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Agenda I

• Introduction
– Motivation for advanced control techniques

– Classical approach

– Brief history of model predictive control

• Linear Model Predictive Control
– Formulation of linear MPC

– Analysis of linear MPC

– Hybrid systems and linear MPC

– Optimization Algorithms for linear MPC
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Agenda II

• Nonlinear Model Predictive Control
– Formulation of nonlinear MPC

– Analysis of nonlinear MPC

– Numerical methods for nonlinear MPC

• Practical Model Predictive Control
– Practical formulations of MPC

– Development cycle of industrial MPC

– Demonstration of an application
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Motivation for Advanced Control

• Advanced control technologies in process control
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Motivation for Advanced Control

• Instrumentation layer

– Interface to the controlled technology

– Actuators and sensors

– Number of I/O points may be large – more than several 
thousands

– Periodical reading\writing, the measured values are 
marked by time stamp and are organized in a process 
history database
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Motivation for Advanced Control

• Basic control layer
– Ensures basic functionality and safe operation

– Provides backup solution for the advanced control

– Basic monitoring and visualization tools

– Provides basic control modes for the operators – man/aut/cas

– Used as a gate for the advanced control technologies
• System prestabilization

• Nonlinearity reduction

14.5.2010
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Motivation for Advanced Control

• Advanced control layer
– Advanced optimization and coordination

– Interaction with the basic control layer by coordination of 
basic control loops by manipulating their set-points

– Slower sampling periods than in the basic control layer

– Static/dynamic optimization

– Basic requirements on advanced control layer
• Multivariable control

• Various constraints handling

• Optimal solution
MPC is a candidate…
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Motivation for Advanced Control

• Planning layer
– Top supervisory layer

– Entry points for the plant technologists and managers

– Based on economic-related information and provides 
complex overview of the plant performance

– Main tools are namely databases, visualization tools and 
specialized computation routines

– Specification of goals for the advanced control layer, i.e. 
set-point, constraints, optimality conditions, resource 
availability, etc.
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Motivation for Advanced Control

• Model Predictive Control is ...
– A control technology that enables to delivery the decided 

goals specified for the controlled process

– NOT a technology that could replace all the control 
techniques.
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Motivation for Advanced Control

• Model Predictive Control
– Success of applications depends namely on the skills of the 

application engineers responsible for MPC implementation 
to particular process

– Transformation of MPC problem to an optimization 
problem is relatively simple

– The difficult part is formulation of the control problem as a 
MPC problem
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Agenda

• Introduction
– Motivation for advanced control techniques

– Classical approach

– Brief history of model predictive control

• Linear Model Predictive Control
– Formulation of linear MPC

– Analysis of linear MPC

– Hybrid systems and linear MPC

– Optimization Algorithms for linear MPC
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Classical approach

• Three general optimization methods
– Mathematical programming

– Discrete maximum principle

– Dynamic programming
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Mathematical programming

• Assume a discrete time dynamic system

• The optimal control problem is defined as a 
criterion minimization problem
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Mathematical programming

• This is a problem of mathematical programming
– Minimization of criterion

– Limiting conditions

• To solve the optimization problem, let us define 
Lagrangian
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Mathematical programming

• The Hamiltonian is defined as

• and the Lagrangian can be written in the form 
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Mathematical programming

• Simplified notation

• If the function J is differentiable with respect to x(t) 
and u(t), the increment of the criterion along the 
trajectories x(t) and u(t) equals to
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16



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Mathematical programming

• The necessary condition for the optimum:

• And therefore
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Mathematical programming

• For the solution of discrete optimal control problem it is necessary to 
find the solution to system of difference equation
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Maximum Principle

• Assume state space equations of discrete time 
system

• The optimal control minimizes the criterion

14.5.2010
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Maximum Principle

• The Hamiltonian is equal to

• The maximum principle states that the optimal 
control maximizes the Hamiltonian, therefore
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Maximum Principle

• The system equation is given by

• The conjugate system is given by

initial condition

final condition
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Maximum Principle

• Summary
– Discrete maximum principle changes the problem of the 

optimal control to two point boundary value problem of 
two set of difference equations and maximization of 
Hamiltonian with respect to control u(t)
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Dynamic programming

• Principle of optimality
– From arbitrary state x(t) our next decission must be 

optimal, without respect how the state is reached by 
previous decisions. It follows from well known proverb 
"Don't cry on the spilled milk". It is based on obvious fact 
that you cannot change the past but your future must be 
controlled in optimal way.
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Dynamic programming

• Principle of imbedding

– Single problem can be nested on the whole set of 
similar problems and solving such set of problems 
the solution of original problem is obtained.
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Dynamic programming

• Assume an optimality criterion in the form

• The Bellman function is defined as

• which can be reformulated as  
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Dynamic programming

• Resulting Bellman equation 

• The solution to the control problem is then given by

boundary condition
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Agenda

• Introduction
– Motivation for advanced control techniques

– Classical approach

– Brief history of model predictive control

• Linear Model Predictive Control
– Formulation of linear MPC

– Analysis of linear MPC

– Hybrid systems and linear MPC

– Optimization Algorithms for linear MPC
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MPC – brief history

• Used by the industrial practitioners before having 
solid theoretical base

• First known formulation of a moving horizon 
controller using linear programming

14.5.2010
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MPC – brief history

• At present, MPC is a standard advanced control 
technology for the process industry
– The practical applications have been limited to the linear 

models

– Sometimes, it is beneficial to define and implement the 
nonlinear MPC
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Agenda

• Introduction
– Motivation for advanced control techniques

– Classical approach

– Brief history of model predictive control

• Linear Model Predictive Control
– Formulation of linear MPC

– Analysis of linear MPC

– Hybrid systems and linear MPC

– Optimization Algorithms for linear MPC
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Formulation of linear MPC

• Why MPC?
– It provides a systematic approach to control the 

multivariable dynamical systems with constraints

• What is MPC
– MPC refers to class of computer algorithms that use a 

system model to predict the future response of the 
controlled plant. The prediction is the used for 
computation of the optimal control action.
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Formulation of linear MPC
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Formulation of linear MPC

• Main parts of the MPC controller
– System model and predictions

– Control problem and MPC formulation

– Real time optimization problem

14.5.2010
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Formulation of linear MPC

• Main parts of the MPC controller (i/iii)
– System model and predictions

• The modeling stage in MPC design is one of the most important 
activities. The quality of the resulting controller is proportional to 
the model quality and therefore, the model should describe the 
system as accurate as possible.

– Control problem and MPC formulation

– Real time optimization problem
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Formulation of linear MPC

• Main parts of the MPC controller (ii/iii)
– System model and predictions

– Control problem and MPC formulation
• This is an important part which usually requires practical 

experiences. Sometimes, it is difficult even to identify what should 
be controlled and optimized. We have to know all the basic 
properties and limitations of MPC at this stage.

– Real time optimization problem
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Formulation of linear MPC

• Main parts of the MPC controller (iii/iii)
– System model and predictions

– Control problem and MPC formulation

– Real time optimization problem
• The last step is translation of the MPC control problem to a 

numerical optimization problem. Usually this is relatively easy part
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System models and predictions

• In the linear MPC, we can utilize any linear model
– Impulse response

– Step response

– ARX model

– State space models

14.5.2010
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System models and predictions

• Impulse response

• Prediction model
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System models and predictions

• Step response

• Prediction model
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System models and predictions

• ARX “based” models

• Prediction is given by
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System models and predictions

• State space model (ideal candidate)

• Prediction
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System models and predictions

• Summary: In the linear MPC, any linear model can be 
utilized.
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Cost function

• Cost function 

– is used to formulate goals for the MPC controller. It has 
usually additive form where the individual terms express 
various control requirements. The terms are multiplied by 
factors defining the relative importance of the control 
goals. 
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Cost function

• The basic form is

• Another form
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Cost function

• Examples of different norms
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Cost function

• Examples of different norms (p <1, 2>)
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Constraints

• Role of constraints in MPC
– A real differentiator for the MPC controllers is the fact that 

they can handle the system constraints in straightforward 
manner. All processes have some constraints, e.g. actuator 
position and rate of change constraints or constraints for 
the system output or any internal state.
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Constraints

• Hard constraints
– Physical limitations of real process, e.g. actuator extreme 

positions and this type of constraints must not be violated.

• Soft constraints
– These can be violated though at some penalty, for example 

a loss of product quality, constraints for the system “inner” 
variables.
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Constraints

• HARD constraints
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Constraints

• SOFT constraints
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Constraints

• SOFT constraints – implementation
– The soft constraints can be formulated by introducing a 

slack optimization variable or vector. Assume, for 
example, an upper limit for the system output, then

– we have to include a term to be minimized into the cost 
function
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Constraints

• SOFT constraints – implementation
– Alternative option is to penalize the constraints violation 

directly in the cost function

– and we have to introduce a “box” constraint
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Constraints

• SOFT constraints - example
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MPC optimization problem

• Basic MPC control problem can be formulated as an 
optimization problem

• Subject to
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MPC optimization problem

• The MPC problem for a linear system with the linear 
constraints can be transformed to mathematical 
programming problem of the form

• This is well known Quadratic Programming problem
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Receding Horizon Control

• So far …
– The MPC control problem can be transformed to an 

optimization problem, which is parameterized by ‘p’ 
parameter vector. 

– The resulting optimization problem at time t0 is the 
optimal future trajectory of the system input

– An immediate idea would be to apply the whole sequence 
and to compute the new trajectories at the end of 
prediction horizon. Such MPC control strategy corresponds 
to the open loop control…

… not a good idea
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Receding Horizon Control

• The standard feedback, as we know it for the classical 
control methods, is introduced by using so called Receding 
Horizon Control. 

• In the Receding Horizon Control, the optimization problem is 
computed at each sampling period after having new system 
measurements or estimates and we apply only the first 
control action from the optimal input vector. This strategy 
ensures the standard feedback control in the MPC.

… much better
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Receding Horizon Control

• Example - SISO

14.5.2010

58



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Receding Horizon Control

• Example - MIMO

14.5.2010

59



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Offset-free tracking

• Offset-free tracking in classical control 
– In the classical control methods, the offset-free tracking 

control is achieved by intruding the integral action to the 
controller.

– It is clear that if the MPC controller uses a perfect model 
and there are no disturbances acting on the system, we 
will not need to use any additional mechanism to achieve 
the offset-free tracking.

– The integral action usually acts on the tracking error. The 
question is, how to achieve the offset-free tracking 
property in the model predictive control?
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Offset-free tracking

• Offset-free tracking for MPC – first option

– The first option is to introduce the integral term acting on 
the tracking error into the cost function. This approach 
copies strategy from the standard PID control and requires 
implementation of an anti-windup mechanism which may 
be impractical.
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Offset-free tracking

• Offset-free tracking for MPC – second option

– The second approach is based on assumption that there 
are virtual disturbance variables acting on the system. 
These virtual disturbances covers the real disturbances, 
but also model inaccuracy. This approach has been utilized 
successfully by many industrial MPC applications. The 
disturbances can be estimated by using the augmented 
system state observer, These techniques are known as 
Unknown Input Observer.
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Offset-free tracking

• The virtual disturbances can be connected to the 
system in a number of ways. Consider a linear 
model of a controlled process 

• And assume a disturbance model in form
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Offset-free tracking

• Disturbance acting on the system output

Nominal
System
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Offset-free tracking

• Disturbance acting on the system input

Nominal
System
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Offset-free tracking

• Summary:

– Can by achieved by using several formulation

– Preferred one is the method using the exogenous 
disturbance model and its estimate
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Agenda

• Introduction
– Motivation for advanced control techniques

– Classical approach

– Brief history of model predictive control

• Linear Model Predictive Control
– Formulation of linear MPC

– Analysis of linear MPC

– Hybrid systems and linear MPC

– Optimization Algorithms for linear MPC
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Analysis of linear MPC

• Analysis of classical feedback controllers
– The classical feedback controllers (PID) can be analyzed in 

a number of ways. The most important properties are the 
nominal performance, stability and robustness.

• What is different?
– Difference between the classical control and MPC is that 

the MPC computes directly the sequence of the control 
actions instead of using a control law.
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Analysis of linear MPC

• MPC control law
– In fact, the optimization problem could be seen as a 

control law. Why the MPC controller cannot be simple 
analyzed as a classical controller, e.g. PID? - the answer is -
due to presence of constraints. 

– It can be shown, that we can find a control law for each 
combination of feasible active constraints in the form
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Analysis of linear MPC - unconstrained

• Assume that the system can be described by a state 
space model, then the prediction is given by

• Assume a quadratic cost function defining the 
tracking MPC problem
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Analysis of linear MPC - unconstrained

• Then the optimal control problem is

• with solution

• By applying the receding horizon strategy, we can 
define control law in the form
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Analysis of linear MPC - unconstrained

• Example:

• MPC cost function

• Parameters

• Control law
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Analysis of linear MPC - unconstrained
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Analysis of linear MPC - unconstrained
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Analysis of linear MPC - unconstrained
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Analysis of linear MPC - stability

• Introduction

– It is known that the infinite horizon LQR control ensures 
reasonable stability margins and reasonable control 
performance. The disadvantage is that it does not enable 
to handle the constraints in a systematic way. Basic version 
of MPC controller is based on a finite prediction horizon.
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Analysis of linear MPC - stability

• Extension of the MPC prediction horizon to infinity 
(LQR control)

• We can split the infinite prediction horizon into the 
two parts
– Finite: time 0 to N-1

– Infinite: time N to inf
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Analysis of linear MPC - stability

• The quasi-infinite cost function can be written as

• where the terminal penalty term is defined as 
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Analysis of linear MPC - stability

• We can show that
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Analysis of linear MPC - stability

• Dual mode control
– MODE 1:

• a finite horizon with N samples over which the control 
inputs are free variables and they are determined by 
solving the optimization problem.

– MODE 2:

• the subsequent infinite horizon over which the control 
inputs are determined by control law: u(k) = -K x(k). The 
gain matrix K is the feedback gain that ensures the 
unconstrained closed-loop stability
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Analysis of linear MPC - stability

• MPC stability

– The stability of the MPC control is not ensured in its basic 
formulation. On the other hand, it is fair to say that the 
basic MPC formulation gives very good results and 
provides a good degree of stability and robustness in 
practical applications. We will discuss the basic tools which 
can be used to ensure the nominal stability of the 
controller during the design stage.
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Analysis of linear MPC - stability

• The basic tools are:

– Terminal equality constraints

– Terminal cost function

– Terminal constraints set

• The most practical is the combination of terminal 
cost function in combination with the terminal 
constraints set
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Analysis of linear MPC - stability
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Analysis of linear MPC - stability

• Formally, the basic property of a positively invariant 
set can be summarized as
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Analysis of linear MPC - stability

• Definition of MPC problem ensuring the stability 
(stable control synthesis)
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Analysis of linear MPC – stability proof

• …If there exist a Lyapunov function with given 
properties for the given control law, then the 
nominal closed loop will be stable…

• A candidate for the Lyapunov function is the cost 
function, i.e.

14.5.2010

86



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Analysis of linear MPC – stability proof

• Assume three different control sequences

– Optimal control sequence at time k

– Suboptimal control sequence at time k+1

– Optimal control sequence at time k+1
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Analysis of linear MPC – stability proof

• From definition, we have

• Then
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Analysis of linear MPC – stability proof

• It holds that

• Therefore

• Finally, the Lyapunov function must satisfy
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Analysis of linear MPC – stability proof

• It is clear that the non-increasing condition will be 
satisfied if

• If the Mode 2 control law satisfies the above 
condition, then V(k) is a Lyapunov function and the 
receding horizon control sequence will stabilize the 
system.
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Analysis of linear MPC – stability proof

• Two basic options for Mode 2:
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Analysis of linear MPC – stability

• Summary:
– The MPC control stability can be ensured by defining the 

MPC control problem as Dual mode control

– To complete the MPC analysis, we have to show that the 
optimization control problem in the MPC Mode 1 is 
feasible at any time – this is due to presence of constraints. 
It can be shown that if the optimization problem is feasible 
at time t=0, then it remains feasible for all times.
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Analysis of linear MPC – robustness

• Robust MPC control design

– In the MPC robust control design, we need to formulate an 
optimization problem that ensures the robustness. We 
defined two classes of uncertainties that are often used in 
the linear MPC. When designing the robust MPC, we can 
follow the concept presented in the section about the 
stability, i.e. the dual mode control.
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Analysis of linear MPC – robustness

• Robust admissible positively invariant set
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Analysis of linear MPC – robustness

• Robust admissible positively invariant set - example
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Analysis of linear MPC – robustness

• Basic robust MPC optimization problem can be 
defined as min-max optimization
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Analysis of linear MPC – robustness

• Robust MPC - example
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Agenda

• Introduction
– Motivation for advanced control techniques

– Classical approach

– Brief history of model predictive control

• Linear Model Predictive Control
– Formulation of linear MPC

– Analysis of linear MPC

– Hybrid systems and linear MPC

– Optimization Algorithms for linear MPC
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Hybrid systems and linear MPC

• Definition
– Hybrid systems are a special class of dynamical systems 

that combines both continuous and discrete-value
variables. The main components of the hybrid systems are 
the continuous dynamics (based on first principle), logical 
components (switches, automate, logical conditions, etc.) 
and interconnections between the logic and dynamic. The 
hybrid systems can be used to model systems with several 
operation modes where each mode has different 
dynamical behavior
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Hybrid systems and linear MPC

• An example of a hybrid system is a piece-wise affine 
(PWA) system, which can be defined as
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Hybrid systems and linear MPC

• Properties
– The PWA systems enables to describe a large class of 

practical applications and are very general. Unfortunately, 
they are not directly suitable for the analysis and synthesis 
of optimal control problems. 

– Another useful framework for the hybrid systems is based 
on Mixed Logical Dynamical (MLD) models. These models 
transform the logical part of a hybrid system into the 
mixed-integer linear inequalities by using Boolean 
variables.
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Hybrid systems and linear MPC

• The basic form of the MLD system is given by

– where x(k) is a combined continuous and binary state, u(k) 
and y(k) are the system input and outputs (continuous and 
binary), delta(k) are auxiliary binary variables and z(k) are 
auxiliary continuous variables.
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Hybrid systems and linear MPC

• We can define the optimal control problem for the 
PWA system as
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Hybrid systems and linear MPC

• Summary:

– The PWA system can be represented by a MLD model and 
therefore, the optimal control problem corresponds to the 
solution of mathematical mixed-integer program. 

– In case of PWA system
• if the cost function is quadratic, then the optimization problem 

leads to Mixed-Integer Quadratic Program

• if the the cost function is based on l1 or linfty norm, the 
optimization problem leads to Mixed-Integer Linear Programming.
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Optimization algorithms for linear MPC

• It has been shown that the MPC control 
problem can be formulated as an 
optimization problem that is solved at each 
sampling period. 

• Therefore, the performance of the 
optimization algorithm in MPC is critical
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Optimization algorithms for linear MPC

• Assume the resulting QP optimization problem for 
the linear MPC in form

• Modern QP solvers are based on
– Active set approach

– Interior point approach

14.5.2010

107



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Optimization algorithms for linear MPC

• Active set solvers
– Iterative algorithms where in each iteration, we are testing 

the optimality conditions for actual working set of active 
constraints. If the working set of active constraints does 
not lead to the optimal solution, then we modify the set by 
adding or removing the active constraints. 

– In general, the active set solvers are suitable for relatively 
small problems but they are very efficient in practice, 
especially in combination with warm-starting strategy.
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Optimization algorithms for linear MPC

• Interior point solvers
– The interior-point methods are based on barrier functions. 

The constraints are added to the criterion function in the 
form of a barrier which transforms the original problem to 
an unconstrained optimization. 

– The interior-point methods are iterative (solution to 
optimality conditions) and usually require only a small 
number of iterations when compared to active set solvers. 
However, the individual iterations are more 
computationally expensive.
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Optimization algorithms for linear MPC

• Multi-parametric explicit solution
– If we need extremely fast sampling periods in the MPC, we can use 

multi-parametric explicit solution. These optimization algorithms have 
off-line and on-line parts. 

– The MPC optimization problem is solved explicitly in the off-line part. 
The explicit solution divides the optimization problem parameter 
space into a number of regions where each region has associated a 
control law. A particular region corresponds to a feasible combination 
of active constraints. All these regions and the control laws are stored 
for the on-line part. In the on-line part at each sampling period, we 
simply construct the parameter vector and find the corresponding 
region. Then we apply the associated control law. 

– Unfortunately, the multi-parametric explicit solution is applicable for 
small systems only due to storage demands. 
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Optimization algorithms for linear MPC

• Tailoring for MPC
– Another way how to improve performance of the MPC 

optimization is to explore the structure of the MPC 
optimization problem and use this information to design 
an efficient solver. 

– For example, there are two ways how to add the soft 
constraints to the optimization problem. One of them 
leads to box constraints. if all the constraints in the 
optimization problem are box, then we can use this 
information to implement an efficient solver, e.g. based on 
gradient projection methods or their modifications.

14.5.2010

111



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Agenda

• Nonlinear Model Predictive Control
– Formulation of nonlinear MPC

– Analysis of nonlinear MPC

– Numerical methods for nonlinear MPC

• Practical Model Predictive Control
– Practical formulations of MPC

– Development cycle of industrial MPC

– Demonstration of an application
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Formulation of nonlinear MPC

• Why nonlinear MPC?
– Today's processes need to be controlled under tight 

performance specifications which can be only met if the 
controller works precisely. Nonlinear model predictive 
control (NMPC) is extension of the well established linear 
predictive control to the nonlinear world. 

– Linear model predictive control refers to MPC algorithms in 
which the linear models are used. The nonlinear model 
predictive control refers to MPC schemes that are based 
on the nonlinear models.
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Formulation of nonlinear MPC

• The modeling phase in the NMPC is the most 
important part. Assume a model described by a set 
of nonlinear equations
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Formulation of nonlinear MPC

• The basic cost function has the integral form

• where the function L(.) defines the control 
objectives. For example it can be defined as 
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Formulation of nonlinear MPC

• The cost function on the infinite prediction horizon 
can be divided into two parts
– finite part 

– infinite part
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Formulation of nonlinear MPC

• The general nonlinear MPC can be formulated as a 
nonlinear optimization problem
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Analysis of nonlinear MPC - stability

• Stability
– The dual mode control strategy, as it was presented in the 

section about linear MPC, can be extended also for the 
nonlinear systems.

– Assume a cost function of the form and assume that it is a 
candidate for the Lyapunov function
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Analysis of nonlinear MPC - stability

• Stability condition
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Numerical methods for nonlinear MPC

• Basic approach
– A commonly used approach to solve the problem is reformulation to a 

finite dimensional nonlinear programming problem (NLP) by a suitable 
parameterization. 

– The most recent research in the nonlinear MPC suggests to perform 
this parameterization by using Direct Multiple Shooting method. The 
nonlinear programming problem can be solved by iterative Sequential 
Quadratic Programming approach (SQP). 

– To find the optimal solution to the defined NLP, it is usually necessary 
to perform several iterations which may be a time consuming task. 
Therefore, it is suggested to perform only one iteration in each 
sampling period in real-time applications and to use a sub-optimal 
instead of the optimal solution .
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Numerical methods for nonlinear MPC

• Two important direct approaches (i/ii)

• Direct Single Shooting
– Basic approach and is similar to the approach used by the 

standard linear model predictive control. 

– At the initial time, the numerical integration is used to 
obtain the predicted trajectories as a function of 
manipulated variable for the prediction horizon. 

– Having these trajectories, one can perform one iteration of 
SQP procedure.
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Numerical methods for nonlinear MPC

• Two important direct approaches (ii/ii)

• Direct Multiple Shooting
– Based on re-parameterization of the problem on the 

prediction horizon. 

– The pieces of system trajectories are found on each time 
interval numerically together with sensitivity matrices. The 
optimization problem is then augmented by auxiliary 
constraints - continuity conditions.
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Numerical methods for nonlinear MPC
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Numerical methods for nonlinear MPC

• Multiple shooting

– One advantage of the multiple shooting methods 
is that the optimization problem is sparse, i.e. the 
Jacobians in the optimization problem contain 
many zero elements which makes the QP sub-
problem cheaper to built and to solve. 

– The simulation (solution to the model) and 
optimization are performed simultaneously and 
the solution to the problem can be parallelized.
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Numerical methods for nonlinear MPC

• The key idea of parameterization is to find the 
sensitivity matrices
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Numerical methods for nonlinear MPC

• The sensitivity matrices can be found as

• and
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Numerical methods for nonlinear MPC

• The final optimization problem is formulated as
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Numerical methods for nonlinear MPC

• Iterative scheme
– The model based predictive control algorithms are usually formulated 

with receding horizon where the optimization problem is re-calculated 
in each sampling period and only the first control action is applied to 
the system.

– There are two main phases: 
• preparation phase and feedback phase. During the preparation phase, the 

algorithm calculates as much as it is possible without knowledge of data 
that will be available at the beginning of the next sampling period. 

• feedback phase takes new measurement and calculates the control action 
that can be immediately sent to the system.
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Numerical methods for nonlinear MPC

14.5.2010

131



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Agenda

• Nonlinear Model Predictive Control
– Formulation of nonlinear MPC

– Analysis of nonlinear MPC

– Numerical methods for nonlinear MPC

• Practical Model Predictive Control
– Practical formulations of MPC

– Development cycle of industrial MPC

– Demonstration of an application

14.5.2010

132



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Agenda

Discussion

14.5.2010

133



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (1/8)

14.5.2010

134



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (2/8)

14.5.2010

135



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (3/8)

14.5.2010

136



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (4/8)

14.5.2010

137



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (5/8)

14.5.2010

138



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (6/8)

14.5.2010

139



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (7/8)

14.5.2010

140



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

References (8/8)

14.5.2010

141


	Short Course on �Model based Predictive Control
	Agenda I
	Agenda II
	Motivation for Advanced Control
	Motivation for Advanced Control
	Motivation for Advanced Control
	Motivation for Advanced Control
	Motivation for Advanced Control
	Motivation for Advanced Control
	Motivation for Advanced Control
	Agenda
	Classical approach
	Mathematical programming
	Mathematical programming
	Mathematical programming
	Mathematical programming
	Mathematical programming
	Mathematical programming
	Maximum Principle
	Maximum Principle
	Maximum Principle
	Maximum Principle
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Agenda
	MPC – brief history
	MPC – brief history
	Agenda
	Formulation of linear MPC
	Formulation of linear MPC
	Formulation of linear MPC
	Formulation of linear MPC
	Formulation of linear MPC
	Formulation of linear MPC
	System models and predictions
	System models and predictions
	System models and predictions
	System models and predictions
	System models and predictions
	System models and predictions
	Cost function
	Cost function
	Cost function
	Cost function
	Constraints
	Constraints
	Constraints
	Constraints
	Constraints
	Constraints
	Constraints
	MPC optimization problem
	MPC optimization problem
	Receding Horizon Control
	Receding Horizon Control
	Receding Horizon Control
	Receding Horizon Control
	Offset-free tracking
	Offset-free tracking
	Offset-free tracking
	Offset-free tracking
	Offset-free tracking
	Offset-free tracking
	Offset-free tracking
	Agenda
	Analysis of linear MPC
	Analysis of linear MPC
	Analysis of linear MPC - unconstrained
	Analysis of linear MPC - unconstrained
	Analysis of linear MPC - unconstrained
	Analysis of linear MPC - unconstrained
	Analysis of linear MPC - unconstrained
	Analysis of linear MPC - unconstrained
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC - stability
	Analysis of linear MPC – stability proof
	Analysis of linear MPC – stability proof
	Analysis of linear MPC – stability proof
	Analysis of linear MPC – stability proof
	Analysis of linear MPC – stability proof
	Analysis of linear MPC – stability proof
	Analysis of linear MPC – stability
	Analysis of linear MPC – robustness
	Analysis of linear MPC – robustness
	Analysis of linear MPC – robustness
	Analysis of linear MPC – robustness
	Analysis of linear MPC – robustness
	Agenda
	Hybrid systems and linear MPC
	Hybrid systems and linear MPC
	Hybrid systems and linear MPC
	Hybrid systems and linear MPC
	Hybrid systems and linear MPC
	Hybrid systems and linear MPC
	Agenda
	Optimization algorithms for linear MPC
	Optimization algorithms for linear MPC
	Optimization algorithms for linear MPC
	Optimization algorithms for linear MPC
	Optimization algorithms for linear MPC
	Optimization algorithms for linear MPC
	Agenda
	Formulation of nonlinear MPC
	Formulation of nonlinear MPC
	Formulation of nonlinear MPC
	Formulation of nonlinear MPC
	Formulation of nonlinear MPC
	Agenda
	Analysis of nonlinear MPC - stability
	Analysis of nonlinear MPC - stability
	Agenda
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Numerical methods for nonlinear MPC
	Agenda
	Agenda
	References (1/8)
	References (2/8)
	References (3/8)
	References (4/8)
	References (5/8)
	References (6/8)
	References (7/8)
	References (8/8)

