 10, −≤≤+= MkkMnxnx kk

( ) ( )Mnxnx k=0
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MMnx
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k

M

( ) ( )11 += Mnxnx k

M

Downsampling by M
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Polyphase decomposition of the transfer 
function

50

See [Mitra]

An L-branch polyphase decomposition of the transfer function 
of order N is of the form  

( ) ( )∑
−

=

−=
1

0

L
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L
m

m zEzzH

( ) ( )
( )

10,
1

0
−≤≤+= ∑
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− LmzmLnhzE
LN

n

n
m

where

with h(n) = 0 for n > N.

1−z

( )LzE0 Σ

1−z

( )LzE1 Σ

1−z
( )L

L zE 1−

Linear phase FIR are characterized by a symmetric or 
antisymmetric impulse response.

( ) ( )nNhnh −= ( ) ( )nNhnh −−=or

( ) ( ) ( ) ( ) ( ) ( ) ( ) 54321 012210 −−−−− +++++= zhzhzhzhzhhzH
An example

Polyphase decomposition 
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Lth-band filters, half-band filter

51

The even samples of the impulse response are as follows

Low pass filters with a transfer function that has certain zero-valued coefficients is called Nyquist or 
Lth-band  filters. An Lth-band filter for L = 2 is called a half-band filter. The transfer function of a 
half-band filter is given by a formula

( ) ( )2
1

1 zEzzH −+α=
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=
otherwise,0
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2

n
nh
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2
1 zEzzH −−=− −

The sum of transfer functions 
and

gives
( ) ( ) 1=−+ zHzH

If H(z) has real coefficients, then
)()()( )(*)( SSS TjTjTj eHeHeH ω−πω+πω ==−

1)()( )(* =+ ω−πω SS TjTj eHeH
Hence

The above equation implies that 
( ) ( ))()( 2*2 Ω+πΩ−π = jj eHeH

Digital plane „z“
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Generally, if H(z) has real coefficients, 
then H(z) = H*(z*)
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See [Mitra] π
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Quadrature mixing in amplitude and phase 
demodulation

52

After low pass filtration

Let x(t) be a signal in so-called envelope-and-phase form

Low pass filter ( )tx

Low pass filter 

( ) ( )2sincos 00 π+ω=ω tt( )tj 0sin ω−

( ) ( ) ( )( )tttAtx Φ+ω= 0sin

( ) ( ) ( )( ) ( ) ( )( )tjttttAty 000 sincossin ω−ωΦ+ω=

( ){ } ( ) ( )( ) ( )
( ) ( )( ) ( )( ) 22sinsin

cossinRe

0

00

tttA
ttttAty

ω+Φ=
=ωΦ+ω=

( ){ } ( ) ( )( ) ( )
( ) ( )( ) ( )( ) 22coscos

cossinIm

0

00

tttA
ttttAty

ω−Φ=
=ωΦ+ω=

( ){ }tyRe

( ){ }tyIm

( ){ }tzRe

( ){ }tzIm

The quadrature-carrier form of the signal is as follows …. ( ) ( ) ( ) ( ) ( )ttQttItx 00 cossin ω+ω=

( ) ( ) ( )( ) ( ) ( ) ( )( )ttAtQttAtI Φ=Φ= cossin
where f0 = ω0/2π is a carrier frequency and I(t) and Q(t) 
are modulation of a pure carrier wave sin(ω0t) …………..
The component that is in phase with the original carrier sin(ω0t) is referred to as the in-phase 
component while the out-of-phase component cos(ω0t) is referred to as the quadrature component.

The quadrature mixing

The input signal x(t) is transformed into a complex 
signal y(t) and then filtered by a low pass filter

( ){ } ( ) ( )( ) 2sinRe ttAtz Φ=

( ){ } ( ) ( )( ) 2cosIm ttAtz Φ=
Envelope

( )( ) ( ) ( ) ( ) ( )tztAtAtztz 22mag =⇒==
Phase
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ImRearctan

tanImRe

WRAPPED =Φ
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Amplitude demodulation with the use of 
quadrature mixing

53

Low pass filtered (cut-off frequency 5 Hz)

Sampling frequency 
fS = 64 Hz

Time History : Sine 10 Hz /AM 2 Hz
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Amplitude modulation 
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Goertzel algorithm

54

( )STjz 01 exp ω=

( )STjz 02 exp ω−=
Re

Im

For a given sequence x(n) the Goertzel algorithm computes a sequence s(n),  n = …,-2.-1,0,1,2,…   

ω0 – angular frequency,
TS  – sampling interval

Unit circle

The algorithm solves a problem of identifying  a frequency component in a signal (Dr. Gerald 
Goertzel, 1958) by focusing at specific, predetermined frequencies.
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0
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=
zezezzTzX

zS
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S

The Z-transform of the previous difference equation results in

The poles of the transfer function lies on the unit circle. The  
frequency response tends to infinity for ω = +ω0   and  ω = -ω0

( )
( ) ( ) 1

0exp1 −ω−−= zTj
zS
zY

S

Let the sequence s(n) be filtered by a FIR filter with the zero at ω = -ω0
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The transfer function relating Y(z) to X(z) is as follows
( ) ( ) ( ) ( )1exp 0 −ω−−= nsTjnsny S

The corresponding difference equation 1−z
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STje 0ω−
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Goertzel algorithm – cont’d

55

The time-domain equivalent of the previous transfer function

( ) ( ) ( ) ( ) ( ) ( )∑∑
−∞=

ω−ω

−∞=

−ωω ==−+=
n

k

kTjnTj
n

k

knTjTj SSSS ekxeekxnyenxny 000 1

Except of the scale factor exp(+jωTS n)  the sample y(n) depends on DFT of the (n+1) samples of x(n).

See http://en.wikipedia.org/wiki/Goertzel_algorithm

Assuming  x(k) for all  k < 0, we obtain

( ) ( ) ( )0
0

000 ω== ω

=

ω−ω ∑ Xeekxeny nTj
n

k

kTjnTj SSS

Evaluation of  y(n) requires only the last two samples of s(n) (the output of the FIR filter), which can 
be used to compute  the DFT of  x(n) corresponding  to  X(ω0) 

( ) ( ) ( )( ) ( ) ( ) ( )2121 1
0

0000 −−−=−−−=ω −ωωωω− nsenseensensX nTjnTjnTjTj SSSS

( ) ( ) ( ) ( ) ( )21cos2 0 −−−ω+= nsnsTnxns S

where

The algorithm starts assuming s(-1) = s(-2) = 0.

The power at the frequency ω0 can be computed using the formula
( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )12cos212 0
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KALMAN FILTER

56

Rudolf Emil Kalman, born on May 19, 1930, in 
Budapest, Hungary, is a Hungarian-American 
electrical engineer, mathematical system theorist, 
and college professor, who was educated in the 
United States, and has done most of his work there. 
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An example of a recursive filter

57

Assume that we have a system whose one-dimensional state x we can measure at successive steps: 
x(1), x(2), …, x(k). The problem is to compute the average μ(k) of the time series given k samples. 
The solution is ( ) ( )∑=µ

k

ix
k
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1

Adding a new measurement x(k+1) the new average value is obtained
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and so, μ(k+1) can be written
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where  K = 1/(k+1) is a gain factor. The new average μ(k+1) is a weighted average of the old estimate 
μ(k) and the new value of x(k+1). If k is approaching to infinity, the gain factor tends to zero.
We can also recalculate recursively the variance of the time series. Given k samples, the variance is 
computed by ( ) ( ) ( )( )∑ µ−=σ

k

kix
k

k
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22 1

If a new sample x(k+1) is measured, the new variance adopts to the value
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The gain factor, independend on k, controls the value of the variance and enables to follow 
a slow variation of the average μ in time.
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Conditional expected value or mean value

58

where the probability of the occurrence of X(n)  is a positive value, i.e. P(X(n)) > 0. Similarly for 
continuous random variable can be defined  p(x(n+1)| X(n)). Instead of ξ = x the random variable ξ
belongs to the interval  I(x) = {x < ξ <= x +Δx}

Let a set X(n) of measurements be given by a sequence of samples x(k) 

( ){ } ( )( )∫
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= xnxpxnx dE XX

( ) ( ) }1,{ niixn ≤≤=X
Conditional probability  density function  of a discrete random variable ξ(k) conditioned on the set 
of measurements X(n) (in fact a random vector Ξ(n) = {ξ(i) , 1 <= i <= n}) is given by
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The conditional expected value, or mean value, of a continuous random variable  ξ(n+1) conditioned 
on the set of measurements X(n) is defined as
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Minimum Mean-Square Error

59

( ){ } { }( ) { }( )( ){ } { }( ) { }( ) { }( ) { }( ){ }
{ }( ){ } { }( ) { }( ){ } { }( ){ } { }( )2222

2222
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xxExxExExxExExxExExExxE
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=−+−−−−=−+−=−

The mean value of the squared difference between the random variable x and the estimate of x (mean-
square error - MSE) is given by 

According to the fundamental theorem of the estimation theory the minimum value of MSE is reached 
if the estimate of x is equal to the mean value of x

{ } { } ( ){ }22 ˆandˆ0ˆ xxExExxxE x
MMSE −=σ=⇒=−

The estimate of x conditioned on  X(n)  and the minimum value of the mean square error 

{ } ∫
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== dxxpxxExMMSE )|(|ˆ XX

The minimum of the MSE variance can be found by taking the derivative of the function with 
respect to x and setting that value to 0.
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The variance of MMSE is the same as the variance of the random variable itself. Both the definitions, 
MMSE and the variance of MSE, may be written as 
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Kalman filter - Process and measurement models

60

The Kalman filter addresses the general problem of estimating the n x 1 state vector x of a discrete 
time process that is governed by difference process equation

where  random variables v1 a v2 represent the process and measurement noise (respectively). It is 
assumed that the random variables are independent of each other and with normal probability 
distribution

( ) ( ) ( ) ( ) ( ) ( )kkkkkk 11 vuBxAx ++−=

( ) ( ) ( ) ( )kkkk 2vxHy +=

( )( )kNp Q0v ,~)( 1 ( )( )kNp R0v ,~)( 2

with the measurement (observation) vector  y that is defined by a measurement equation, 
describing the observation as 

The  n x n matrix  A is the state transition model which is applied to the previous state x(k -1), the 
matrix B is the control-input model which is applied to the control vector u(k) and the m x n matrix  
H is the observation model which maps the true state space into the observed space. 

The correlation matrices are defined as

( ) ( ){ } ( )




≠
=

=
kn
knn

knE T

,
,

11 0
Q

vv ( ) ( ){ } ( )




≠
=

=
kn
knn

knE T

,
,

22 0
R

vv

( ) ( ){ } knknE T andallfor21 0vv =
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Kalman filter - Evolution of states in time 
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0, R

0, Q

x(k), P(k)x(k-1), P(k-1) x(k+1), P(k+1)

y(k -1) y(k +1)

A B H

u(k-1)

v1(k-1)
v2(k-1)

0, R

0, Q

A B H

u(k)

v1(k)
v2(k)

0, R

0, Q

A B H

u(k+1)

v1(k+1)
v2(k+1)

Observed

Hidden

Suplied by 
user 

y(k)

Index k -1 k k +1

The evolution of states in time is shown in the following diagram

The various matrices are constant with time, and thus the designation of time steps is dropped

The Kalman filter may be considered as a recursive estimator. This means that only the estimated 
state from the previous time step and the current measurement are needed to compute the estimate 
for the current state. 
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Kalman filter - Basic notation
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For this set Y(n) of measurements it is possible to define 

( ) ( ) ( ){ }
( ) ( ) ( ){ }kkEkk

kkEkk

Yxx

Yxx

|ˆ

1|1ˆ

=

−=−

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }TkkkkkkEkkkkk 1ˆ1ˆ1ˆcov1 −−−−=−−=− xxxxxxP
The a priori estimate error covariance is given by 

We can then define the a posteriori error covariance matrix (a measure of the estimated accuracy 
of the state estimate) as

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }TkkkkkkEkkkkk xxxxxxP ˆˆˆcov −−=−=

An  a priori state estimate at step k is given by knowledge of the process prior to step k 
and an a posteriory state estimate             at step k is given by measurement y(k) at step k

( )1ˆ −kkx
( )kkx̂

Let a special notation be introduced.  The term              represents the estimate of  x at time n given 
observations up to, and including at time m. 

( )mnx̂

Let a set Y(k) of measurements (observations) be given by a sequence of samples y(k) 

( ) ( ) }1,{ kiiyk ≤≤=Y

The a posteriori state estimate
The a priori state estimate

The covariance  matrices are symmetric  PT(k | k) = P(k | k), PT(k | k -1) = P(k | k - 1).
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Time and measurement update
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( ) ( ) ( )( ) ( ) ( ) ( )( )kkPkkP yyxyyx ,...,1|1,...,1| +→
The process model updates the estimate of the next value of x

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ){ } ( ) ( )
( ) ( ) ( ) ( )kkkkk

kkkEkkkkkkEkk

uBxA

uBxAvuBxAx

+=

=++=++=+

ˆ

01ˆ 1

As it was stated before the estimate for the minimum value of MSE is as follows 

The new measurement (observation) updates the probability function parameters
( ) ( ) ( )( ) ( ) ( ) ( )( )kkPkkP yyxyyx ,...,1|1,...,1| →−

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )11111

1cov11cov1

1ˆ11111cov

1ˆcov1

1

1

−+−−−−=

=−+−−−=

=−−−+−−+−−=

=−−=−

kkkkk
kkkk

kkkkkkk

kkkkk

T

T

QAPA
vAxA

xvuBxA

xxP

( ) ( ) ( ) ( ) ( )kkkkkkk T QAPAP +=+1
After substituting kk →+1

The a priori estimate error covariance (taken before the new observation) is updated

it is obtained 

Note, that the estimation of the state vector x at step k +1 does not reflect the new observation 
at step k+1.
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Innovation of measurement residual
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( ) ( ) ( )1ˆ −−=α kkkk yy

The difference between an actual measurement y(k) and a measurement prediction                    
at step k is given by knowledge of the process prior to step k  is called as an innovation of 
measurement residual

( )1ˆ −kky

The innovation α(k) has several important properties
1) The innovation α(k) , associated with the observed random variable y(k) is orthogonal to the past 
observations y(1), y(2), y(3), …, y(k -1), as shown

( ) ( ){ } 11,0 −≤≤=α kiiykE
2) The innovation α(1) , α(1) , α(2) , …, α(k)  are orthogonal to each other, as shown

( ) ( ){ } 11,0 −≤≤=αα kiikE The innovation process is white. 
3) There is one-to-one correspondence between the observed data [y(1), y(2), y(3), …, y(k)] and the 

innovations [α(1) , α(2) , α(3) , …, α(k)], in that the one sequence may be obtained from the other 
by means the causal and causally invertible  filter without any loss of information. 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ } ( ) ( )1ˆ111ˆ 2 −=−+=−=− kkkkkkkEkkEkk xHYvxHYyy
where the estimate of the measurement prediction is as follows 

Using the Gram/Schmidt orthogonalization procedure it is possible to prove this property. The 
procedure assumes that the observations [y(1), y(2), y(3), …, y(k)] are linearly independent 
in an algebraic sense. 
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Innovation of measurement residual – cont’d 1
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In general, we may transform of the observed data [y(1), y(2), y(3), … , y(k)] and the innovations 
[α(1) , α(2) , α(3) , … , α(k)] by writing 

( )
( )

( )

( )
( )

( )



































=



















α

α
α

−−−− ky

y
y

aa

a

k kkkk



2
1

1...
...

0...1
0...01

2
1

2,11,1

1,1

The matrix is nonsingular since its determinant is equal to one. The transformation is therefore 
reversible. 

We first put 
( ) ( )11 y=α

Next we put 
( ) ( ) ( )122 1,1 yay +=α

The coefficient a1,1 is chosen such that the innovation α(1) and  α(1) are orthogonal 
( ) ( ){ } ( ) ( )( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1112011212 1,11,1 yyEyyEayyayE −=⇒=+=αα

Next we put 
( ) ( ) ( ) ( )1233 2,21,2 yayay ++=α

…………..
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Innovation of measurement residual – cont’d 2
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Let the a posteriori state estimate to be the minimum mean-square estimation of x(k) given 
the observed data [α(1) , α(2) , α(3) , … , α(k)] as well due to the correspondence between 
the observed data [y(1), y(2), y(3), … , y(k)] and the innovations [α(1) , α(2) , α(3) , … , α(k)].
The minimum mean-square estimation of x(k) given the observed data may be defined as a 
linear combination of the innovations [α(1) , α(2) , α(3) , …, α(k)] 

( ) ( ) ( )∑=
k

iibkk
1

ˆ αx
As the innovation are orthogonal to each other the coefficient b(i) may be determined by

( ) ( ) ( ){ }
( ) ( ){ } ki

iiE
ikxEib ≤≤= 1,

αα
α

( ) ( )( ) 22
1

2

2
1

...tr n

n

kkkk σ++σ=⇒
















σ

σ
= PP 

It is obvious that the smaller the trace of the matrix P(k|k), the more accurate (less variance) estimate 
of the a posteriori state estimate              given the observed data [y(1), y(2), y(3), … , y(k)].( )kkx̂

Now we turn attention to the a posteriori state estimate             . If x(k) is a vector n x 1 then 
the diagonal elements of the covariance matrix P(k|k)  are variances of the difference between the true 
value of the components of the state vector x and its a posteriori estimate given the observed data 
[y(1), y(2), y(3), … , y(k)]. 

( )kkx̂
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Innovation of measurement residual – cont’d 3
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This is a reason that the a posteriori state estimate             can be computed as a linear combination 
of an a priori estimate                  and the innovation of measurement residual as shown below

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )1ˆ1ˆ

ˆ1ˆˆ

−−+−=

=+−=

kkkkkkk

kkkkkk

xHyKx

αKxx

( )kkx̂
( )1ˆ −kkx

where K(k) is a Kalman gain replacing the coefficient b(k). 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )kkbkk

kkbiibkk
k

α

αα

+−−=

+=∑
−

11ˆ

ˆ
1

1

x

x

The recursive form for the linear combination of innovations

where
( ) ( ) ( ){ }

( ) ( ){ }kkE
kkxEkb

αα
α

=

The Kalman gain is a tuning button which adjust the process of filtration to trace variation of the 
system state to minimize the difference between the true state and its estimation.

( )( )
( ) 0

tr
=

∂
∂

k
kk

K
P

The optimal Kalman gain is given by solving of the matrix equation resulting from the zero valu of 
the first partial derivative with respect to the Kalman gain 
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Estimator model

68

( )kkx̂Process 
equation

Measurement 
equation Kalman filter

System state Observations State estimate
A priori statistics Q, RProcess noise Measurement noise

( )ky( )kx

The time update equations can also be considered as predictor equations, while the measurement 
update equations can be considered as corrector equations. The final estimation algorithm 
resembles that of a predictor-corrector algorithm for solving numerical problems as shown below

Time update 
“Predict”

Measurement update 
“Correct”
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Kalman filter – cont’d 1

69

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the state 
estimate from the previous timestep to produce an estimate of the state at the current timestep. This 
predicted state estimate is also known as the a priori state estimate because, although it is an estimate 
of the state at the current timestep, it does not include observation information from the current 
timestep. In the update phase, the current a priori prediction is combined with current observation 
information to refine the state estimate. This improved estimate is termed the a posteriori state 
estimate.
Predict phase ( ) ( ) ( ) ( ) ( )kkkkkkk uBxAx +−−=− 11ˆ1ˆ

( ) ( ) ( ) ( ) ( )kkkkkkk T QAPAP +−−=− 111

Predicted (a priori) state

Predicted (a priori) estimate covariance
Update phase

( ) ( ) ( ) ( )1ˆ −−= kkkkk xHyα Innovation of measurement residual

( ) ( ) ( ) ( ) ( )kkkkkk T RHPHS +−= 1 Innovation (or residual) covariance

( ) ( ) ( ) ( )kkkkk T 11 −−= SHPK Optimal Kalman gain

( ) ( ) ( ) ( )kkkkkk αKxx +−= 1ˆˆ Updated (a posteriori) state estimate

( ) ( ) ( )( ) ( )1−−= kkkkkk PHKEP Updated (a posteriori) estimate covariance 
(E is an identity or unit matrix)

http://en.wikipedia.org/wiki/Kalman_filter

( ) ( )( )kk αS cov=
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Derivations – a posteriori estimate covariance 
matrix
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If the model is accurate, and the values for              and                 accurately reflect the distribution of 
the initial state values, then the following invariants are preserved: (all estimates have mean error 
zero)

http://en.wikipedia.org/wiki/Kalman_filter

( )00x̂ ( )00P

( ) ( ){ } ( ) ( ){ } 01ˆˆ =−−=− kkkEkkkE xxxx

( ){ } 0~ =kE z where  E{…} is the expected (mean) value.

Deriving the a posteriori estimate covariance matrix

( ) ( ) ( )( )kkkkk xxP ˆcov −=

( ) ( ) ( ) ( ) ( )( )( )kkkkkkk αKxxP −−−= 1ˆcov

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )( )1ˆ1ˆcov −−−−−= kkkkkkkkkk xHyKxxP

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )( )1ˆ1ˆcov 2 −−+−−−= kkkkkkkkkkkk xHvxHKxxP

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )kkkkkkkkk 21ˆcov vKxxHKEP −−−−=

( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )kkkkkkkkk 2cov1ˆcov vKxxHKEP +−−−=

( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )kkkkkkkkkkkk TT KvKHKExxHKEP 2cov1ˆcov +−−−−=

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )kkkkkkkkkkk TT KRKHKEPHKEP +−−−= 1
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Derivations – the Kalman gain

71

The Kalman filter is a minimum mean-square error estimator of the error in the a posteriori state 
estimation, that an objective function is as follows

http://en.wikipedia.org/wiki/Kalman_filter

The minimum mean-square error corresponds to trace of matrix P(k | k). The trace is minimized 
when the matrix derivative is zero

( ) ( ){ } minˆ 2
→− kkkE xx

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkkkkkk

kkkkkkk

kkkkkkkkkkkk

TTT

TT

TT

KSKKHPPHKP

KRHPHK

KHPPHKPP

+−−−−−=

+−+

+−−−−−=

111

1

111

( )( )
( ) ( ) ( )( ) ( ) ( ) 0212

tr
=+−−=

∂
∂

kkkkk
k

kk T SKPH
K
P

Solution of the previous matrix equation results 
in the formula for the Kalman gain

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )kkkkk

kkkkkkkk
T

TT

11

11
−−=

−=−=

SHPK

HPPHSK

This is equivalent to minimizing the trace of the a posteriori estimate covariance matrix P(k | k). 
By expanding out the terms in the equation above and collecting, we obtain

( )

( ) AB
A

ABA

C
A
AC

2tr

tr

=
∂

∂

=
∂

∂

T

T Note for A C to be 
square, dim A = dim CT

(where B is 
symmetric)
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Simplification of the a posteriori error 
covariance formula

72

Multiplying both sides of the Kalman gain formula

http://en.wikipedia.org/wiki/Kalman_filter

This formula is computationally cheaper and thus nearly always used in practice, but is only correct 
for the optimal gain. If arithmetic precision is unusually low causing problems with numerical 
stability, or if a non-optimal Kalman gain is deliberately used, this simplification cannot be applied; 
the a posteriori error covariance formula as derived above must be used.

( ) ( ) ( ) ( )kkkkk THPSK 1−=

on the right by KT(k), we get 

( ) ( ) ( ) ( ) ( ) ( )kkkkkkk TTT KHPKSK 1−=

When analyzing the expanded formula for the a posteriori error covariance

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkkkkkkkk TTT KSKKHPPHKPP +−−−−−= 111

we find that the last two terms cancel out

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )111 −−=−−−= kkkkkkkkkkkk PHKEPHKPP
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Kalman filter - Algorithm

73

http://en.wikipedia.org/wiki/Kalman_filter

Predict phase (starting phase for k = 0)

( ) ( ) ( ) ( ) ( )kkkkkkk uBxAx +−−=− 11ˆ1ˆ

( ) ( ) ( ) ( ) ( )kkkkkkk T QAPAP +−−=− 111

Measurement Update phase (Correct)

( ) ( ) ( )
( ) ( ) ( ) ( )( ) 11

1
−

+−

−=

kkkkk

kkkk
T

T

RHPH

HPK

( ) ( )
( ) ( ) ( ) ( )( )1ˆ

1ˆˆ

−−+

+−=

kkkkk

kkkk

xHyK

xx

( ) ( ) ( )( ) ( )1−−= kkkkkk PHKEP

1) Project the state ahead 1) Compute the Kalman gain

2) Project the error covariance ahead 2) Update estimate with measurement y(k)

3) Update the error covariance

Initial estimate for

( )11ˆ −−x ( )11 −−P

kk →+1
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Estimating a random constant with the use of 
Kalman filter

74

See [Welch & Bishop]

( ) ( )11ˆ1ˆ −−=− kkxkkx
( ) ( ) QkkPkkP +−−=− 111
( ) ( ) ( )( ) 111 −+−−= RkkPkkPkK

( ) ( ) ( ) ( ) ( )( )1ˆ1ˆˆ −−+−= kkxkykKkkxkkx

( ) ( )( ) ( )11 −−= kkPkKkkP

( ) ( ) ( )kvkxkx 11 +=+

( ) ( ) ( )kvkxky 2+=

kk →+1

We assume that the measurement process is governed by difference equation
a random walk

k→0
( )11ˆ −−x ( )11 −−PInitial estimate for                  and

Input  y(k)

Output

Initial values for process noise covariance Q 
and measurement noise covariance R

Algorithm

( ) ( ) ( )kkPkKkkx ,,ˆ

Let’s assume that from experience we 
know that the true value of the random 
constant has a standard normal 
probability distribution, so we will 
“seed” our filter with the guess that the 
constant is zero.

Similarly we need to choose an initial 
value for x. If we were absolutely certain 
that our initial state estimate x was correct, 
we would let P(-1|-1) = 0. However given 
the uncertainty in our initial estimate for x, 
choosing would cause the filter to always 
believe this value. As it turns out, the 
alternative choice is not critical. We could 
choose almost any and the filter would 
eventually converge. 

; predict

; update
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Starting the Kalman filter

75

( ) ( ),1 kxkx =+ ( ) ( ) ( )kvkxky 2+=
The covariance of the measurement noise  v2(k) is equal to 1 while covariance of v2(k) is equal to 0.
The initial values are as follows:  Q = 1, R = 1000, initial guess of the state is 0 and initial guess 
of  a posteriori error covariance  is 1 as well  

Time History :  Noise
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0,0 0,2 0,4 0,6 0,8 1,0

Time [s]

y(
t)

Kalman Filter : State Estimate
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-0,1
0,0
0,1
0,2
0,3
0,4

0,0 0,2 0,4 0,6 0,8 1,0

Time [s]

x(
t)

Kalman Filter : Error Covariance

0

10

20

30

40

0,0 0,2 0,4 0,6 0,8 1,0
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Kalman Filter : Gain

0,00

0,01

0,02

0,03

0,04

0,0 0,2 0,4 0,6 0,8 1,0

Time [s]

Let a random constant (zero) be measured repeatedly in a time sequence with an error of the unity 
covariance. We assume that the measurement process is governed by equation
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Example for estimating a random constant

76

Time History : data1 : Col 1
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Statistics : data1 : Col 1

0
100
200
300
400
500
600

476 478 480
U

N
um

be
r

Time History : data1 : Kalman Filter (Col 1)
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Difference 1 : data1 : Kalman Filter (Col 1)
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ADC wideband noise due to the thermal effect Grounded-input histogram

Filter output Cumulative difference

( )kx

( )ky

( ) ( )( )∑
=

−
k

i
ixiy
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Position and velocity of vehicle

77

At each time step, a noisy measurement of the true position y(k) of the truck is made. Let us suppose 
the measurement noise v2(k) is also normally distributed, 

Let the position of a vehicle be measured every Δt seconds, but these measurements are imprecise; 
we want to maintain a model of where the truck is and what its velocity is. The position and velocity 
of the truck is described by the linear state space

The initial starting state of the vehicle with perfect precision

( ) ( )
( )






=

kx
kx

k


x

where x is the position and      is the velocity.  It is assumed that between the (k − 1)th and kth timestep
the vehicle undergoes a constant acceleration of a(k) that is normally distributed,                                  . 
From Newton's laws of motion it is possible to conclude that 

x

⇒

( ) ( )2,0~)( aNkap σ

( ) ( ) ( )ka
t

t
k

t
k 


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∆
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


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 ∆
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2
1
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1 2

xx ( ) ( ) ( )kakk GxAx +−= 1 ⇒ ( ) ( ) ( )kkk 11 vxAx +−=

where ( ) ( )Q0v ,~)( 1 Nkp
2

23
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2
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
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=σ= GGQ

( ) ( )2
2 ,0~)( yNkvp σ

⇒( ) [ ] ( ) ( )kvkky 201 += x ( ) ( ) ( )kvkky 2+= xH
where ( ) ( ){ } [ ]2

22 y
T kvkvER σ==

( ) 







=−−

0
0

11x̂ ( ) 

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

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00
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Kalman–Bucy filter

78

where the covariances of the noise terms          and           are given by Q(t) and R(t), respectively.

The filter consists of two differential equations, one for the state estimate and one for the covariance

The Kalman–Bucy filter is a continuous time version of the Kalman filter. A mathematical model is 
of the state space type

( ) ( ) ( ) ( )tttt
td

d
1vxAx +=

( ) ( ) ( ) ( )tttt 2vxHy +=

( )t2v( )t1v

( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttttttt
td

d xHyKxAx ˆˆˆ −+=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttttt
td

d TT KRKQAPPAP −++=

where the Kalman gain is given by

( ) ( ) ( ) ( )tttt T 1−= RHPK
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Example - Inertial navigation system (1 DOF)
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Angular velocity sensor 

Kalman filter

Accelerometers

Gyroscope

Angle
Angle sensor 

TrueΘ

mω

Error 

Drift-rate bias

mΘ

Trueb

Θ

Θn

Error rn

TrueΘ

Measured 
quantities 

Estimation

b
Drift-rate bias

Unknown (hidden) quantities 
The continuous time Kalman filter used for planar motion with a single bias compensated gyro

Continuous time t, angle Θ, angular velocity ω, drift-rate bias  b
Measured quantities  Θm, ωm

Unknown quantities  ΘTrue, ωTrue

Gauss white-noise error covariances ( )( ){ } ( )( ){ } ΘΘ == NtnENtnE rr
22 ,

See [Roumeliotis & Sukhatme & Bekey]
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Kalman Filter – Process equation
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







+ω








+







Θ








=







Θ

w

r
m

True

True

True

True

n
n

bbdt
d

0
1

00
10rTruemTrue nb ++ω=Θ

wTrue nb =

A mathematical model and a matrix form corresponding to the block schema on the previous slide 

( )( ){ } ww NtnE =2

The term ωm is like a control input u to the system and needs to be eliminated. This can be done 
either to add it to the state and estimate it or to formulate the estimation algorithm as an Indirect 
Kalman filter since the orientation error is estimated instead of directly estimating orientation. The 
orientation estimate obtained by integrating the gyro signal (assuming constant bias bi) is given by

0=

+ω=Θ

i

imi

b

b



m

i

i

i

i

bbdt
d

ω







+







Θ








=







Θ
0
1

00
10

⇒

⇒

Subtracting both the models we obtain ri nb +=Θ∆ 

The variable ΔΘ is the error in orientation and Δb is the bias error. Subtracting the equations for 
bTrue and bi the bias error can be written as              . These error propagation equations for the 
Indirect (error state) Kalman filter can be rearranged as

wnb =









+








∆
∆Θ









=








∆
∆Θ

w

r

n
n

bbdt
d

00
10

or in a more compact form as …….. nxAx
+∆=

∆
dt

d
⇒








∆
∆Θ

=∆
b

x
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Kalman Filter – Measurement equation
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HPRPHQPAAPP 1−−++= TT

( )








=











 +==⇒=
Θ

ΘΘ−

2

110
k
k

NN
NNNN

w

wrT RPHKP

[ ]Θ=







= N

N
N

w

r RQ ,
0

0
The continuous Kalman filter equation for the covariance P is 

The Kalman gain at the steady-state operation 

where 

[ ] Θ+







∆
∆Θ

=∆ n
b

y 01 Θ+∆=∆ ny xH⇒

We assume that the measurement provided to the Indirect Kalman filter is

ΘΘ +∆Θ=Θ−+Θ=Θ−Θ=∆ nny iTrueim

where  Θi is available through the gyro signal integration and Θm , is the absolute orientation 
measurement. This equation in matrix form becomes

The estimate propagation equation with the added correction is as follows

( )Θ∆−∆







+









∆
Θ∆









=









∆
Θ∆ ˆ

ˆ
ˆ

00
10

ˆ
ˆ

2

1 y
k
k

bbdt
d
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Kalman Filter – Measurement equation - cont’d
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Separating the estimated and integrated quantities results in

Substituting the error state estimates

ii bbb −=∆Θ−Θ=Θ∆ ˆˆ,ˆˆ
we have

( )Θ∆−∆







+









−
Θ−Θ









=









−
Θ−Θ ˆ

ˆ
ˆ

00
10

ˆ
ˆ

2

1 y
k
k

bbbbdt
d

i

i

i

i

( ) 














Θ








−







Θ
+Θ∆−∆








+







Θ








=







Θ

i

i

i

i

bbdt
dy

k
k

bbdt
d

00
10ˆ

ˆ
ˆ

00
10

ˆ
ˆ

2

1

Notice that
( ) ( ) Θ−Θ=Θ−Θ−Θ−Θ=Θ∆−∆ ˆˆˆ

miimy

After substitution of  the term resulting from integration we get

( )Θ−Θ







+ω








+







Θ








=







Θ ˆ
0
1

ˆ
ˆ

00
10

ˆ
ˆ

2

1
mm k

k
bbdt

d

( ) ( ) ( ) ( )
21

2

2

21
2

21

21
2

2

,ˆ
ksks

ssFs
ksks

ksk
s

s
ksks

ss m
m

++
=Θ

++
+

+
Ω

++
=Θ

The Laplace transform of the angle estimate results in 
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Signal Fusion - Frequency Response Function
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( ) ( ) ( ) ( )( ) ( )ssF
s

ssFs m
m Θ−+

Ω
=Θ 1ˆ

The previous formula can be rewritten as

integration 

dB

0 Log ω

+40 dB/dec

+20 dB/dec

2k
Roll-off:

After replacing s = jω we get a frequency response

( ) ωω jjF

( )ω− jF1( )ωjF

See [Roumeliotis & Sukhatme & Bekey]
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Extended Kalman Filter
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See [Welch & Bishop] 

Let us assume that the process again has a state vector x, but that the process is now governed 
by the non-linear stochastic difference equation

where  random variables v1 a v2 represent the process and measurement noise (respectively). It is 
assumed that the random variables are independent of each other and with normal probability 
distribution.

( ) ( ) ( ) ( )( )kkkfk 1,,1 vuxx −=

( ) ( ) ( )( )kkhk 2, vxy =

with the measurement (observation) vector  y that is defined by a measurement equation, 
describing the observation as 

In practice of course one does not know the individual values of the noise and at each time
step. However, one can approximate the state and measurement vector without them as

( ) ( ) ( )( )0,,1~~ kkfk uxx −=

( ) ( )( )0,~~ khk xy =

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )kkkkk

kkkkk

2

1

ˆˆ
1ˆ1ˆ

VvxxHyy
WvxxAxx

+−+≈
+−−−+≈After linearization we get

where ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )
j

i
ji

j

i
ji

j

i
ji

j

i
ji v

kxhH
x
kxhH

v
kukxfW

x
kukxfA

,2
,,

,1
,,

0,ˆ
,0,ˆ

,0,,ˆ
,0,,ˆ

∂
∂

=
∂

∂
=

∂
∂

=
∂

∂
=
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Extended Kalman filter - Algorithm
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http://en.wikipedia.org/wiki/Kalman_filter

Predict phase (starting phase for k = 0)

( ) ( ) ( )( )kkkfkk uxx ,11ˆ1ˆ −−=−

( ) ( ) ( ) ( )
( ) ( ) ( )kkk

kkkkkk
T

T

WQW

APAP

+

+−−=− 111

Measurement Update phase (Correct)

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) 11

1
−

+−

−=

kkkkkkk

kkkk
TT

T

VRVHPH

HPK

( ) ( )
( ) ( ) ( )( )( )0,1ˆ

1ˆˆ

−−+

+−=

kkhkk

kkkk

xyK

xx

( ) ( ) ( )( ) ( )1−−= kkkkkk PHKEP

1) Project the state ahead 1) Compute the Kalman gain

2) Project the error covariance ahead 2) Update estimate with measurement y(k)

3) Update the error covariance

Initial estimate for

( )11ˆ −−x ( )11 −−P

kk →+1
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VOLD-KALMAN ORDER TRACKING 
FILTER

Håvard Vold, Ph.D. *1947
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Kalman filter vs. Vold-Kalman filter
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Process equation 

( ) n 1 v 
  

Σ   E 1 − z   Σ   ( ) n H   

( ) n n , 1 + A 
 

  ( ) n 2 v   

x(n+1) x(n) y(n) 

Measurement  
equation 

Input parameters: matrix A defining a process equation, matrix H defining measurement equation, 
covariance matrices            and )(1 nv )(2 nv

)(1 nv
)(2 nv

is uncorrelated excitation vector of process equation 
is uncorrelated excitation vector of measurement equation 

The Kalman filter

where

The Vold-Kalman filter
Input parameters: structural equation as an equivalent of the process equation,

data equation as an equivalent of the measurement equation, and 

relationship between the norm of both the excitation vectors.
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Software for the Vold-Kalman order filtration
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 VSB – Technical University of Ostrava
• M-functions in MATLAB including crossing orders (open code)
• Signal Analyzer, indor software (VB6 - without crossing orders)

 Axiom-EduTech Sweden & VSB – TU Ostrava, M-functions in MATLAB (open code)

The second generation only

The first and second generation

The Vold-Kalman order filter is a bandpass filter, the center frequency of which can be continuously 
changed according to the instantaneous rotational frequency of a machine. The Vold-Kalman filter 
tracks the spectrum components of the input signal, called as orders, the frequency of which are 
multiples of the mentioned rotational frequency.  It is assumed that the rotational frequency is defined 
for each sample of the input signal . Because the rotational frequency is usually measured with the use 
of a tacho signal producing the average rotational speed during a time interval, for estimating the 
instantaneous value of RPM the cubic spline curve fitting method has to be used for example. 
The Vold-Kalman filter was developed in two generations. The output of the first generation is the 
filtered signal while the output of the second one is the envelope of the filtered signal.

See [Vold & Leuridan]

 Brüel & Kjær, LabShop PULSE, Software Type 7703
 MTS Systems Corporation, I-DEAS
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Data equation (eq. to Kalman’s measurement 
equation)
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( ) ( ) ( )nnxny η+=

x(n) – filter output as a real signal

The matrix form of data equations 
( ) ηxxy =++− P...1

( )( )P
T
P

TTT xxyxxyηη −−−−−−= ...... 11

The first generation
( ) ( ) ( )( ) ( )nnjnxny η+Θ= exp

The second generation

( ) ( )∑
=

ω=Θ
n

i
STin

0

( ) ηxCxCy =++− PP...11

( )( )PP
H
P

T
P

HTTH xCxCyCxCxyηη −−−−−−= ...... 1111

To asses difference between y(n) and xi(n), the square of the error vector norm is introduced 

The data equation decomposes a signal y(n), where n = 1,…, N, into two parts: the filter output 
and an error term η(n).  

Θ(n) – signal phase, ω(n) – angular frequency
x(n) – complex envelope as the filter output

Data equations for extraction of P signal components, each of them is modeled by individual structural 
equation 

( ) ( ) ( )nnxny
P

i
i η+= ∑

=1

( ) ( ) ( )( ) ( )nnjnxny
P

ï
ii η+Θ=∑

=1
exp

Data equations for extraction of one component (P = 1), which is modeled by a structural equation

The vector form of the input and output data
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ){ }NjjNxxNNyy iii

T
iii

TT ΘΘ==ηη== exp,...,1expdiag,],...,1[,],...,1[,],...,1[ Cxηy

TS – sampling interval

( ) ( )∑
=

ω=Θ
n

i
Sii Tin

0

The matrix C is the unit matrix for the first generation filtr.See [Vold & Leuridan]
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Solution of the homogenous difference 
equations
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( ) ( ) ( ) ( ) 021 =−+−− nxnxncnx
The first generation of the Vold-Kalman order filter

The second generation for the two-pole filter( ) ( ) ( ) 0212 =−+−− nxnxnx

( ) ( ) ( )S
nn Tncbzaznx ω=+= cos2,21

( )STjz ω= exp1

( )STjz ω−= exp2( ) ( )ϕ+ω= ω SnTAnx cos

Re

Im

11 =z

Re

Im

*
12 zz = complex conjugate roots of a characteristic equation

( ) nn bnzaznx 11 += ( ) ( )bcTcnTanx SS =+= ,
11 =z double root

The structural equation is a generator of a signal

The solution of the homogeneous difference equation

The second generation for the one-pole filter
( ) ( ) 01 =−− nxnx

( ) 1=nx

11 =z⇒

( ) nznx 1= ⇒

⇒

⇒

Piecewise approximation by a constant 

Piecewise approximation by a strait line 

Approximation by a harmonic function 

ω – rotational speed (interpolated),
TS– sampling interval

Unit circle

Unit circle
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Structural equation (eq. to Kalman’s process 
equation)
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( ) ( ) ( ) ( ) ( )nnxnxTnx S ε=−+−ω− 21cos2

ω – rotational speed (interpolated),
x(n) – filtered signal, ε(n) – error term,  N – sample number, TS – sampling interval

iii εxA =
The matrix form of the structural equation for the i-th component is as follows 

ii
T
i

T
ii

T
i xAAxεε =

( ) ( )STnc ω= cos2

The first generation of the Vold-Kalman order filter

The second generation

( ) ( ) ( ) ( )nnxnxnx ε=−+−− 212

( ) ( ) ( ) ( ) ( )nnxnxnxnx ε=−−−+−− 32313

To asses the error term ε(n), as an exciting function for the structural function, the sum of the error 
term square (the square of the vector norm) is introduced 

… one-pole filter

… two-pole filter

… three-pole filter

… four-pole filter

( ) ( ) ( )nnxnx ε=−− 1

( ) ( ) ( ) ( ) ( ) ( )nnxnxnxnxnx ε=−+−−−+−− 4342614

To simplify formulas the index 
of the signal component is omited.

… for the second generation filterAA =i
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Matrix forms of the structural equations

92

( ) ( ) ( ) ( ) ( )nnxnxncnxNn ε=−+−−= 21:,...3

( )
( )

( )

( )
( )

( )

















=





































−

−
−

NNx

x
x

c

c
c

ε

ε
ε

...
4
3

...
2
1

11...0000
........................
000...110
000...011

εxA =

The first generation of the Vold-Kalman order filter

The second generation, the example for the two-pole filter
( ) ( ) ( ) ( )nnxnxnxNn ε=−+−−= 212:,...,3

( )
( )

( )

( )
( )

( )

















=





































−

−
−

NNx

x
x

ε

ε
ε

...
4
3

...
2
1

121...0000
........................
000...1210
000...0121

0

0

N columns

N-2 rows

A
Sparse band matrix
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Global solution
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min→+= ηηεε TT2rJ

( ) yEAAx 1−
+= T2r

( ) 0yxxAA
x

=−+=
∂
∂ 22 T2rJ

The objective function is as follows The solution is as follows

r – weighting coefficient

The first generation filter

The second generation filter

( ) 0yCxEAA
x

=−+=
∂
∂ HT

H rJ 2

( ) yCEAAx HTr 12 −
+=

0

0

AT

0

0

A

* =

=
0

0

B = r2ATA+E

The unknown vector x is composed from N samples. The count of the structural and data equations is 
greater than the count of unknown quantities. The system of the linear equations  is over-determined. 
To find a solution of the equations, an objective function is added to reach the required relationship 
between influence of the data and structural equations on the result. Minimizing the objective function 
can be done by putting the first derivative with respect to the unknown vector to zero. 

where

ATA … a symmetric matrix

Adding unity to the matrix main diagonal turns 
a symmetric matrix to the Symmetric Positive Definite 
matrix (SPD) 

See [Tůma,2005]
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Robustness of the linear equation solution 
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r2ATA  is generally only a positive semidefinite matrix, adding the unity matrix E turns it 
to the positive definite matrix 

1) The high selectivity of the Vold-Kalman filter requires to assign a value of the weighting 
coefficient r to hundreds or even thousands 

2) Elements of ATA are as follows

2

...............

...210

...21

...11

...011

2
332

32
2
221

21
2
11

1

≤























+−−
−−+−−

−−+−
−

=

i

T

c

ccc
ccccc

cccc
c

AA



























−−
−−−

−−
−−−

−−

=

............
....201561
...15201561
...61519123

1612103
1331

AAT

The first generation The second generation (3-pole filter)
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Limit values of the weighting coefficient 
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The value of the weighting coefficient  r should be limited not to lost the effect of adding the unit to 
the main matrix diagonal by rounding due to the limit number of bits (double precision number is 
assumed) for saving quantities in a computer memory  

The number of poles is designated as  p and SH fff 2=∆the relative bandwidth is defined as 

1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2

1

2

3

4

Range of the pass-band filter bandwidth in %

N
um

be
r o

f f
ilt

er
 p

ol
es

Number 
of poles

p = 1 p = 2 p = 3 p = 4

(r2ATA)i,i 2r2 6r2 20r2 70r2

rMAX ≈ 7x106 4x106 2x106 1.1x106

100Δf  > 7x10-6 % 0.025 % 0.5 % 2 %

The second generation filter of the Vold-Kalman order filter

See [Tůma,2005]
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Cholesky factorization for solution of the linear 
equation system
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L = UT

0

0

U = {ui,j}

*=
0

0 0

0

B = LU L,U triangular matrices

1,11,1 bu =
1,12,12,1 ubu =

2
2,12,22,2 ubu −=

Nj ,...,3=
2,2,2,2 −−−− = jjjjjj ubu

( ) 1,1,21,2,1,1 −−−−−−− −= jjjjjjjjjj uuubu
2

,2
2

,1,, jjjjjjjj uubu −− −−=

The algorithm for the 1st generation filter

The Cholesky factorization of a positive 
definite matrix saves the band property of 
resulting  triangular matrices

LU x = y

Substitution U x = z

gives L z = y

z = L-1y    =>    x = U-1z

Fot the first generation filter the matrices 
L and U have  3 non-zero diagonals
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Solution of the linear equation system as a 
filtration process
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Forward reduction L z = y (L = UT ) Backward substitution U x = z

….. …..

(reverse order)

1,111 uyz =

( ) 2,212,122 uzuyz −=

Npj ,...,1+=

( ) jjpjjpjjjjjj uzuzuyz ,,1,1 ... −−−− −−=

NNN uzx ,1=

( ) 1,1,122 −−−−− −= NNNNNNN uxuzx

( ) 1,...,1+−= pNj

( ) jjpjpjjjjjjj uxuxuzx ,,11, ... ++++ −−=

pjjpjjjj uuuuuu ++ →→→ ,1,1,0 ...,,Steady-state values ….

( ) ( )
( ) p

p
F zuzuuzY

zZzH −− +++
==

...
1

1
10

( ) ( )
( ) p

p
B zuzuuzZ

zXzH
+++

==
...

1

10

The transfer functions of the p-order IIR filter in the Z-transform 

Forward reduction  HF(z) Backward substitution HB(z)
( )zY ( )zZ ( )zX

The forward reduction and backward substitution results in the zero-phase digital filter, which is 
analogous to the filtfilt function in Matlab 
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The first generation VK-filter, the steady-state 
values of the filter coefficients
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The Cholesky factorization of B results in

The values of the matrix elements are given by EAAB += Tr 2

( ) 2
2,2,2

2
1,1,1

22
,0 ,2,12 rbbbcrbbbcrbb jjjjjjjjjj ===−===++== −+−+

( ) 2
2

2
10002111022 ,, uubuuuubuubu −−=−==

0
2
2

2
1

2
012110220 ,, buuubuuuubuu =++=+=

By using the substitution 

( ) ( ) ( ) ( )Ω+Ω++++
=Ω

2cos2cos2
1

202110
2
2

2
1

2
0

2

uuuuuuuuu
eH j

( ) ( )Ω−Ω=Ω− sincos je j it is obtained

( ) ( ) 




 





 −+ω−





 −−ω

π
=∆ rTrTf SS 212cosarccos212cosarccos1

( ) ( ) ( ) 2
1

2cos2cos2
1

210

2
=

Ω+Ω+
=Ω

bbb
eH j

Solution of the previous equation gives 

The 3-dB bandwidth                                      of the filters HF(z) and HB(z), connected in series, 
may be obtained by substitutions 0

2
2

2
1

2
012110220 and, buuubuuuubuu =++=+=

( )( )2cos1

121

SCTf
r

ω−

−
∆π

≈( ) ( ) ∆Ω≈∆Ω≈∆Ω∆Ω+ω=Ω sin,1cos,SCTAssuming we obtain

( ) SSH ffff −=∆ 2

(TS – the sampling interval, ωC – the filter central frequency)
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The second generation VK-filter, the steady-state 
values of the filter coefficients for the one-pole filter
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The Cholesky factorization of the matrix B results in

The values of the matrix elements

The 3-dB bandwidth of two one-pole low pass in series filter results from the value of the frequency 
response

are given by EAAB += Tr 2

2
1,1,1

2
,0 ,12 rbbbrbb jjjjjj −===+== −+

2
,1,,1,1,1,1 , jjjjjjjjjjjj ubuubu −−−−− −==

2
100011 , ubuubu −==

( )
2

11
2

10

2
=

+
= Ω−

Ω
jLP

j

euu
eG

( )( )f
r

∆π−
−

=
cos12

12

For the steady-state values of the filter coefficients we obtain   
⇒ 0

2
1

2
0110 , buubuu =+=

Solution gives a value of the weighting coefficient  r as a function of the relative bandwidth 

SH fff 2=∆The relative bandwidth of the low pass filter is equal to 
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Relationship between the filter bandwidth 
and the weighting coefficient

100

Number 
of poles

Weighting coefficient r as the exact function of the filter 
relative bandwidth

Approximation

1

2

3

( )( )f
r

∆π−
−

=
cos12

12

( ) ( )ff
r

∆π+∆π−
−

=
2cos2cos86

12

( ) ( ) ( )fff
r

∆π−∆π+∆π−
−

=
3cos22cos12cos3020

12
3

20.02075690
f

r
∆

≈

2

150.06520973
f

r
∆

≈

f
r

∆
≈

0.2048624

The second generation

f∆

( ) ( )( )21cos 2ff ∆π−≈∆π

( )( )2cos1

121

SCTf
r

ω−

−
∆π

≈

The first generation

SH fff 2=∆The relative bandwidth is defined as

TS – the sampling interval, 
ωC – the filter central frequency,
Δ f – the relative bandwidth

( ) SSH ffff −=∆ 2

See [Tůma2005]
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MATLAB  M-files
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function x = MyVoldKalman1(y,dt,f,r)

c  = 2*cos(2*pi*f*dt);
N  = max(size(y)); N2 = N-2;
e  = ones(N2,1);
A  = spdiags([e -2*c(1:N2) e],0:2,N2,N);
AA  = r*r*A'*A +speye(N,N);
x   = AA\y;

First generation

Second generation
function x = MyVoldKalman2(y,dt,f,r,filtord)

N  = max(size(y));
if filtord==1, NR = N-2; else NR = N-3; end;
e  = ones(NR,1);
if filtord==1,

A = spdiags([e –2*e e],0:2,NR,N);
else

A = spdiags([e –3*e 3*e -e],0:3,NR,N);
end;
AA = r*r*A'*A +speye(N); yy = exp(-j*2*pi*cumsum(f)*dt).*y;
x  = 2*AA\yy;

Sparse matrix functions

speye – identity matrix

spdiags – diagonal matrix

\ - left matrix divide
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Effect of the weighting coefficient value on filter 
selectivity

2f /fs

abs(H)

The first generation filter
The second generation filter

Band-pass Filter

0               f0 f

0               f0 f

1

0

1

0

dB

The frequence response H(jf) of the V-K filter

2f /fs

Multiplication of the equation 
right side by exp(-jω0t) turns 
the band pass filter to the low 
pass filter

102

2-pole filter

The low-pass filter roll-off 
=  -40 dB * pole number 
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Example no.1: VK-Filter frequency response
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Signal Analyser, MATLAB

Time History

0
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frequency

V-K Filter centre
frequency

The second generation 
of the V-K filter

Vold-Kalman Filter : Generator : SweptSine
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1-pole filter 2-ple filter 3-pole filter 4-pole filter

1-pole filter

4-pole 
filter
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Example no.2: Run-up of a motor
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Time History : Interpolated RPM : RPM

0
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Time [s]
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Time History : Vibration - Input : Vibration
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Multicomponent filtration

105

For extraction of  P components from the measured signal, the objective function is as follows

( ) PiJ H
i

P

ik
k

kk
H
iiiH

i

,...,1,
1

==−++=
∂
∂ ∑

≠
=

0yCxCCxEB
x

The global minimum of the objective function is resulting from solving the linear system of  equations

P matrix 
blocks

P matrix blocks





















=







































+

+
+

yC

yC
yC

x

x
x

EBCCCC

CCEBCC
CCCCEB

H
P

H

H

PP
H
P

H
P

P
HH

P
HH

......
*

...
............

...

...

2

1

2

1

21

2212

1211

PxP–block matrix
The large-scale system of linear equations BxΣ = b is solved by using the Preconditioned Conjugate 
Gradients (PCG) method. This method combines the iterative solution of  B M-1 u = b and  xΣ = M-1u 

( ) min...11 →+++= ηηεεεε T
P

T
P

T2rJ

bxB =Σ

where M is a preconditioner matrix, which is easily inverted. The iterative part requires the initial 
guess of xΣ

where E is the unity matrix, i
T
ii r AAB 2= , for the 1st generation is Ci = E and for the 2nd generation

Ai = A

( )jij
H
i ≠= ,ECC

See [Feldbauer& Holdrich] 
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Example no.3: PCG algorithm in decomposition 
of two combined signals
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Envelope

Time
1000 samples * components 

= 2000 equations

The sum of two harmonic signals 
with the same unity amplitude

The frequency of the 1st 
component

… the 2nd component

Residuum

Iterations
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ANALYTIC SIGNALS AND HILBERT 
TRANSFORM

David Hilbert (January 23, 1862 – February 14, 
1943) was a German mathematician, recognized 
as one of the most influential and universal 
mathematicians of the 19th and early 20th 
centuries. He discovered and developed a broad 
range of fundamental ideas in many areas, 
including invariant theory and the axiomatization
of geometry. He also formulated the theory of 
Hilbert spaces, one of the foundations of 
functional analysis.

107
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Analytic signals

108

fP π=ω 2

Real harmonic signal Complex analytic signal

The analytic signal is a complex signal with an imaginary part, which is the Hilbert transform 
of the signal real part. The decomposition of a real signal into harmonic components results 
in the sum of harmonic functions. Each of this function can be decomposed into the pair 
of the phasors, which are rotating in the opposite direction. The analytic signal creates 
the phasors rotating in the positive direction. 

The analytic signal is a tool for amplitude and phase demodulation of  the modulated 
harmonic signals.

To obtain the analytical signal the phasor XN has to be removed and the phasor XP has to be 
multiplied by 2. 
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Analytic signals in the 3D-space
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fP π=ω 2

Helix

The position vector is rotating in the complex plane. If the 2D space is extended to 3D space  
with the third axis as a time axis then the vector end point moves on the helix trajectory.



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Analytic signals and the Hilbert transform

110

Analytic signalHilbert transform

PXZ 2=

PP XjY −=
NN XjY =

NNN XXjjYj −==

NP XXX +=

PX
NX

2
π

2
π

−

2
π

=+  jTime signal

• Fast Fourier Transform (FFT)
• Digital filters 

Evaluation of the Hilbert transform 
using …

( )
( )

P

NPNP

NPNP

X
XXXX
YYjXXZ

2=
=−++=
=+++=

NP XXX +=

( )NP

NP

NP

XXj
XjXj

YYY

−−=
=+−=

=+=

PPP XXjjYj =−=

The complex position vectors as phasors, which are corresponding to a harmonic signal.    

The phasors Y associated to the Hilbert transform of a pair of phasors X are obtained by rotation 
these phasors by the angle of +/- π/2 radians.

The complex plane
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Definition of the Hilbert transform as the Cauchy 
principal value integral
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-0,8
-0,6
-0,4

-0,2
0

0,2
0,4

0,6
0,8

-15 -10 -5 0 5 10 15

The Hilbert Transform can be defined as the principal value integral

The Cauchy principal value (P.V.) expands the class of certain improper integrals for which the 
finite integral exists as for example the integral

( ) ( )











+ ∫∫

ε+ξ

ε−ξ

+→ε

b

a

xxfxxf ddlim
0

where ( ) ( ) ( ) ∞=∫±∞=∫∈ξ
ξ

ξ


b

a
xxfxxfba d,d,,

( ) ( )
∫
+∞

∞−

τ
τ−
τ

π
= d..1

t
xVPty

Let x(t) be an impulse Dirac function δ(t), then the Hilbert transformer impulse response is as 
follows

( ) ( )
tt

VPtg
π

=τ
τ−
τδ

π
= ∫

+∞

∞−

1d..1
( )tg

t
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The Hilbert transform as a transfer function
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To turn the non-decaying function to the decaying function, let the frequency transfer function 
be extended   

( ) ( )
( ) 




<ω
>ω−

=
ω
ω

=ω
0,
0,

j
j

jX
jYjH HT

( ) ( )

( ) ( ) ( )

( )22
00

0

0

11
2

d
2

dd
2
1d

2
1

t
te

jt
e

jt
jeej

ejejejHtg

jtjttjtj

tjtjtj

+σπ
=








−σ

+
+σ

−
π

=ω−
π

=

=







ω−ω

π
=ωω

π
=

∞
ω−σ−ω+σ−

∞+
ω+σω−ω−σω−

+∞
ω+σω−

∞−

ω+σω
+∞

∞−

ω

∫

∫∫∫

The impulse response is an inverse Fourier transform of the frequency transfer function

See [http://w3.msi.vxu.se/exarb/mj_ex.pdf]

( ) ( ) ( )ω=ω




<ω
>ω−

=ω
→σσω

σω−

jHjH
je

je
jH HT0

lim
0,
0,

( ) ( ) ( ) tt
ttgtgHT π

=
+σπ

==
→σ→σ

1limlim 2200

The Hilbert transform of a time function to another time function can be described by the standard 
transfer function in the frequency domain. Let X(jω) and Y(jω) be the Fourier transform of the 
original continuous time signal x(t) into the same signal y(t), respectively. 
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Analytic signals and the Hilbert transform of 
some signals
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Real part Imaginary part Envelope Phase

( )tx ( )ty ( )tE ( )tβ

( )tA ωsin ( )tA ω− cos

( )tA ωcos ( )tA ωsin tω

2π−ωt

A

A

Signal Hilbert 
Transform

( )tx ( )ty

( )tωsin ( )tω− cos

( )tωcos ( )tωsin

( )11 2 +t ( )12 +tt

( ) ttsin ( )( ) ttcos1−

( )tδ tπ1

The envelope and phase of the harmonic signals Hilbert transform
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The use of FFT for computing the Hilbert 
transform

114

 

2 
π 

2 
π 

( ) ( ){ }ωjYIFFTky =( ) ( )ωω jYjX →( ) ( ){ }kxFFTjX =ω

NN XjY = PP XjY −=

( ) ( )( )
( ) ( )PP

PPP
XjX

XjXjY
ReIm

ImRe
−=

=+−=( ) ( )( )
( ) ( )NN

NNN

XjX
XjXjY

ReIm
ImRe

+−=
=+=

i. The Fast Fourier Transform (FFT) of the real input time record to obtain phasors rotating in 
positive and negative directions 

ii. Rotation the phasor XN in the positive direction by the angle of + π/2 radians  and the phasor XP
in the negative direction by the angle of - π/2 radians (exchanging the real and imaginary parts)

iii. The Inverse Fast Fourier Transform (FFT) of the rotated phasors YP and YN to obtain the Hilbert 
transform of the input record.

The algorithm for computing the Hilbert transform is broken down into three steps

⇒ ⇒

Diagram showing how to transform the phasors XP and XN to the phasors YP and YN

i) ii) iii)

Exchanging the real and imag parts Exchanging the real and imag parts
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The use of digital filters for computing the 
Hilbert transform
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Frequency response function

( ) ( )
( ) 




<ω<π−
>ω>π+−

== ω

ω
ω

0,
0,

S

S
Tj

Tj
Tj

HT Tj
Tj

eX
eYeG

S

S
S

( ) ( ) ( )
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

+=π
=

=

=ω
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= ∫
π+

π−

ωω
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2,0

d
2
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knn
kn

TeeGng S
nTjTj

HTHT
SS

Impulse response

Let X(e jωTS) and Y(e jωTS) be the Fourier transform of the original sample sequence xt into the 
sample sequence yt, respectively. 
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1,0

-50 -40 -30 -20 -10 0 10 20 30 40 50
Index n

g H
T

←∞− ∞+→

Impulse Response of the Ideal Hilbert transformer

The nonzero response for the negative index n means that the impulse response corresponds to 
a non-causal system. Response precedes the change at the system input.



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Hilbert transformer filters

116
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Frequency response function of the Hilbert 
transformer 
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The 160-order FIR filter with the finite impulse 
response n = -80,…,+80  

Hilbert Transformer

The impulse response of FIR filters is the same as these filters non-zero coefficients. If the infinite impulse 
response is shorten to a finite number of non-zero samples then the this response will corresponds to a FIR filter. 
Due to the linearity of the filter phase the symmetric or anti-symmetric coefficients are preferred. As in the case 
of FIR filter the impulse response has to be delayed in such a way that the impulse response of the non-causal 
system is changed to the response of the causal system. The filter is called as a Hilbert transformer or a 90-degree 
phase shifter. 
The digital filter acts as a Hilbert transformer only for a frequency band in which the magnitude of the frequency 
response function is equal to unit. The impulse response which is corrected with the use of the Kaiser window 
smooths the frequency response function.

Windowing Windowing
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Minimum order of the Hilbert Transformer as a 
FIR filter

117
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Creation analytical signals with the use of the 
digital filter
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Consider the complex analytic signal zt composed 
of  the real part xt and its Hilbert transform as the 
imaginary part yt

See [Mitra]( ) ( )
( ) 




<ω<π−
>ω>π+

== ω

ω
ω

0,0
0,2

S

S
Tj

Tj
Tj

T
T

eX
eZeH

S

S
S

ttt jyxz +=
The discrete Fourier transform of the sample 
sequences is as follows

( ) ( ) ( )SSS TjTjTj ejYeXeZ ωωω +=
and its conjugate symmetric formula 

( ) ( ) ( )SSS TjTjTj ejYeXeZ ω−ω−ω− −= ***

Two previous formulas may be added together or 
subtracted each other. It results in 

( ) ( ) ( )( )
( ) ( ) ( )( ) 2

2
*

*

SSS

SSS

TjTjTj

TjTjTj

eZeZejY
eZeZeX

ω−ωω

ω−ωω

−=

+=

If these formulas are added together and since by 
assumption,  Z(e jωTS) = 0 for –π < ωTS < 0, 
then the transfer function, relating  Z(e jωTS) to 
X(e jωTS), is obtained  

The frequency response H(e jωTS) of the 
discrete-time filter is as follows

This formula confirms the previous result 
obtained with the use of phasors. 

ωTS

–π π 0 

2 
H(e jωTS) 

–π π 0

1 

G(e jωTS) 

ωTS

–π/2 π/2 
Consider the half-band lowpass filter with the 
frequency response G(e jωTS), which is obtained 
by shifting the frequency response H(e jωTS) by 
π/2 radians and scaling by a factor 1/2. 

The filter H(e jωTS)  is referred to as a complex 
half-band filter while the filter G(e jωTS) is 
referred to as a real half-band filter . 

( ) ( )




π<ω<π
π<ω<

== π+ωω

S

STjTj

T
T

eHeG SS

2,0
20,1

2
1 2
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FIR complex half-band filters
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The relationship between the transfer function of  a complex half-band filter H(z) and a real half-
band filter G(z) is as follows

See [Mitra]

( ) ( )jzGjzH −= 2

where  f (TSn) is the impulse response of F(z). 
After substitution, we obtain the FIR complex half-band filter

FIR complex half-band filter 
Consider a wideband linear-phase filter F(z) of degree (N-1)/2 with a passband from 0 to 2ωP, 
a transition band from 2ωP to π, and a passband ripple 2δ. Since (N-1)/2 is odd, F(z) has a zero
at z = -1. Define    

( ) ( ) ( )[ ]221

2
1 zFzzG N += −−

G(z)  is the desired half-band lowpass filter and has an impulse 
response

( )
( )

( )
( )








−=
−≠=

21,21
21odd,,0

even,2

Nn
Nnn

nnf
ngHB

( ) ( ) ( ) ( )[ ] ( ) ( )221221 zjFzzFjzjzH NN −+=−+−= −−−−

( ) 21−− Nz

( )2zF −

xt

Re(zt)

Im(zt)

FIR realization of a complex 
half-band filter 
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The use of Matlab in design of the Hilbert 
transformer 
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The wideband linear-phase filter F(z) of degree 13
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M
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de
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index

0,0
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0,4
0,6
0,8
1,0
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0,0 0,2 0,4 0,6 0,8 1,0

Normalized frequency

M
an

itu
de

>> b=remez(13,[0 0.85 0.9 1], [1 1 0 0],[2 0.05]) ;
Impulse response of wideband filter 

Frequency response of wideband filter 

The Hilbert transformer F(-z2) of degree 26

>> bb=remez(26,[0.1 0.9], [1 1],'Hilbert');
Impulse response of Hilbert transformer

Frequency response of Hilbert transformer

Note that the filter has only 13 non-zero coefficients
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IIR complex half-band filters
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See [Mitra]

A large class of stable IIR real coefficient half-band filter of odd order can be expressed as

( ) ( ) ( )[ ]2
1

12
02

1 zAzzAzG −+=

where A0(z) and A1(z) are stable allpass transfer functions. After substitution, 

xt Re(zt)

Im(zt)

IIR realization of a complex half-band filter 

( ) ( ) ( )2
1

12
0 zAjzzAzH −+−= −

( )2
0 zA −

( )2
1 zA −

1−z

( ) ( )jzGjzH −= 2
we obtain the transfer function of a complex half-band filter  



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

The use of Matlab in design of the Hilbert 
transformer 
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Phase difference between the allpass functions 
A0(-z2) and A1(-z2).  
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G
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n
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G
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n

( ) 1-

-1
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z.
z.zA

+
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=

( ) 1-
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z
zzA

+
+

=

( ) ( ) ( )[ ]2
1

12
02

1 zAzzAzG −+=

0

90

180

270
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di

ff 
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 d
eg

re
es

A0(z) and A1(z) are allpass filters of order 1 

Frequency response of a real coefficient half-band filter designed for ωP = 0.4π, ωS = 0.6π, δP = 0.0155

Frequency response of a complex half-band filter 
( ) ( ) ( )2

1
12

0 zAjzzAzH −+−= −

Note that the phase difference is 900 for the positive frequency band and 2700 for the negative frequency 
band .

π2

π2 π2

See [Mitra]
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HARMONIC SIGNAL MODULATION
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Time History : Generator : Sine1/AM - 1
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Time [s]

[U
]
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Modulation of harmonic signals

• Carrying component …………………..
(harmonic signal without modulation)
Amplitude  A
Phase
Initial phase

• Amplitude modulation  signal ………...
• Phase modulation signal ………….…...
• Mixed modulation (amplitude and phase)

124

Phase

Modulation signals

Amplitude

Modulated signal Carrying component phase 

( ) ( )( ) ( )( )PMPMPMAMAMAM tnttAtx ϕ+ωβ+ϕ+ωϕ+ωβ+= coscoscos1 00

( ) ( )000 cos ϕ+ω= tAtx

( ) ( )AMAMAMA ttx ϕ+ωβ= cos
( ) ( )PMPMPMP ttx ϕ+ωβ= cos

( ) 00 ϕ+ω=ϕ tt
0ϕ

Nomenclature

See [Tůma, 1997] 



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Amplitude modulation of harmonic signals 
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Time History : Generator : Sine1/AM - 1
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( ) ( )( ) ( )ttAtx AMAMAM 0coscos1 ωϕ+ωβ+=
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AMAM fπ=ω 2
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Autospectrum : Generator : Sine1/AM - 1
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modulation frequency

modulation index

carrying frequency

Sideband components  f0+fAM,  f0-fAMCarrying component
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Spectrum of the amplitude-modulated signal
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( ) ( )( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )( )( )AMAMAMAMAM

AMAMAMP

AMAMAM

ttAtA
ttAtA

ttAtx

ϕ+ω+ω+ϕ−ω−ωβ+ω=
=ωϕ+ωβ+ω=

=ωϕ+ωβ+=

000

0

0

coscos2cos
coscoscos

coscos1

( ) ( ) ( )( ) ( )( )AMAMAMAMAMAM tAtAtAtx ϕ+ω+ωβ+ϕ−ω−ωβ+ω= 000 cos2cos2sin

Upper sideband component, 
frequency f0 + fAM, amplitude AβAM /2

Decomposition of the modulated signal on the carrying component and its sidebands

Lower sideband component, 
frequency f0 - fAM, amplitude AβAM /2

The carrying component, 
frequency f0, amplitude A

Phasor model
+f0

-f0

AβAM /4

Re

Im

-f

+f

A /2

f0 + fAM

f0 - fAM
Rotational 
frequency
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Phase modulation of harmonic signals 
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Time History : Generator : Sine1/PM 
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( ) ( )( )PMPMPM ttAtx ϕ+ωβ+ω= coscos 0

PMPM fπ=ω 2
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The family of the sideband components  f0+fPM, …,  f0 –
fPM, …

Carrying component



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Spectrum of the phase-modulated signal
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( ) ( ) ( )tptptx −+ +=

( ) ( )( ) ( ) ( )Φβω=Φβ+ω=+ cosexpexp
2
1cosexp

2
1

00 PMPM jtjtjtp

( ) ( ) ( ) ( ) ( )( ) ( )( )( )
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




Φ−ω+Φ+ωβ+ωβ= ∑
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=
+ itjitjjJtjJtp i

i
PMiPM 00

1
00 expexpexp

2
1

( ) ( )
( )∑

∞+

=

+

+
−







 β=β

0

2

!!
1

2k

kik
PM

PMi ikk
J

( ) ( ) ( )PMi
i

PMi JJ β−=β− 1

( ) ( )( )tsttx PM+ω= 0cos ( ) ( ),cos Φβ= PMPM ts PMPM t ϕ+ω=ΦLet be a phase-modulated signal, where

where Ji(β) is the Bessel function of the first kind, for integer orders  i = 0, 1, 2, … 

+f0
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Im

-f

+f
f0 + fPM

f0 - fPM
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frequency

Phasor model
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Effect of the phase modulation index on the 
sidebands
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Autospectrum : Sine1/PM - Beta = 5
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Amplitude and phase modulation I
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Time History : Generator : Sine1/PM+AM 
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Amplitude and phase modulation II
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modulation 
indexes

Time History : Generator : Sine1/PM+AM 
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AMPLITUDE AND PHASE DEMODULATION

132



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

P
w

w

Analytic signals and amplitude modulation

( ) ( )( ) ( )ttmAtx M 0coscos1 ωω+=
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Time [s]

Sideband 
components

Carrying 
component

Analytic signalLet x(t) be a real amplitude modulated harmonic 
signal described by envelope-and-phase form 

Modulation signal ω0+ωM

ω0-ωM

ω0
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Analytic signals and phase modulation
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Let x(t) be a real phase modulated harmonic 
signal described by envelope-and-phase form

0ω
Phase

Modulation signal

Sideband 
components

Carrying 
component

Analytic signal

( ) ( )MtAtx ϕ∆+ω= 0cos

Mt ϕ∆+ω0
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Demodulation of the modulated harmonic signal
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Firstly the carrier component and its adjacent sidebands have to be filtered using the band pass 
filter. The output signal is designated by x(t)

Secondly the Hilbert transform y(t) of the x(t) signal has to be evaluated using either the FFT 
transform or the Hilbert transformer to create the analytic signal 

The amplitude modulation signal, referred to as envelope, is as follows
( ) ( ) ( )tyjtxtz +=

( ) ( ) ( ) ( )22 tytxtztA +==

The principal value of the phase modulation signal is as follows

( ) ( )( ) ( ) ( )( )txtytzt arctanArgP.V. ==ϕ

The phase in radians can be computed by the previous formula while taking into the count the value 
sign of x(t) and y(t). The result will be in the wrapped form which is limiting the angle to the 
interval ( ) π+≤ϕ<π− tP.V.

To finish the phase demodulation process the wrapped phase has to be unwrapped into
( )( ) ( )( ) ( )tntztz π+= 2Argarg

where n(t) is a sequence of integer numbers, which depends on time t, for that arg(t) is without 
discontinuities larger than a permissible value.  
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The Shannon–Nyquist theorem for sampling of 
the phase
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S
nn f

ftft π
=∆π=∆ω=ϕ−ϕ=ϕ∆ −

221

πππ
=≤⇒≤⇒≤

2
22

2
12

SS
S f

f
f
fff

π≤
π

=ϕ∆
Sf
f2

π≤ϕ∆

Let the phase difference during the sampling interval be written in the form 

The Shannon – Nyquist theorem requires

It can be concluded that the phase change during the sampling interval has to be less then π radians

It is assumed sampling a continuous harmonic signal

( ) ( ) ( )tfttx π=ω= 2coscos

The phase of the mentioned harmonic signal is as follows
( ) tftt π=ω=ϕ 2

This phase change property is basic for unwraping phase signal. 
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Unwrapping phase and removing the linear 
trend
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( )π≤ϕ∆⇒≤ samplff2Removing discontinuities

π−

π+

π2
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Algorithm of the phase unwrapping is based on the phase sampling theorem

The phase demodulation results in in the following signal, which is of the sawtooth wave form. 

Unwrapping algorithm
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An alternative procedure for computing 
instantaneous frequency
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( ) ( )
( )
( )

( ) ( ) ( ) ( )

( ) ( )tytx
dt

tdytxty
dt

tdx

dt
tx
tyd

dt
tdt 22

arctan

+

−
=


















=
ϕ

=ω

( ) ( )
( ) 






=ϕ

tx
tyt arctan

( ) ( ) ( )tytxte 22 +=

Phase ……………....

Angular frequency …

Envelope ..…………

( ) ( ) τ∫ τω=ϕ dt
t

0
Phase ………………

It is not always necessary to calculate the unwrapped phase. To calculate the instantaneous 
frequency of the modulated harmonic signal it is possible to use the following formulas

Generator : SweptSine - 1
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Time [s]

Frequency : SweptSine - 1

0
10
20
30
40

0,0 0,2 0,4 0,6 0,8 1,0

Time [s]

Time : Generator 1 : SweptSine - 1

0
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40

0,0 0,2 0,4 0,6 0,8 1,0

Time [s]

Let the frequency of the swept sine signal be running-up from 10 to 30 Hz 

Rectangular window Hanning window
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Envelope analysis
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Time History : Sine / AM
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The amplitude demodulation is referred to as envelope analysis. The examples shows 
computing the envelope for a broadband signal or signal zoomed around a resonance frequency 
with the use of the bandpass filter.  

The envelope is computed for narrow 
band part of frequency spectrum

The envelope is computed for the full 
frequency spectrum
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Phase demodulation
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Autospectrum : Sine 20 Hz /PM 2 Hz
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Conversion of the frequency modulated impulse 
signal to the harmonic signal 
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Time : Expanded Time(Encoder1)
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