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* Nonlinear Model Predictive Control
— Formulation of nonlinear MPC

— Analysis of nonlinear MPC
— Numerical methods for nonlinear MPC

* Practical Model Predictive Control
— Practical formulations of MPC
— Development cycle of industrial MPC
— Demonstration of an application
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e Advanced control technologies in process control

Planning

Advanced Control

Basic Control

Instrumentation

Controlled Technology

T
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e |Instrumentation layer

— Interface to the controlled technology
— Actuators and sensors

— Number of I/0O points may be large — more than several
thousands

— Periodical reading\writing, the measured values are
marked by time stamp and are organized in a process
history database
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0] Motivation for Advanced Control

e Basic control layer =
— Ensures basic functionality and safe operation |
— Provides backup solution for the advanced control
— Basic monitoring and visualization tools
— Provides basic control modes for the operators — man/aut/cas

— Used as a gate for the advanced control technologies
e System prestabilization
* Nonlinearity reduction
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o Motivation for Advanced Control

 Advanced control layer
— Advanced optimization and coordination

— Interaction with the basic control layer by coordination of
basic control loops by manipulating their set-points

— Slower sampling periods than in the basic control layer
— Static/dynamic optimization
— Basic requirements on advanced control layer

e Multivariable control
e Various constraints handling

MPC Is a candidate...

e Optimal solution
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o Motivation for Advanced Control

* Planning layer
— Top supervisory layer
— Entry points for the plant technologists and managers

— Based on economic-related information and provides
complex overview of the plant performance

— Main tools are namely databases, visualization tools and
specialized computation routines

— Specification of goals for the advanced control layer, i.e.
set-point, constraints, optimality conditions, resource
availability, etc.
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control & math imizati
knowledge

-~

control problem

e Model Predictive Control is ...

— A control technology that enables to delivery the decided
goals specified for the controlled process

— NOT a technology that could replace all the control
techniques.
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o Motivation for Advanced Control

e Model Predictive Control

— Success of applications depends namely on the skills of the
application engineers responsible for MPC implementation
to particular process

— Transformation of MPC problem to an optimization
problem is relatively simple

— The difficult part is formulation of the control problem as a
MPC problem
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 Three general optimization methods
— Mathematical programming

— Discrete maximum principle
— Dynamic programming
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e Assume a discrete time dynamic system

v(t+1) = f(x(t),u(t),t), t=tp....t—1  x(fo) = 20

 The optimal control problem is defined as a
criterion minimization problem

t—1

h(z(t1)) + Z t), u(t).t)

=
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e This is a problem of mathematical programming

— Minimization of criterion

— Limiting conditions

* To solve the optimization problem, let us define
Lagrangian

T = h(x(t)+ Y {g (et ult). 1) + Nt + 1)(F (@(0), u(t). 1) —2(t +1)) }




e The Hamiltonian is defined as

H(x(t),u(t),t) = g(a(t), u(t), t) + Nt + 1) f (x(t), u(t), t)
e and the Lagrangian can be written in the form

T = n(a(t) = N (t)a(t) + H(x(to), u(to). o) +

+ > {H(x(t). ult).t) = A(t)a(t)} .

Eflﬁr H]”“ﬂ
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0] Mathematical programming

H(t) = H(x(t),u(t).t)
* Simplified notation =) (1) = L(x(t).u(t).t).
f(t) = f(x@).u(t).t)

* If the function J is differentiable with respect to x(t)
and u(t), the increment of the criterion along the
trajectories x(t) and u(t) equals to

7 Oh(ty) CH(TU)[ (1 CH(T )
dJ = |- dx
E‘)r( 1) ox(tp) fo) ()u( ))

—1
OH(t) 7.1 OH(t)
_Z {L)f — A m] dx(t) + Sult du(f)}_

du(ty) +

— )\Tffl)] ([.’I'(Tl)




 The necessary condition for the optimum: 0.7/0x(t) =0
e And therefore

T




* For the solution of discrete optimal control problem it is necessary to
find the solution to system of difference equation

(1) = ( OH (1) ) — fla(t),ult).1)

ONt+1)

oH®\T _ (9g)\T | 0f(t)
ME) = (axm) (axm) (e T
J’J(t[]) = Xy,

o = (i)

T




e Assume state space equations of discrete time
system

r(t+1) = fz(t). u(t))

 The optimal control minimizes the criterion

7 = ha(t).u(t) + 3 o). u(t))de

t=tg
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e The Hamiltonian is equal to

H(x(t), u(t),p(t+1)) = —g(x(t),u(®)) + p" (t + 1) f((t), u(?))

e The maximum principle states that the optimal
control maximizes the Hamiltonian, therefore

(1) = argmas, e H (2(t), u(t). p(t + 1))
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 The system equation is given by

initial condition

i A (to)

C(OH(x(t). u(t). p(t+ 1)\
x(“”_( op(t + 1) )

 The conjugate system is given by
final condition
~ Oh(x(t))
Pt === )

OH (x(t),u(t), p(t+ 1)\ "
plt) = ( ox(1) )

T
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* Summary

— Discrete maximum principle changes the problem of the
optimal control to two point boundary value problem of
two set of difference equations and maximization of
Hamiltonian with respect to control u(t)

[TTITT
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o Dynamic programming

* Principle of optimality

— From arbitrary state x(t) our next decission must be
optimal, without respect how the state is reached by
previous decisions. It follows from well known proverb
"Don't cry on the spilled milk". It is based on obvious fact
that you cannot change the past but your future must be
controlled in optimal way.
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* Principle of imbedding

— Single problem can be nested on the whole set of
similar problems and solving such set of problems
the solution of original problem is obtained.
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e Assume an optimality criterion in the form

k1—1
T (i sulte),....u(ty—1)) = h(x(ty) + Y g (k) u(k). k)
k=1

e The Bellman function is defined as

Vis,i) = u(ﬁ_)?_‘.[.lll?j(_‘[tll_l) J(i,s,u(ty),...,u(ty — 1))

 which can be reformulated as

Vs, i) = I;](gl {g (s,u(i),i) + min lh (x(t1)) + z_: g (z(t),u(t), t)] }

+1),...
u(i+l), t=i+1
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e Resulting Bellman equation

Vis(i+1),i+1)=V (f(s,u(i),i).i+ 1)

 The solution to the control problem is then given by

Vis,i) =min{g (s, u(i), 1)+ V (f (s,u(i),i).i+ 1)}

‘U—(i.

boundary condition

* %k ﬂ&lllllll.
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e Used by the industrial practitioners before having
solid theoretical base

e First known formulation of a moving horizon
controller using linear programming

[28] Prorol, A, 1. Use of linear programming methods for synthesizing
sampled data antomatic systems. Awlomat. Remote Control sv. 24,
¢oT, s B3T 844, 1063,

[33] Ricnacer. I Raver, A Testun, J0 L. Paron. I Model predic-
tive heuristic control: application to industrial processes. Automatica,
sv. 14, 5. 413 428, 1978,
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e At present, MPC is a standard advanced control
technology for the process industry

— The practical applications have been limited to the linear
models

— Sometimes, it is beneficial to define and implement the
nonlinear MPC

e Eflﬁr : [T
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0] Formulation of linear MPC

T I .L@” o
PS Why M P C? W measurements
— It provides a systematic approach to control the
multivariable dynamical systems with constraints

e What is MPC

— MPC refers to class of computer algorithms that use a
system model to predict the future response of the
controlled plant. The prediction is the used for
computation of the optimal control action.
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{Bemporad & Morari, 1999)

ast , future
e

Predicted outputs y(t+k|t)

Manipulajted u(t+k)
Inputs

g .k A
1 $+1 1+Ny, t+Np
| input horizon i

f output horizon ]
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e Main parts of the MPC controller
— System model and predictions

— Control problem and MPC formulation
— Real time optimization problem
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e Main parts of the MPC controller (i/iii)
— System model and predictions

e The modeling stage in MPC design is one of the most important
activities. The quality of the resulting controller is proportional to

the model quality and therefore, the model should describe the
system as accurate as possible.

— Control problem and MPC formulation

— Real time optimization problem

o Eflﬁr [T
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— System model and predictions

— Control problem and MPC formulation

e This is an important part which usually requires practical
experiences. Sometimes, it is difficult even to identify what should
be controlled and optimized. We have to know all the basic
properties and limitations of MPC at this stage.

— Real time optimization problem

o Eflﬁr [T
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e Main parts of the MPC controller (iii/iii

— System model and predictions

— Control problem and MPC formulation

— Real time optimization problem

e The last step is translation of the MPC control problem to a
numerical optimization problem. Usually this is relatively easy part

[TTITT
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e In the linear MPC, we can utilize any linear model

— Impulse response
— Step response

— ARX model
— State space models

T
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* Impulse response e

I
H
Amplitude

 Prediction model

N
glt+k|t)=> hu(t+k—i|t)
i=1
Gls) = 52 +13+1
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Step Response

e Step response

y(t)=y, + z g, Aut—i)

. prediction model i
yt+k|t)= ZN: g,Au(t+k—i|t) I

T
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e Prediction is given by

7= A ' (— A + Byt + Dyv + Byi + D,v)

(AdA,) = [Bi|B,] = Di|Dy) =

T




e State space model (ideal candidate)

Prediction

el

=y

x(k+

1) = Ax(k)+ Bu(k)
Ca(k) + Du(k)

T oyk+1)T o yk+ N =17 ]
7T ouk+1)T s u(k+N=1T]"
D
. C:B D )
CANB ... CB D

T




e Summary: In the linear MPC, any linear model can be
utilized.

j = Px(k)+ Hi

()T y(k+ 1T - y(k+N-=1DT ]
— [u(t)T u(k+1)T - u(k+N-1)T]"

=y
|

T




e Cost function

— is used to formulate goals for the MPC controller. It has
usually additive form where the individual terms express
various control requirements. The terms are multiplied by
factors defining the relative importance of the control

goals.

[TTITT
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e The basic form is letl, = {2 b

N N,—1
T (@x(to). to) = Y [|Qpe(to + tilto) ||, + Z | Bpu(to + 75lto) |,
1=0
e Another form
—1
J (i (to Z |@pe(to + tilto)ll,, + Z |2, Au(to + 75lto) ],

Au(to - Tj|t0) = u(to - Tj|t0) - ’u,(to - Tj_1|t0)

T
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 Examples of different norms (p <1, 2>)

MPC control by minimizing of 1.0 norm

MPC control by minimizing of 1.1 norm

80 80,
T ol T o}
i E ‘
5 400 g 40p- " = system output |77
E 200 E 201 [ — reference I
% 0 % ol ; . . 4
-20 L 20 H
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]
System input System iriput
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T 60f T 60f- i
5 5
; m.. ‘...‘ FE E 40_.. -
E o S I § 200~ B
§ 0 e .
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time [s] time [s]
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T ol : : T al. :
3’ ; i :
g 4"_. . (IR sy Du‘pu‘t ERERREE 3 4_0_.. S p— systm ut [y
20k .| = reference o] 2 20F-- | — reference o
5 - - E : -
20 i i i i
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time [s]
System input
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time [s]
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* Role of constraints in MPC

— A real differentiator for the MPC controllers is the fact that
they can handle the system constraints in straightforward
manner. All processes have some constraints, e.g. actuator
position and rate of change constraints or constraints for
the system output or any internal state.

umin(t) < ’H,(t) < umax(t) ? ymin(t) < y(t) < ymax(t)
Atimin(t) < Au(t) < Atlpax(t) Tmin(1) < 2(t) < Tmax(t)

[TTITT
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e Hard constraints

— Physical limitations of real process, e.g. actuator extreme
positions and this type of constraints must not be violated.

e Soft constraints

— These can be violated though at some penalty, for example
a loss of product quality, constraints for the system “inner”
variables.

{1*1} Eflﬁr 5 L &Humﬂ
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e HARD constraints

Upin (1) < u(t) < Upax(t) .
Auin(t) < Au(t) < Atpax(?)
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 SOFT constraints — implementation

— The soft constraints can be formulated by introducing a
slack optimization variable or vector. Assume, for
example, an upper limit for the system output, then

y(t) < Ymax T €

— we have to include a term to be minimized into the cost
function

2
Il

INVESTICE DO ROZVOJE VZDELAVAN | EEEid -

i__kl Illlllﬂ

e



e SOFT constraints — implementation

— Alternative option is to penalize the constraints violation
directly in the cost function

ly(t) — <l

— and we have to introduce a “box” constraint

g < Umax

T
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e SOFT constraints - example

y(t) <5+«

Softening variable example

2
2

| fell

T
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e Basic MPC control problem can be formulated as an
optimization problem

" = argmin J(ud|xz(ty). to)

u

e Subject to

e input constraints .
! ¢ e output constraints (usually softened)

Umin(to + ;)
Atyin (to + ;)

min(fo +4) < ylto+ 1) < Ymax(fo +1;
Au(to + 1) < Atpax(to +1;) Yuuin (o + i) < y(to + i) < Yhnax(fo +13)

<
<

e system model equations

x(tiv1) = Ax(t;) + Bu(ty) ,
Tmin(to + ;) < 2(to + 1) < Tmax(to + ;) y(t;) = Cx(t;) + Dult;) .

e system state constraints (usually softened)
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0] MPC optimization problem

* The MPC problem for a linear system with the linear
constraints can be transformed to mathematical
programming problem of the form

. L 7 . L
0 =argmin—u Hi +d' Fp, st Gui <W + Sp,

u yd

* This is well known Quadratic Programming problem

> help quadprog
QUADPROG Ouadratic prograsmoing.
X=QUADPROG(H,f,4,b) attempts to solve the quadratic programming probler:
min O.5%x' *H*%x + £'%x subject to: A4¥x <= h

H=QUADPEOG(H, £, 4, b, beq, beq) solves the problem abowve while additionally
satisfying the equality constraints beg*x = hedq.

o Dt .-. _ [T Tl
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0] Receding Horizon Control

e Sofar...

— The MPC control problem can be transformed to an
optimization problem, which is parameterized by ‘p’
parameter vector.

— The resulting optimization problem at time tO is the
optimal future trajectory of the system input

— An immediate idea would be to apply the whole sequence
and to compute the new trajectories at the end of
prediction horizon. Such MPC control strategy corresponds

to the open loop control...
... hot a good idea

. e gy [[TLIITTT]
* * » ]
* * . b
q )&

EVROPSKA UNIE el i




0] Receding Horizon Control

e The , as we know it for the classical
control methodes, is introduced by using so called

e Inthe , the optimization problem is
computed at each sampling period after having new system
measurements or estimates and we apply only the first
control action from the optimal input vector. This strategy
ensures the standard feedback control in the MPC.
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System Output

e Example - SISO 10f '
% . Prediction
E 0
-5 . . . .
0 20 40 60 B0 100
System Input
T - . .
o 057
. AN
= op————" Prediction
Eﬂ--ﬂ.S'
-1 - ' -
0 20 40 60 B0 100

Time [s]

Eflﬁnﬂ
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e Example - MIMO

Amplitude [-]

Amplitude [-]

System Output 1

50 60 70 80 90 100
Time [5]

Amplitude [-]

Amplitude [-]

System Output 2

50 60 70 80 90 100
Time [s]
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0] Offset-free tracking

o Offset-free tracking in classical control

— In the classical control methods, the offset-free tracking
control is achieved by intruding the integral action to the

controller.
— Itis clear that if the MPC controller uses a perfect model

and there are no disturbances acting on the system, we
will not need to use any additional mechanism to achieve

the offset-free tracking.

— The integral action usually acts on the tracking error. The
guestion is, how to achieve the offset-free tracking
property in the model predictive control?
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e Offset-free tracking for MPC - first option

— The first option is to introduce the integral term acting on
the tracking error into the cost function. This approach
copies strategy from the standard PID control and requires

implementation of an anti-windup mechanism which may
be impractical.
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0] Offset-free tracking

o Offset-free tracking for MPC — second option

— The second approach is based on assumption that there
are virtual disturbance variables acting on the system.
These virtual disturbances covers the real disturbances,
but also model inaccuracy. This approach has been utilized
successfully by many industrial MPC applications. The
disturbances can be estimated by using the augmented
system state observer, These techniques are known as

o Dt .-. _ [T Tl
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0] Offset-free tracking

 The virtual disturbances can be connected to the
system in a number of ways. Consider a linear
model of a controlled process

.'3'(}1' + l;l — 44.’(}1) + BH(}\')

e And assume a disturbance model in form

va(k+1) = Agrq(k)
d(k) = Caxq(k)




LZ({ETE)] N é jd] [;&%% [‘g ]u(k)

x(k)

20 |+ pew
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e Summary:

— Can by achieved by using several formulation

— Preferred one is the method using the exogenous
disturbance model and its estimate

INVESTICE DO ROZVOJE VZDELAVAN | EaaEEun

T




 Introduction

— Motivation for advanced control techniques
— Classical approach
— Brief history of model predictive control

* Linear Model Predictive Control
— Formulation of linear MPC
— Analysis of linear MPC
— Hybrid systems and linear MPC
— Optimization Algorithms for linear MPC

INVESTICE DO ROZVOJE VZDELAVAN | EEESTT

T

M-



0] Analysis of linear MPC

* Analysis of classical feedback controllers

— The classical feedback controllers (PID) can be analyzed in
a number of ways. The most important properties are the
nominal performance, stability and robustness.

e What is different?

— Difference between the classical control and MPC is that
the MPC computes directly the sequence of the control
actions instead of using a control law.

o Dt .-. _ [T Tl
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0] Analysis of linear MPC

e MPC control law

— In fact, the optimization problem could be seen as a
control law. Why the MPC controller cannot be simple
analyzed as a classical controller, e.g. PID? - the answer is -
due to presence of constraints.

— It can be shown, that we can find a control law for each
combination of feasible active constraints in the form

u(k) = Kix(k) + g
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0] Analysis of linear MPC - unconstrained

 Assume that the system can be described by a state
space model, then the prediction is given by

j= Px(k)+ Hi

 Assume a quadratic cost function defining the
tracking MPC problem

Iz (k). k) = (F— §)T Q (7 — i) + @ Ri




0] Analysis of linear MPC - unconstrained

 Then the optimal control problem is

min J(u|x(k), k) = (F— Pz (k) — HE)T Q) (F— Px(k) — HET) + !l Ri

i '

e with solution
i* = (HTQH + R) " HTQ (¥ — Px(k))

* By applying the receding horizon strategy, we can

define control law in the form (k) = Kz (k) + K7




11 1
e Example: A[U 1];3[0‘5],0[1 1], D=0

e MPC cost function

J(dl|x (k). k) = (F— )" Q (F— i) + AdT RAl

* Parameters N =10 Q=1 R=1FL.1

e Controllaw u(k) = —K*z(k)+ K'r+ K*u(k — 1)

* %k ﬂ&lllllll.
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0] Analysis of linear MPC - stability

 Introduction

— It is known that the infinite horizon LQR control ensures
reasonable stability margins and reasonable control
performance. The disadvantage is that it does not enable
to handle the constraints in a systematic way. Basic version
of MPC controller is based on a finite prediction horizon.
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0] Analysis of linear MPC - stability

* Extension of the MPC prediction horizon to infinity
(LQR control)

J (u(0), ... Z v (k)T Qu (k) + u(k)T Ru(k))

 We can split the infinite prediction horizon into the
two parts
— Finite: time 0 to N-1
— Infinite: time N to inf




* The quasi-infinite cost function can be written as

J (u|x(0) Z k)Y Qx(k) + u(k)" Ru(k)) + ¥ (z(N))

k=0

 where the terminal penalty term is defined as

[TTITT




e We can show that U(z)=z"Vz ¥>0

U = ATUA— ATUB (R+ BTUB) ™ BTWA +Q
K = (R+BTWB)  BTUA .

* Kk L T
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0] Analysis of linear MPC - stability

e Dual mode control
— MODE 1:
e afinite horizon with N samples over which the control

inputs are free variables and they are determined by
solving the optimization problem.

— MODE 2:

e the subsequent infinite horizon over which the control
inputs are determined by control law: u(k) = -K x(k). The
gain matrix K is the feedback gain that ensures the
unconstrained closed-loop stability

® Ef X5
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0] Analysis of linear MPC - stability

e MPC stability

— The stability of the MPC control is not ensured in its basic
formulation. On the other hand, it is fair to say that the
basic MPC formulation gives very good results and
provides a good degree of stability and robustness in
practical applications. We will discuss the basic tools which
can be used to ensure the nominal stability of the
controller during the design stage.

® Ef X5
* * \ W4 -
= hod =P
* *
* gk N /
EVROPSKA UNIE el




0] Analysis of linear MPC - stability

e The basic tools are:

— Terminal equality constraints
— Terminal cost function

— Terminal constraints set

 The most practical is the combination of terminal
cost function in combination with the terminal
constraints set




Definition 1 A positively invariant set £ s a region of state space with the

property that all state trajectories starting from an initial condition within
the set remain within the set at all future instants.

Definition 2 An admissible positively invariant set €2 is a region of state
space with the property that all state trajectories starting from an initial
condition within the set remarn within the set at all future instants and all
considered constraints will be satisfied.

Definition 3 The maximal admissible positively invariant set (MAS) is a
region of state space of all possible initial states so that all state trajectories
starting from an initial condition within the set remawn within the set at all
future mstants and all considered constraints will be satisfied.

[TTITT
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 Formally, the basic property of a positively invariant
set can be summarized as

(A—BK)x(k) € Q Var(k) e
Mumin < Mx(k) < mpax Vo(k) € Q.

Invariant set Ellipsoidal invariant set — state space




e Definition of MPC problem ensuring the stability
(stable control synthesis)

N-1
T (tila(k), k) = ek + NIy + D ek +i)llg + llulk + )7
1=0
Git <W + Sa(k) r(k+N) e

{1*1} Eflﬁr 3 L &Humﬂ
I. !'E
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0] Analysis of linear MPC - stability proof

o ...If there exist a Lyapunov function with given
properties for the given control law, then the
nominal closed loop will be stable...

* A candidate for the Lyapunov function is the cost
function, i.e.

V (k)= J(d;|z(k), k)

o Dt .-. _ [T Tl
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 Assume three different control sequences

— Optimal control sequence at time k
iy = [u(klk) w(k+1k) ... w(k+N—1]k) ]

— Suboptimal control sequence at time k+1

it = Tu(k + k) u(k+2[k) ... u(k+N|k) ]

— Optimal control sequence at time k+1

Uy = [u(k+1k+1) v (E+2]k+1) ... v (k+N|k+1) ]

~NAA Rt Efwr ﬁ{llll][lﬂ
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* From definition, we have

V (k1) = J (ol + 1),k +1) < T (G “(k+ 1)+ 1)

e Then

V(k+1)

(VAN

J(ﬂ?”mw+1)h+g

T (| (k). k) = [|a(kIR)[; = lu(k[E) |7 — |2k + Nk)|g
+llutk + Nlk)5 + llz(k + N+ 1|k)|3 -

[\

T
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e Itholdsthat v (i) =J(a|=(k). k)
 Therefore

2 2 2
VIk+1) =V(k) < —lla(kF)lg = llukm)R = ok + Nk
2 2
+ulk + NIF)[g + ok + N+ 1Ry -

* Finally, the Lyapunov function must satisfy

Viik+1)—=V(k) <0

{1!1} Ef Iﬁr ﬁ &I I]I][Iﬂ
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0] Analysis of linear MPC - stability proof

e |tis clear that the non-increasing condition will be
satisfied if

|z(k + N|E)|5 > [lu(k + Nk + |2k + N+ 1|k)||5

e |If the Mode 2 control law satisfies the above
condition, then V(k) is a Lyapunov function and the
receding horizon control sequence will stabilize the

system.

o Dt .-. _ [T Tl
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 Two basic options for Mode 2:

e u(k+1i) =07 > N: Then, the condition (2.37) leads to the Lyapunov
equation

ATUA -0 <0

i.c. a condition. that the system is stable and the weighting matrix W of
the terminal penalty term is a Lyapunov equation solution. The set €2
used in (2.33) is an admissible positively invariant set for the open loop
syster.

o u(k+i)=—Kux(k+1i), i > N: Then. the condition (2.37) leads to the
Algebraic Riccati Equation. 1.c.

(A—BK)" U(A—-BK)+ KTRK <V .

In this case. the control law K and weighting matrix W must satisfy
the algebraic Riccati equation and € utilized in (2.33) is corresponding

admissible positively invariant set.

* %k ﬂ&lllllll.
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0] Analysis of linear MPC - stability

e Summary:

— The MPC control stability can be ensured by defining the
MPC control problem as Dual mode control

— To complete the MPC analysis, we have to show that the
optimization control problem in the
— this is due to presence of constraints.
It can be shown that if the optimization problem is feasible
at time t=0, then it remains feasible for all times.
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0] Analysis of linear MPC - robustness

 Robust MPC control design

— In the MPC robust control design, we need to formulate an
optimization problem that ensures the robustness. We
defined two classes of uncertainties that are often used in
the linear MPC. When designing the robust MPC, we can
follow the concept presented in the section about the
stability, i.e. the dual mode control.
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 Robust admissible positively invariant set

Definition 4 A robust admassible positively invariant set €0 is a region of
state space with the property that all state trajectories of the system controlled
by a state feedback starting from an initial condition within the set remain
within the set at all future istants for all considered perturbations and any
of considered constraints is not violated.

[TTITT




 Robust admissible positively invariant set - example
r(k+1)=Ax(k) + Bu(k)+ Fw(k) . w(k)eW

Robust et set Control vanable
Clo

6t o 1 d :
A ‘.ﬂw ‘ “u(k)=Kx(k)
Wstate uncertainty 05 —bounds of u(k)|_
2 -H——nominal state trajectory T
0 3
ER) —
5 g —
< _l_'_,_'_
—4 -0 =
6 ; I
. -1
s 0 > 10 0 5 10 15 20 25
time [sec]

Robust target set — detail Robust target set — detail 2
; —_—
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e Basic robust MPC optimization problem can be
defined as min-max optimization

i, = argmin {m_::;tXJ (ﬁk|$(k)?§k? k)}

U E}k

ﬁk c Z/{k X,liv < erobust Zlf(k + N) = Xé\r

[TTHIIITT
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e Robust MPC - example

Robust target set

8 ....................................................................................................................................

4 ....................................................................................................

2 ....................................................................................................

o
x . .

0 target set corresponding to rN({}) """""""""""""
_2 -MCErtﬂ]ﬂtyﬂfX(O'FN|0) .......... Moo _
L] O mialsae |

—e—nominal state trajectory
o -15 ~10 -5 0 5 10 15
X

[TTITT




 Introduction

— Motivation for advanced control techniques
— Classical approach
— Brief history of model predictive control

* Linear Model Predictive Control
— Formulation of linear MPC
— Analysis of linear MPC
— Hybrid systems and linear MPC
— Optimization Algorithms for linear MPC

INVESTICE DO ROZVOJE VZDELAVAN | EEESTT

T

e



0] Hybrid systems and linear MPC

* Definition
— Hybrid systems are a special class of dynamical systems

that combines both continuous and discrete-value
variables. The main components of the hybrid systems are
the continuous dynamics (based on first principle), logical
components (switches, automate, logical conditions, etc.)
and interconnections between the logic and dynamic. The
hybrid systems can be used to model systems with several
operation modes where each mode has different
dynamical behavior
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 An example of a hybrid system is a piece-wise affine
(PWA) system, which can be defined as

v(k+1) = Ajx(k)+ Bu(k) + f;

=
—
o
~—
|
2
=
—
&
—
+
$
=
—
I
~—
+
2

if
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0] Hybrid systems and linear MPC

* Properties

— The PWA systems enables to describe a large class of
practical applications and are very general. Unfortunately,
they are not directly suitable for the analysis and synthesis
of optimal control problems.

— Another useful framework for the hybrid systems is based
on Mixed Logical Dynamical (MLD) models. These models
transform the logical part of a hybrid system into the
mixed-integer linear inequalities by using Boolean
variables.
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0] Hybrid systems and linear MPC

 The basic form of the MLD system is given by

y(k) Cx(k)+ Du(k)+ Dyo(k) + Dsz(k) .

subject to

— where x(k) is a combined continuous and binary state, u(k)
and y(k) are the system input and outputs (continuous and
binary), delta(k) are auxiliary binary variables and z(k) are
auxiliary continuous variables.
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e We can define the optimal control problem for the
PWA system as

N—-1
T (@ (k), k) = [Pk + N)||, + > 1Qe(k + i), + || Ru(k + i),
i=0

v(k+1) = Ae(k)+ Biu(k) + fi
y(k) = Ciz(k) + Diju(k) + g;
if [igg] cT. i=1.2. .n
u(k) el
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e Summary:

— The PWA system can be represented by a MLD model and
therefore, the optimal control problem corresponds to the
solution of mathematical mixed-integer program.

— In case of PWA system

 if the cost function is quadratic, then the optimization problem
leads to Mixed-Integer Quadratic Program

e if the the cost function is based on |1 or linfty norm, the
optimization problem leads to Mixed-Integer Linear Programming.
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0] Optimization algorithms for linear MPC

e It has been shown that the MPC control

problem can be formulated as an
optimization problem that is solved at each

sampling period.

 Therefore, the performance of the
optimization algorithm in MPC is critical




0] Optimization algorithms for linear MPC

 Assume the resulting QP optimization problem for
the linear MPC in form

| 1 . ) i ]
0" =argmin—u Hi+ i Fp. st Gi<W +Sp

u Fd

e Modern QP solvers are based on
— Active set approach
— Interior point approach




0] Optimization algorithms for linear MPC

e Active set solvers

— lterative algorithms where in each iteration, we are testing
the optimality conditions for actual working set of active
constraints. If the working set of active constraints does
not lead to the optimal solution, then we modify the set by
adding or removing the active constraints.

— In general, the active set solvers are suitable for relatively
small problems but they are very efficient in practice,
especially in combination with warm-starting strategy.

o Dt .-. _ [T Tl
* * » |
* * L ] —
EVROPSKA UNIE el



0] Optimization algorithms for linear MPC

e Interior point solvers

— The interior-point methods are based on barrier functions.
The constraints are added to the criterion function in the
form of a barrier which transforms the original problem to
an unconstrained optimization.

— The interior-point methods are iterative (solution to
optimality conditions) and usually require only a small
number of iterations when compared to active set solvers.
However, the individual iterations are more
computationally expensive.
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0] Optimization algorithms for linear MPC

 Multi-parametric explicit solution

— If we need extremely fast sampling periods in the MPC, we can use
multi-parametric explicit solution. These optimization algorithms have
off-line and on-line parts.

— The MPC optimization problem is solved explicitly in the off-line part.
The explicit solution divides the optimization problem parameter
space into a number of regions where each region has associated a
control law. A particular region corresponds to a feasible combination
of active constraints. All these regions and the control laws are stored
for the on-line part. In the on-line part at each sampling period, we
simply construct the parameter vector and find the corresponding
region. Then we apply the associated control law.

— Unfortunately, the multi-parametric explicit solution is applicable for
small systems only due to storage demands.
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0] Optimization algorithms for linear MPC

e Tailoring for MPC

— Another way how to improve performance of the MPC
optimization is to explore the structure of the MPC
optimization problem and use this information to design
an efficient solver.

— For example, there are two ways how to add the soft
constraints to the optimization problem. One of them
leads to box constraints. if all the constraints in the
optimization problem are box, then we can use this
information to implement an efficient solver, e.g. based on
gradient projection methods or their modifications.
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* Nonlinear Model Predictive Control
— Formulation of nonlinear MPC

— Analysis of nonlinear MPC
— Numerical methods for nonlinear MPC

* Practical Model Predictive Control
— Practical formulations of MPC
— Development cycle of industrial MPC
— Demonstration of an application

T

INVESTICE DO ROZVOJE VZDELAVAN | EEESTT %



0] Formulation of nonlinear MPC

e Why nonlinear MPC?

— Today's processes need to be controlled under tight
performance specifications which can be only met if the
controller works precisely. Nonlinear model predictive
control (NMPC) is extension of the well established linear
predictive control to the nonlinear world.

— Linear model predictive control refers to MPC algorithms in
which the linear models are used. The nonlinear model
predictive control refers to MPC schemes that are based
on the nonlinear models.
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* The modeling phase in the NMPC is the most
important part. Assume a model described by a set
of nonlinear equations

i (t)
y(t)

f(x(t), u(t))
h (2(t), u(t))

=

o Eflﬁr rﬁ{llum_
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 The basic cost function has the integral form

=0

J (). (t0) = [ L (ax(t), u(e) ) de

to

 where the function L(.) defines the control
objectives. For example it can be defined as

L (x(t),u(t), t) = [Ir(t) — y(t)llg + lu(t)l|7

o _ [ e
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 The cost function on the infinite prediction horizon
can be divided into two parts

— finite part

{1!1} Ef Iﬁr ﬁ &I I]I][Iﬂ
* ) §
INVESTICE DO ROZVOJE VZDELAVAN | EElied - %j



 The general nonlinear MPC can be formulated as a
nonlinear optimization problem

min .J (u(t)|z(to))

u(t)
(t) — f(x(t),u(t) = 0,
I(t(]) — Iy — 0 ]
g($(t):u(t)) < 0, te (tﬂatN) )
u(t) € U, te(totn) ,
z(t) € X, te(tyty) ,
r(ty) € Q,
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e Nonlinear Model Predictive Control

— Formulation of nonlinear MPC

— Analysis of nonlinear MPC
— Numerical methods for nonlinear MPC

* Practical Model Predictive Control
— Practical formulations of MPC
— Development cycle of industrial MPC
— 