

PIEZOELEKTRICKÁ KERAMIKA

2.12.2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

105

- Struktura, fázový diagram
- Chemické složení
- Feroelektrické vlastnosti
- Materiálové vlastnosti
- Limity použitelnosti

Piezoelektrická keramika

PZT keramika – $Pb(Zr_{x}Ti_{1-x})O_{3}$ ●Pb²⁺●O²⁻●Ti⁴† Zr ⁴⁺ P $T > T_C$ $T < T_{C}$

2.12.2011

Směs fází na úrovni základních buněk krystalové mřížky Koexistence dvou fází na morfotropní fázové hranici (MPB)

Obě fáze mají feroelektrické vlastnosti

Dopování – isovalentní nebo heterovalentní ionty

2.12.2011

Modifikace PZT keramiky

A-pozice nebo B-pozice

$$(A_1^{2+}A_2^{2+})(B_1^{4+}B_2^{4+})O_3.$$

A²⁺ isovalentní Ca²⁺, Sr²⁺, Ba²⁺
 B⁴⁺ Sn⁴⁺
 O²⁻ 1-5%

Table 4.2. Modification of PZT by substitution of Sr^{2+} ions in $Pb_{1-x}Sr_x$ $Zr_{0.53}Ti_{0.47}O_3$

x	$T_{\rm C}, \ ^{\circ}{\rm C}$	$\epsilon_{33}{}^T/\epsilon_0$	$k_{ m p}$
0	385	544	0.48
0.01		584	0.49
0.05	360	1,002	0.50
0.10	328	1,129	0.59
0.125	290	1,237	0.47
0.15	265	1,260	0.43
0.20	242	1,257	0.34

G.Helke, K.Lubitz: Piezoelectric PZT ceramics, in Piezoelectricity, Springer Verlag 2008

2.12.2011

Heterovalentní dopování – generace kyslíkových nebo olovnatých vakancí

Designation	Small io	ns: B ⁴⁺ -positions	Large ions: A ²⁺ -positi		
	Ion	Ion radius ^a	Ion	Ion radius*	
PZT	Ti^{4+}	0.68	Pb^{2+}	1.20	
	Zr^{4+}	0.80	Sr^{2+}	1.13	
Donors, "softener"	Nb^{5+}	0.70	La^{3+}	1.22	
	Sb^{5+}	0.62	Bi^{3+}	0.96	
	W^{6+}	0.68	Nd^{3+}	1.04	
Acceptors, "hardener"	Mn^{2+}	0.80	K^+	1.33	
	Fe^{3+}	0.64	Ag^+	1.26	
	Al^{3+}	0.50	_		

Table 4.3. Substitution of heterovalent ions in the perovskite lattice

 $^{\rm a}{\rm Ion}$ radius in $10^{-10}\,{\rm m}$

G.Helke, K.Lubitz: Piezoelectric PZT ceramics, in Piezoelectricity, Springer Verlag 2008

Dopování heterovalentními ionty mění materiálové vlastnosti

	Dopant	$T_{\rm C}, \ ^{\circ}{\rm C}$	$\varepsilon_{33}^T / \varepsilon_0$	Tan $\delta,\ 10^{-3}$	$k_{ m p}$	d_{33} , pC/m	Q_{m}
	soft						
(1)	Nb^{5+}	365	1700	15	0.60	374	85
(2)	Sb^{5+}	>350	1510	15	0.46	410	95
(3)	Nd^{3+}	330	1600	20	0.60	355	100
	hard						
(4)	Fe^{3+}	300	820	4	0.59	240	500
(5)	Ni ³⁺	330	1000	8	0.50	200	350

Table 4.4. Modification of PZT with donor and acceptor material

(1) $Pb_{0.98}(Zr_{0.52}Ti_{0.48}Nb_{0.024})O_3$, (2) $Pb_{0.96}Sr_{0.05}(Zr_{0.52}Ti_{0.46}Sb_{0.02})O_3$ [42],

(3) Pb_{0.97}Nd_{0.02}(Zr_{0.54}Ti_{0.46})O₃ [43], (4) Pb(Zr_{0.525}Ti_{0.472}Fe_{0.003})]O₃ [44],

(5) Pb_{0.95}Sr_{0.05}[(Zr_{0.52}Ti_{0.44})Ni_{0.04})]O₃ [42]

G.Helke, K.Lubitz: Piezoelectric PZT ceramics, in Piezoelectricity, Springer Verlag 2008

Tří a vícesložkové systémy

 $PbTi0_3 - PbZr0_3 - (PbB'_{1-\alpha}B''_{\alpha}0_3)$

Table 4.6. Composition of complex compounds [1, 10, 54, 55, 62]

Complex compounds	Ions	
(A ¹⁺ _{1/2} A ³⁺ _{1/2})TiO ₃	A^{1+}	Li, Na, K, Ag
	A^{3+}	Bi, La, Ce, Nd
$Bi(B^{2+}_{1/2}Mn_{1/2})$	B^{2+}	Sr, Zn, Ni
$A^{2+}(B^{1+}_{1/4}B^{5+}_{3/4})TiO_3$	A^{2+}	Pb, Sr
	B^{1+}	Li, K, Ag
$Pb(B^{2+}_{1/3}B^{5+}_{2/3})TiO_3$	B^{2+}	Mg, Ni, Zn, Mn, Co, Fe, Cu
$Pb(B^{3+}_{1b}B^{5+}_{1/2})TiO_3$	B^{3+}	Mn, Sb, Al, Fe, Co, Yb, In
1/2 -/-/	B^{5+}	Nb, Sb, Ta
Pb(B ³⁺ _{2/3} B ⁶⁺ _{1/3}) TiO ₃	B^{6+}	W, Te, Re
$Pb(B^{2+}_{1/2} B^{6+}_{1/2}) TiO_3$		

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Další keramické systémy

BaTiO₃ (BT) Lead metaniobate - PbNb₂O₆ Bi₄Ti₃O₁₂ – Aurivilliovské struktury (Na_{1/2}Bi_{1/2})TiO₃ – NBT (K_{1/2}Bi_{1/2})TiO₃ – KBT NBT-BT, KBT-BT

Tuhé roztoky s MPB patří k nejúspěšnějším složením keramik

Intenzita elektrického pole 2-4kV/mm, při teplotách 120-140°C

2.12.2011

Průměrování směru polarizace

Spontánní polarizace v zrnech – libovolná orientace, která se přeorientovává v poli

Relationship Between Ideal Single Crystal Polarization P_S and Expected Ceramic Polarization $\overline{\mathbf{P}}$ for Some Representative Ferroelectrics.

Symmetry Change Associated with Ferroelectricity	Polarization Directions	Number of Equivalent Directions	$\frac{\overline{P}}{P_s}$
$2/m \rightarrow 2$	$\langle 010 \rangle$	2	0.5
$m3m \rightarrow 4mm$	$\langle 100 \rangle$	6	0.831
$m3m \rightarrow mm2$	$\langle 110 \rangle$	12	0.912
$m3m\rightarrow3m$	$\langle 111 \rangle$	8	0.866

Průměrný dipólový moment

2.12.2011

Obecně to může být libovolný feroelektrický materiál Nejúspěšnější je perovskitová struktura Minerál perovskit CaTiO₃, druh $m\overline{3}m \rightarrow 4mm$ Perovskitová keramika – tuhé roztoky -Morfotropní fázová hranice (MPB)

$$m\overline{3}m \to 4mm \qquad m\overline{3}m \to mm2$$
$$m\overline{3}m \to 3m$$

Elektromechanické tenzory – třída symetrie ∞*mm*, směr polarizace 3

$$\begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} s_{11} & s_{12} & s_{13} & 0 & 0 & 0 \\ s_{12} & s_{11} & s_{13} & 0 & 0 & 0 \\ s_{13} & s_{13} & s_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{66} \end{pmatrix}$$

2.12.2011

Nejlepší na materiálové vlastnosti je složení v blízkosti MPB, nejlepší polarizovatelnost

Vlastnosti soft a hard PZT

Table 7.14 Material data for selected piezoelectric ceramics available commercially. Pz24 and Pz29 are trademarks of Ferroperm Piezoceramics A/S (Denmark); N-8 and N-10 (NEPEC®NPM) are trademarks of Tokin (Japan); Vibrit 1100 and Vibrit 202 are trademarks of Siemens (Germany); PZT5H and PZT8 are trademarks of Morgan Matroc, Ltd. (UK); APC841 and APC856 are trademarks of American Piezo Ceramics International, Ltd. (USA)

		soft PZT					hard PZT				
Property		Pz29	N-10	Vibrit 1100	PZT 5H	APC 856	Pz24	N-8	Vibrit 202	PZT 8	APC 841
s_{11}^E	10^{-12} Pa ⁻¹	17.0	14.8	14.20	16.4	15.0	10.4	11.2	11.80	11.5	11.7
s_{12}^E		-5.78		-3.70			-3.01		-4.50		
s_{13}^E		-8.79		-6.50			-7.58				
s_{33}^{E}		22.9	18.1	20.60	20.8	17.0	23.4	15.2	13.80	13.5	17.3
s_{44}^E		54.1		43.00			23.0		31.00		
ε_{11}^T	80	2440	5000	4750			810	1450		1290	
ε_{33}^T		2870	5440	4500	3400	4100	407	900	1000	1100	1350
k _p	%	64.3	50	70	65.0	65	50.1	56	50	51.0	60
k_t		52.4	62	50			52.0	52			
k_{31}		36.96	34	42	39.0	36	29.8	34	28	30.0	33
k33		75.23	68	71	75.0	73	66.9	67	60	64.0	68
k_{15}		67.07	66	67	68.0	65	32.7	78	57	55.0	67
d ₃₁	10^{-12}CN^{-1}	-243	-287	-315	-274	-260	-57.8	-99	-90	-97	-109
d33		574	635	640	593	620	194	226	205	225	275
d_{15}		724	930	895	741	710	151	652	295	300	450
d_h		88.2			45		78.4			31	
Θc	°C	235	145	177	195	150	330	320	330	300	320
ρ	kgm ⁻³	7460	8000	8100	7450	7500	7700	7720	7700	7600	7600
tanδ	%	1.6	1.0	2.5	2.5	2.7	0.2	0.4	0.7	0.2	0.35
Q_m	1	49	70	50	65	72	370	1600	800	1000	1400

J.Tichý, J.Erhart, E.Kittinger, J.Přívratská: Fundamentals of Piezoelectric Sensorics, Springer Verlag 2010

Vlastnosti jiných piezoelektrických keramik

Property	T	doped PbTiO ₃	lead metaniobate	bismuth titanate	BaTiO ₃ ceramics
s_{11}^E	$10^{-12} Pa^{-1}$	7.33		10.6	8.55
s_{12}^E		-1.61		-2.28	-2.61
s_{13}^E		-0.536		-12.0	-2.85
s ^E ₃₃		7.31		44.2	8.93
s_{44}^E				26.2	23.3
ε_{11}^T	<i>ε</i> 0			127	
ε_{33}^T		208	219	124	1350/1700
k_p	%	7.4		3.3	37.8
$\dot{k_t}$		40.9	33.6	24.9	
k_{31}		4.59		2.09	20.8
k ₃₃		39.66		8.67	49.3
k_{15}				4.53	47.6
d ₃₁	10^{-12} CN ⁻¹	-5.33		-2.26	-79
d33		46.0	83.0	19.1	191
d_{15}				7.79	270
d_h		35.3		14.6	
Θ_C	°C	400	500	650	130
ρ	kgm ⁻³	7550	5720	6530	
tanδ	%	1.4	0.6	0.4	
Q_m	1	314	17	465	

Table 7.16Material properties of selected non-PZT ceramic materials. Pz34, Pz35 and Pz46 aretrademarks of Ferroperm Piezoceramics A/S (Denmark)

J.Tichý, J.Erhart, E.Kittinger, J.Přívratská: Fundamentals of Piezoelectric Sensorics, Springer Verlag 2010

2.12.2011

Teplotní závislosti vlastností

Morgan Electroceramics, UK

2.12.2011

Limity aplikovatelnosti

- Teplota (*T*<*T*_C) depolarizace pyroelektrickými náboji
- Mechanický tlak
- Elektrické pole (*E*<*E*_c)
- Paralelní
- Antiparalelní
- Kolmé

na směr polarizace

Table 7.15 Applicability limits for the electric field and mechanical stress for selected PZT types (PXE[®] is registered trademark of Philips)

Material grade	E_m [Vmm ⁻¹]	T _m [MPa]
PXE 59	350	5
PXE 5	300	2.5
PXE 52	100	_
PXE 41	300	10
PXE 42	400	25
PXE 43	500	35

PIEZOELEKTRICKÉ KERAMICKÉ REZONÁTORY A AKTUÁTORY

2.12.2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

123

- Vibrační mód rezonátoru
- Náhradní obvod a impedance rezonátoru
 - Statická a dynamická
- Rezonátory pro měření materiálových vlastností
 - tyčinka, deska, disk
 - vibrační módy
- Jiné speciální rezonátory
- Aktuátory
 - Bimorf a unimorf
 - jiné ohybové aktuátory
 - mnohovrstvé struktury

Vibrační mód rezonátoru

- Tvar rezonátoru
- Krystalografická symetrie materiálu (keramika ∞mm)
- Vzor elektrod
- Směr polarizace keramiky

$$S_{ij} = s^E_{ijkl} T_{kl} + d_{kij} E_k$$

Elektromechanické tenzory – třída symetrie ∞*mm*, směr polarizace 3

$$\begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{15} & 0 & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} s_{11} & s_{12} & s_{13} & 0 & 0 & 0 \\ s_{12} & s_{11} & s_{13} & 0 & 0 & 0 \\ s_{13} & s_{13} & s_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{66} \end{pmatrix}$$

2.12.2011

Příklad: piezoelektrický jev

$$S_{\mu} = s_{\mu\nu}^{E} T_{\nu} + d_{k\mu} E_{k}$$
$$D_{i} = d_{i\nu} T_{\nu} + \varepsilon_{ik}^{T} E_{k}$$

$$S_{\mu} = s_{\mu\nu}^{D} T_{\nu} + g_{k\mu} D_{k}$$
$$E_{i} = -g_{i\nu} T_{\nu} + \beta_{ik}^{T} D_{k}$$

$$T_{\mu} = c_{\mu\nu}^{E} S_{\nu} - e_{k\mu} E_{k}$$
$$D_{i} = e_{i\nu} S_{\nu} + \varepsilon_{ik}^{S} E_{k}$$

$$T_{\mu} = c_{\mu\nu}^{D} S_{\nu} - h_{k\mu} D_{k}$$
$$E_{i} = -h_{i\nu} S_{\nu} + \beta_{ik}^{S} D_{k}$$

2.12.2011

Tenzorová a maticová notace

Elastické vlastnosti

$$c_{\alpha\beta} = c_{ijkl}$$
 $\alpha, \beta = 1, 2, \dots, 6$

$$s_{\alpha\beta} = \begin{cases} s_{ijkl} & \alpha, \beta = 1, 2, 3\\ 2s_{ijkl} & \alpha = 1, 2, 3; \beta = 4, 5, 6\\ 4s_{ijkl} & \alpha, \beta = 4, 5, 6 \end{cases}$$

 $e_{i\alpha} = e_{ijk}$ $\alpha = 1, 2, \dots, 6$

$$d_{i\alpha} = \begin{cases} d_{ijk} & \alpha = 1,2,3\\ 2d_{ijk} & \alpha = 4,5,6 \end{cases}$$

tensor	11	22	33	23,32	13,31	12,21
matrix	1	2	3	4	5	6

Pohybová rovnice

bez objemových sil

$$\frac{\partial T_{ij}}{\partial x_i} + f_i = \rho \frac{\partial^2 u_i}{\partial t^2}$$

 $f_{i} = 0$

Maxwellova rovnice

bez volných nábojů (izolátor)

$$\frac{\partial D_i}{\partial X_i} = \rho_{free} \qquad \qquad \rho_{free} = 0$$

+okrajové podmínky a systém deformace a napětí

Náhradní obvod v rezonanci

- Staticky kapacitance
- Dynamicky kapacitance měnící se na induktanci, rezonance

paralelní větve obvodu pro každou rezonanci

rezonance $Y \rightarrow \infty$, $Z \rightarrow 0$ antirezonance $Y \rightarrow 0$, $Z \rightarrow \infty$

2.12.2011

Standardní rezonátory

ANSI/IEEE Std 176-1987 IEEE Standard on Piezoelectricity

a / t > 10

IRE Std.1961 Measurements of Piezoelectric ceramics

d / t > 20d / t > 40, pro harmonické

Příčné vibrace tenké tyčinky

$$k_{31}^2 = \frac{d_{31}^2}{s_{11}^E \varepsilon_{33}^T}$$

2.12.2011

Podélné vibrace tenké tyčinky

Rezonance

$$\tan(\eta_r) = \frac{1}{k_{33}^2} \eta_r$$

Faktor elektromechanické vazby

piezoelektricky vázané "overtones are not harmonics"

$$k_{33}^2 = \frac{d_{33}^2}{s_{33}^E \varepsilon_{33}^T}$$

Tloušťkově rozpínavé vibrace tenké desky

2.12.2011

 \bigcirc

Tloušťkově střižné vibrace tenké desky

Radiální vibrace tenkého disku

Napěťový systém $T_r \neq 0, T_{II} = 0$
$ \begin{array}{c} & X_{3} \\ & X_{2} \\ & & X_{2} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & $
Rezonance $Y = j\omega C_0 \left[2(k^P)^2 \frac{J_1(\eta)}{(1 - \sigma^P)J_1(\eta) - \eta J_0(\eta)} - 1 \right]$
$\frac{\eta_r J_0(\eta_r)}{\eta_r} = 1 - \sigma^p \qquad (1)^2$
$J_1(\eta_r) = I - 0$ $c^P - c^E - \frac{(c_{13}^E)^2}{2} e^P - \frac{d_{31}}{2}$
piezoelektricky volné, $c_{11} - c_{11} - c_{11} - c_{23}^E, c_{31} - s_{11}^E + s_{12}^E,$
", overtones are not harmonics" $2(a^P)^2$
$\eta = 2\pi fr_{\sqrt{\frac{\rho}{c_{11}^{P}}}}, C_{0} = \frac{\pi r^{2} \varepsilon_{33}^{P}}{2t} \qquad \qquad$

2.12.2011

Např. tloušťkově střižné vibrace tenkostěnné trubky (akcelerometry)

rezonance naprázdno

$$\Delta_1 \equiv \begin{vmatrix} J_1\left(\frac{a}{b} x\right) & Y_1\left(\frac{a}{b} x\right) \\ J_1(x) & Y_1(x) \end{vmatrix} = 0$$

rezonance nakrátko

$$\lambda^{2} = \rho \omega^{2} / c_{44}^{D} \qquad x \equiv \lambda b \qquad \Delta_{2} \equiv \frac{1}{x \ln(a/b)} \begin{bmatrix} J_{0}\left(\frac{a}{b}x\right) - J_{0}(x) \end{bmatrix} \begin{bmatrix} J_{1}\left(\frac{a}{b}x\right) - \frac{b}{a} J_{1}(x) \end{bmatrix} \begin{bmatrix} Y_{0}\left(\frac{a}{b}x\right) - Y_{0}(x) \end{bmatrix} \begin{bmatrix} Y_{1}\left(\frac{a}{b}x\right) - \frac{b}{a} Y_{1}(x) \end{bmatrix}$$

N.T.Adelman, Y.Stavsky: J.Acoust.Soc.Amer. 57, 2 (1975) 356-360

2.12.2011

Možnost jejich použití pro měření vlastností Příklad: Tloušťkově střižné vibrace tenké desky Rezonance Vyšší harmonické (overtone)

$$\tan(\eta_{r}) = \frac{1}{k_{15}^{2}} \eta_{r} \qquad \frac{\eta_{r3}}{\eta_{r1}} = \frac{f_{r3}}{f_{r1}} \qquad \tan(\eta_{r3}) = \frac{1}{k_{15}^{2}} \eta_{r3}$$
$$\eta_{r} = 2\pi f_{r} t \sqrt{\rho s_{55}^{D}} \qquad \tan(\eta_{r1}) = \frac{1}{k_{15}^{2}} \eta_{r1}$$
$$\tan(\frac{f_{r3}}{f_{r1}} \eta_{r1}) = \frac{f_{r3}}{f_{r1}} \tan(\eta_{r1})$$

2.12.2011

Nestandardní geometrie rezonátorů

Tenká deska-tyčinka Tloušťkově střižný mód kmitů Čtvercová deska Obrysově rozpínavý

IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants—The Electromechanical Coupling Factor, Proceedings IRE (1958) 764–778

Tloušťkově střižné vibrace tenké desky/tyčinky

Pohybová rovnice

$$u_{1,33} = \frac{\rho}{c_{55}^E} \ddot{u}_1 \qquad u_1(x_3,t) = [A\cos(kx_3) + B\sin(kx_3)]e^{j\omega t}$$
$$k = \omega_{\sqrt{\frac{\rho}{c_{55}^E}}}$$

Maxwellova rovnice

$$D_{1,1} = 0 \qquad \qquad D_1 = C e^{j\omega t}$$

Integrační konstanty A, B, C

Mechanicky volné hlavní povrchy destičky/tyčinky $x_3 = \pm b$ $T_5 = 0$

$$x_1 = \pm l \qquad E_1 = \frac{U}{2l} e^{j\omega t}$$

Napětí na rezonátoru

$$Ue^{j\omega t} = \int_{-l}^{+l} E_1 dx_1$$

$$Ue^{j\omega t} = \int_{-l}^{+l} E_1 dx_1$$

2.12.2011

Určíme z okrajových podmínek

$$A = 0$$

$$B = \frac{U}{2l} \frac{1}{1 - k_{15}^2} \frac{e_{15}}{c_{55}^D k \cos(kb)}$$

$$C = \frac{U}{2l} \frac{\varepsilon_{11}^S}{1 - k_{15}^2}$$

Posuvný proud

$$I_{P} = \frac{\partial}{\partial t} \left(\int_{-b-w}^{+b+w} D_{1} dx_{2} dx_{3} \right) = j \omega U e^{j\omega t} \left(\varepsilon_{11}^{S} \frac{2wb}{l} \right) \left[1 + \frac{k_{15}^{2}}{1 - k_{15}^{2}} \frac{\tan(kb)}{kb} \right]$$

Admitance

$$Y = \frac{I_P}{Ue^{j\omega t}} = j\omega C_0 \left[1 + \frac{k_{15}^2}{1 - k_{15}^2} \frac{\tan(kb)}{kb} \right]$$

2.12.2011

Tloušťkově střižné vibrace tenké desky/tyčinky

Rezonance $Y \rightarrow \infty$

$$\eta_{r} = 2\pi f_{r} b_{\sqrt{\frac{\rho}{c_{55}^{E}}}} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots \qquad f_{r1} = \frac{1}{4b} \sqrt{\frac{c_{55}^{E}}{\rho}}$$

Antirezonance $Y \rightarrow 0$

$$\tan(\eta_a) = \frac{k_{15}^2 - 1}{k_{15}^2} \eta_a \qquad \eta_a = 2\pi f_a b_{\gamma} \sqrt{\frac{\rho}{c_{55}^E}}$$

2.12.2011

EVROPSKÁ I

2.12.2011

Vibrační módy čtvercové desky

FIG. 1. Longitudinal vibration of a thin square plate. Mode 1: $U_1 = C \cos(\pi/a)x \sin(\pi/a)y$, $V_1 = C \sin(\pi/a)x \cos(\pi/a)y$. Dotted lines—crystal at rest. Full lines—crystal vibrating.

H.Ekstein: Free vibrations of anisotropic bodies, Phys.Rev. 66, 5 (1944) 108-118

FIG. 2. Longitudinal vibration of a thin square plate. Mode 2: $U_2 = C[\sin (\pi/a)y - (\pi/4)] \cos (\pi/a)x$, $V_2 = C[-\sin (\pi/a)x + (\pi/4)] \cos (\pi/a)y$.

Dotted lines-crystal at rest. Full lines-crystal vibrating.

Obrysový

2.12.2011

FIG. 3. Longitudinal vibration of a thin square plate. Mode 3: $U_3 = C \cos kx$, $V_3 = C \cos ky$. Dotted lines crystal at rest. Full lines—crystal vibrating.

střižný

FIG. 5. Shear vibration of a thin square plate (calculated). $U = \cos(\pi/a)y$, $V = \cos(\pi/a)x$. Dotted line—crystal at rest. Full line—crystal vibrating.

Dvourozměrný systém, plošná rezonance v obou směrech při stejné frekvenci

Souřadný systém ve středu rezonátoru Příčný rozměr 2*a* Tloušťka 2*b*

$$T_{3} = T_{4} = T_{5} = 0$$

$$D_{1} = D_{2} = 0, E_{1} = E_{2} = 0$$

$$D_{3} \neq 0, E_{3} \neq 0$$

$$u_{1}(x_{1}), u_{2}(x_{2}), u_{3}(x_{3})$$

$$E_{3} = \frac{U}{2b} e^{j\omega t}$$
$$E_{3} = -\varphi_{,3}$$

2.12.2011

T_3 =0 uvnitř rezonátoru

$$T_{1} = c_{11}^{E} u_{1,1} + c_{12}^{E} u_{2,2} + c_{13}^{E} u_{3,3} + e_{31} \varphi_{,3} \qquad T_{1} = c_{11}^{P} u_{1,1} + c_{12}^{P} u_{2,2} + e_{31}^{P} \varphi_{,3}$$

$$T_{2} = c_{12}^{E} u_{1,1} + c_{11}^{E} u_{2,2} + c_{13}^{E} u_{3,3} + e_{31} \varphi_{,3} \qquad T_{2} = c_{12}^{P} u_{1,1} + c_{11}^{P} u_{2,2} + e_{31}^{P} \varphi_{,3}$$

$$T_{3} = c_{13}^{E} u_{1,1} + c_{13}^{E} u_{2,2} + c_{33}^{E} u_{3,3} + e_{33} \varphi_{,3} = 0 \qquad T_{3} = 0$$

$$D_{3} = e_{31} u_{1,1} + e_{31} u_{2,2} + e_{33} u_{3,3} - \varepsilon_{33}^{S} \varphi_{,3} \qquad D_{3} = e_{31}^{P} u_{1,1} + e_{31}^{P} u_{2,2} - \varepsilon_{33}^{P} \varphi_{,3}$$

$$c_{11}^{P} = c_{11}^{E} - \frac{\left(c_{13}^{E}\right)^{2}}{c_{33}^{E}}, \quad c_{12}^{P} = c_{12}^{E} - \frac{\left(c_{13}^{E}\right)^{2}}{c_{33}^{E}}, \quad \sigma^{P} = \frac{c_{12}^{P}}{c_{11}^{P}} = -\frac{s_{12}^{E}}{s_{11}^{E}}$$
$$e_{31}^{P} = e_{31} - e_{33}\frac{c_{13}^{E}}{c_{33}^{E}}, \quad \varepsilon_{33}^{P} = \varepsilon_{33}^{S} + \frac{e_{33}^{2}}{c_{33}^{E}}$$

2.12.2011

Pohybové rovnice

$$\rho \dot{u}_1 = c_{11}^P u_{1,1}$$
$$\rho \dot{u}_2 = c_{11}^P u_{2,2}$$

Maxwellova rovnice

$$u_{1}(x_{1},t) = A\sin(kx_{1})e^{j\omega t}$$
$$u_{2}(x_{2},t) = B\sin(kx_{2})e^{j\omega t}$$
$$k = \omega \sqrt{\frac{\rho}{c_{11}^{P}}}$$

$$D_{3,3} = 0$$

• Mechanicky volné okraje desky

$$x_1 = \pm a, x_2 = \pm a$$
 $T_1 = 0, T_2 = 0$

• Elektrické pole – konstantní uvnitř rezonátoru

$$x_3 = \pm b \qquad E_3 = \frac{U}{2b} e^{j\omega t}$$

Integrační konstanty

$$A = B = -\frac{U}{2b} \frac{e_{31}^{P}}{c_{11}^{P} + c_{12}^{P}} \frac{1}{k\cos(ka)}$$

2.12.2011

Posuvný proud

$$I_{P} = \frac{\partial}{\partial t} \left(\int_{-a-a}^{+a+a} D_{3} dx_{1} dx_{2} \right) = -j\omega U e^{j\omega t} \left(\varepsilon_{33}^{P} \frac{2a^{2}}{b} \right) \left[1 + \frac{2(e_{31}^{P})^{2}}{\varepsilon_{33}^{P}(c_{11}^{P} + c_{12}^{P})} \frac{\tan(ka)}{ka} \right]$$

Admitance

$$Y = \frac{I_P}{Ue^{j\omega t}} = -j\omega C_0 \left[1 + \frac{2(e_{31}^P)^2}{\varepsilon_{33}^P(c_{11}^P + c_{12}^P)} \frac{\tan(ka)}{ka} \right]$$
$$C_0 = \varepsilon_{33}^P \frac{2a^2}{b}$$

2.12.2011

Admitance

$$Y = \frac{I_p}{Ue^{j\omega t}} = j\omega C_0 \left[1 + \frac{k_p^2}{1 - k_p^2} \frac{\tan(ka)}{ka} \right]$$
$$C_0 = \varepsilon_{33}^P \frac{2a^2}{b}, k_p^2 = \frac{2d_{31}^2}{\varepsilon_{33}^T \left(s_{11}^E + s_{12}^E\right)}, \varepsilon_{33}^P = \varepsilon_{33}^T \left(1 - k_p^2\right)$$

2.12.2011

Resonance $Y \rightarrow \infty$

$$\eta_r = 2\pi f_r a_n \sqrt{\frac{\rho}{c_{11}^P}} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots \qquad f_{r1} = \frac{1}{2a} \sqrt{\frac{c_{11}^P}{\rho}}$$

Antiresonance $Y \rightarrow 0$

$$\tan(\eta_{a}) = \frac{k_{p}^{2} - 1}{k_{p}^{2}} \eta_{a} \qquad \eta_{a} = 2\pi f_{a} a_{n} \sqrt{\frac{\rho}{c_{11}^{P}}}$$

Teplotní koeficient veličiny x $TK(x) = \frac{1}{x} \left(\frac{\partial x}{\partial \Theta} \right)_{\Theta}$

Příklad: rezonanční frekvence tloušťkově rozpínavých vibrací tenké desky

$$TK(f_r) = TK(\eta_r) - \frac{1}{2}\alpha_{33} + \alpha_{11} - \frac{1}{2}TK(c_{33}^D)$$

$$\eta_r = \pi f_r t \sqrt{\frac{\rho}{c_{33}^D}} \qquad \frac{TK(\eta_r)}{TK(k_t)} = \frac{2k_t^2}{k_t^2(1 - k_t^2) - \eta_r^2}$$

2.12.2011

J.Erhart, M.Franclíková, L.Rusin: Piezoelectric resonators with engineered domain structures, Ferroelectrics **376**, 1 (2008) 99-115

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Homogenně polarizovaná tyčinka

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

2.12.2011

Nehomogenně polarizované tyčinky

2.12.2011

 \bigcirc

US patent No.2,830,274 (1958), C.A.Rosen et al. Piezoelektrický transformátor Rosenova typu

Piezoelektrické transformátory – komerční produkty

Integrované s elektronikou – CCFL electronics

- Rosen-type (e.g. Fuji & Co., Japan)
- "Transoner" (Face Electronics, USA)
- Multilayer structures (e.g. Noliac A/S, Denmark)

A CCFL Transoner is only 3mm Thick

Transoners Made in the Face Labs: 40 watt, 5 watt, 15 watt, & 30 watt

Radiální polarizace - nehomogenní

$$E(r) = \frac{U}{\ln(r_2/r_1)} \frac{1}{r}$$

2.12.2011

PT Rosenova typu

Rectangular Rosen PT		
APC 841, $l = 14$ mm, $w = 7$ mm, $b = 1$ mm,		
$V = 98 \mathrm{mm}^3$		
No-load parameters $Z_L \rightarrow \infty$, $\eta \rightarrow 0$		
$\left({U_2}/{U_1} ight)_\infty = 22$	$f_{\rm r} = 113.85 \ \rm kHz$	
Optimum load parameter $Z_{\rm L}$ = 10k Ω		
$\left(U_2/U_1\right)_{OPT}=3$	$f_{\rm r} = 113.05 \ \rm kHz$	
$\eta_{OPT} = 77\%$	$f_{\rm r} = 113.05 \ \rm kHz$	
Peak power		
$P_{\rm IN} = 56.5 {\rm mW}$	$f_{\rm r} = 113.10 \rm kHz$	
$P_{\rm OUT} = 43.6 {\rm mW}$	$f_{\rm r} = 113.08 \rm kHz$	
Peak power density		
$P_{\rm IN}/V = 0.58 {\rm W cm}^{-3}$		
$P_{\rm OUT}/V = 0.44 {\rm W cm}^{-3}$		
Input and Output impedance		
$Z_{\rm IN} = 167\Omega$	$f_{\rm r} = 112.9 \ \rm kHz$	
$Z_{\rm IN} = 92.2 {\rm k}\Omega$	$f_{\rm a} = 115.4 \rm kHz$	
$Z_{OUT} = 1.68 k\Omega$	$f_{\rm r} = \overline{113.0 \text{ kHz}}$	
$Z_{OUT} = 14.5 M\Omega$	$f_{\rm a} = \overline{123.4 \text{ kHz}}$	

Disc Rosen PT	
APC 841, $r = 10$ mm, $b = 0.8$ mm,	
$V = 251 \mathrm{mm}^3$	
No-load parameters $Z_L \rightarrow \infty$, $\eta \rightarrow 0$	
$\left(U_2/U_1\right)_{\infty}=19$	$f_{\rm r} = 120.25 \text{ kHz}$
Optimum load parameter $Z_{\rm L} = 11 {\rm k}\Omega$	
$\left(U_2/U_1\right)_{OPT}=5$	$f_{\rm r} = 119.60 \ \rm kHz$
$\eta_{OPT} = 15\%$	$f_{\rm r} = 119.60 \ \rm kHz$
Peak power	
$P_{\rm IN} = 251.9 {\rm mW}$	$f_{\rm r} = 119.63 \rm kHz$
$P_{\rm OUT} = 37.6 {\rm mW}$	$f_{\rm r} = 119.60 \ \rm kHz$
Peak power density	
$P_{\rm IN}/V = 1.00 {\rm W cm}^{-3}$	
$P_{\rm OUT}/V = 0.15 {\rm W cm}^{-3}$	
Input and Output impedance	
$Z_{\rm IN} = 20.5\Omega$	$f_{\rm r} = 120.25 \ \rm kHz$
$Z_{\rm IN} = 342 {\rm k}\Omega$	$f_{\rm a} = 128.94 \ \rm kHz$
$Z_{\rm OUT} = 7.2 {\rm k}\Omega$	$f_{\rm r} = 120.21 \ \rm kHz$
$Z_{\rm OUT} = 54.0 {\rm k}\Omega$	$f_{\rm a} = 120.48 \ \rm kHz$

Výkonová hustota pro PT - srovnání

Hustota výkonu se značně zvětšila od první aplikace PT

K.Uchino: Piezoelectric motors and transformer, in Piezoelectricity, Springer Verlag 2008

2.12.2011

Přímý piezoelektrický jev – senzory Obrácený piezoelektrický jev – aktuátory, generace ultrazvuku

Mechanická deformace je přímo úměrná napětí

Typické hodnoty d_{31} ≈ 100-300pC/N (10⁻¹²C/N=10⁻¹²m/V), d_{33} ≈ 200-600pC/N pro PZT keramiku

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Ohybová deformace, provoz staticky, kvazistaticky nebo dynamicky pro aktuátor

Antiparalelní (sériový)

Paralelní (Zapojení jednoho nebo obou PZT elementů!)

- (Volná) Výchylka (free stroke)
- Blokovací síla
- Rezonanční frekvence
- Výchylka při rezonanci

2.12.2011

(Volná) výchylka (paralelní bimorf)

$$\delta = -\frac{6s_{11}^m d_{31}(h+t_m)L^2}{2s_{11}^m (4h^3 + 6h^2 t_m + 3ht_m^2) + s_{11}^E t_m^3} V$$

bez kovové desky

$$\delta = \frac{3d_{31}L^2}{4h^2}V$$

2.12.2011

Blokovací síla (paralelní bimorf)

$$F_{bl} = -\frac{3}{2} \frac{d_{31}}{s_{11}^E} \frac{(h+t_m)W}{L} V$$

Bez kovové desky

$$F_{bl} = -\frac{3}{2} \frac{d_{31}}{s_{11}^E} \frac{hw}{L} V$$

2.12.2011

• Rezonanční frekvence (s kovovou deskou)

$$f_{ri} = \frac{\lambda_i^2 (2h + t_m)}{4\pi L^2} \sqrt{\frac{1}{3\rho_P s_{11}^E} \frac{1 + 3(1 + 2B)^2 + 4AB^3}{4(1 + B)^2 (1 + BC)}}$$
$$A = \frac{s_{11}^E}{s_{11}^m}, \quad B = \frac{t_m}{2h}, \quad C = \frac{\rho_m}{\rho_P}$$

 $\lambda_1 = 1.8751, \lambda_2 = 4.6941, \lambda_3 = 7.8751$

Výchylka při rezonanci (bez kovové desky)

$$\delta = \frac{3d_{31}V\sin(\Omega L)\sinh(\Omega L)}{4h^2\Omega^2(1+\cos(\Omega L)\cosh(\Omega L))}$$
$$\Omega = \sqrt{\frac{2\pi f}{a}}, \quad a^2 = \frac{EI}{\rho A}, \quad I = \frac{1}{12}wh^3$$

2.12.2011

Podobně jako bimorf ale v kruhovém uspořádání

Komplikované matematické řešení

2.12.2011

Parametry unimorfu

(statická) výchylka

- homogenní unimorf $\delta(r)$
- heterogenní unimorf _δ

$$(r) = \frac{3Vd_{31}}{4h^2}(r^2 - a^2)$$
$$(r) = \frac{3Vd_{31}}{8h^2} \left[2 - \left(\frac{2h_1}{h}\right)^2\right](r^2 - a^2)$$

2.

(b)

1.0

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Piezoelektrické keramické aktuátory

Ohybové elementy (bimorf, unimorf, moonie, cymbal, THUNDER, Helimorph, RAINBOW)

Výchylky až 1-3mm a síly až 0.1N!

Depolarizace – nežádoucí změny v uspořádání dipólových momentů, možná ztráta piezoelektrických vlastností

Depolarizační vlivy:

- Teplota (<1/2T_c)
- Mechanický tlak (zvláště pak tah!)
- Elektrické pole opačné polarity než polarizační pole

Provozní podmínky pro keramiku

- Bipolární

2.12.2011

Mechanický tlak – předpětí

2.12.2011

THin layer **UN**imorph **D**riv**ER** and sensor Speciální lepení při vyšší teplotě – mechanické předpětí Posunutí až 8mm a síla 100N!

2.12.2011

Dvojitá spirální keramická struktura

Velké posunutí 5mm a síla 1N!

2.12.2011

Reduced And INternally Biased Oxide Wafer Monolitická keramická struktura

Je vytvořen vnitřní gradient chemického složení ve směru tloušťky destičky – gradient piezoelektrického koeficientu pak vede na velmi vysokou přípustnou deformaci až 500%!

2.12.2011

Moonie a cymbal

Kompozitní struktury – kovové čepičky a PZT disk slepeny pevně dohromady; radiální pohyb keramiky se transformuje na osový pohyb středů čepiček Výchylka až 50µm, malá síla; velmi vysoká citlivost

2.12.2011

Provozní parametry ohybových aktuátorů

Mnohovrstvé aktuátory

Mnoho tenkých vrstev PZT keramiky Mnohovrstvé segmenty se skládají na sebe

s mechanickými zesilujícími rameny (Cedrat Technologies, Francie)

Vysoká blokovací síla (kN), velmi nízké posuvy (≈1-10µm) bez mechanického zesílení

Piezo-Electric Diesel Injector

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Vstřikovač paliva do motoru

Cedrat Technologies, Francie

2.12.2011

Srovnání parametrů aktuátorů

Nízká výchylka – vysoká blokovací síla

Craig D. Near, *Piezoelectric Actuator Technology*, Presented at SPIE Smart Structures and Materials Conference, February 27, 1996

2.12.2011

Výchylka většinou není pro přímé použití dost velká Zesilování výchylky – pákové mechanismy nebo hydraulika

Piezoelektrické ventily

Kuličkový ventil piezo-stack

Kuželkový ventil 2x THUNDER

2.12.2011

Dávkování malých objemů tekutin – ohybové elementy mají vhodné parametry

Bimorf jako aktivní prvek ventilu

Provozní mód piezoelektrického elementu

(a) příčný nebo (b) podélný mód piezoelementu -membrány

2.12.2011

Škrtící klapka plynu ovládaná ultrazvukovým piezoelektrickým motorkem - US patent No. 4,915,074

2.12.2011

Ultrazvukové piezoelektrické motorky – běžící vlna Shinsei motor

Obr. z www.krazytech.com

2.12.2011

Ultrazvukový piezoelektrický motorek – eliptický pohyb povrchu statoru – tření o rotor

www.pcbmotor.com

2.12.2011

Langevinův měnič

Paul Langevin (1872 -1946)

Eliptický pohyb hrotu upevněného na PZT keramice

www.pi.ws

2.12.2011

Rozprašování kapalin ultrazvukem

Aplikace léků na sliznice v malinkých kapkách Zvlhčování vzduchu Nanášení kapek na povrchy vláken atd.

Velikost kapek se dá definovaně řídit – µm Pro frekvence 1-2 MHz

2.12.2011

Povrch kapaliny se pohybuje díky ultrazvukové vlně

Střední velikost částic

Úzké rozdělení velikosti částic

Dá se snadno kontrolovat atomizované množství tekutiny a velikost částic

F_S

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Atomizace kapalin

- Ultrazvukové zvlhčovače
- Inhalátory léků

2.12.2011

Atomizér uvnitř cigarety

2.12.2011

Generace a aplikace ultrazvuku

- Lékařský diagnostický, léčebný
- Technické použití pro svařování, NDT, sonochemii, ...

2.12.2011

Piezoelektrické zapalovače

Výboj mezi elektrodami, náboj vzniká piezoelektricky úderem kladívka mechanickým tlakem

2.12.2011

Senzory síly, tlaku, zrychlení (např. Kistler, Švýcarsko)

2.12.2011

Deformace piezoelektrického prvku se seismickou hmotou

Aplikace pyroelektřiny

- IČ senzory pro dálková ovládání
- Proximity sensor ovládání dveří, střežení prostor
- Noční vidění kamery
- Měření rozdělení teploty termokamery

