

Robust Constrained PID Control Robust Design of Parallel PI Controller

prof. Ing. Mikuláš Huba, Ph.D. Ing. Peter Ťapák, Ph.D.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

To explain:

- basic possibilities for disturbance compensation in controlling 1st order systems
- To explain some basic rules for robust tuning of the traditional parallel PI controller
- to compare these methods with tuning based on the Performance Portrait method
- To explain basic possibilities for eliminating windup effect
- To explain basic possibilities for avoiding windup effect by different Disturbance Observers

Fundamental Controllers of DC1

- DC1 represents the 2nd row of the Table of fundamental PID controllers
- It includes controllers that are already non-linear, typically depending on effect of constraints, frequently equipped with anti-windup circuitry
- Control signal corresponding to monotonic setpoint step response shows typically one pulse of control
 FF = static feedforward control

		Dominant dynamics							
Dynamic class	l- action	K	Ke^{-T_d}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$
0	Ν	FF	FF	FF	FF	FF	FF	FF	FF
	Y	Ι	Prl	ΡI	PrPI	PID	PrPID	PID	PrPID
1	N	-	-	Р	PrP	P-P	PrP-P	PD	PrPD
	Y	-	-	ΡI	PrPI	P-PI	PrP-PI	PID	PrPID
2	Ν	-	-	-	-	-	_	PD	PrPD
	Y	-	-	-	-	-	-	PID	PrPID

Pr = predictive (dead time) controllers

11.3.2011

Fundamental Solutions DC1

- DC1 includes controllers that are already non-linear, typically depending on effect of constraints, frequently equipped with anti-windup circuitry
- Control signal corresponding to monotonic setpoint step response shows typically one pulse of control

11.3.2011

Static feedforward + P-controller + disturbance compensation

Measurable disturbance may be compensated

Non-measured disturbances may be reconstructed

11.3.2011

P controller – loop stabilization

I action – disturbance reconstruction (observer) – disturbance compensation/rejection

In steady state $u_1 = -v$

$$\frac{du_I}{dt} = K_I e \; ; \; u_I = \int_{-\infty}^t e(t) dt$$

Nominal system

$$K_s = K_{smax} = K_{smin} > 0$$
$$T_d = T_{dmax} = T_{dmin} > 0$$

What is the optimal tuning (for $T_d=0$)?

$$R(s) = \frac{U(s)}{E(s)} = K_P + K_I \frac{1}{s} = K_P \left(1 + \frac{1}{T_i s}\right) = \frac{K_P T_i s + 1}{T_i s}$$

11.3.2011

Output transients have always overshooting

- One explanation it is caused by zero in the closed loop transfer function
- Other explanation I action integrates during the initial phase of transient responses even in situations with no disturbance – the accumulated signal can be cleared just by changing sign of the control error
- Control constraints prolong phase of wrong integration and enlarge its product – windup effect

Examples of transient responses for different disturbance v and unconstrained/constrained case

11.3.2011

11.3.2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

y

U

Setpoint-to-output and disturbance-to-output transfer functions (T_d =0)

$$F_{w}(s) = \frac{Y(s)}{W(s)} = \frac{K_{s}K_{P}(T_{I}s+1)}{s^{2}T_{I} + K_{P}K_{s}(T_{I}s+1)}$$

$$F_{v}(s) = \frac{V(s)}{W(s)} = \frac{sK_{s}T_{I}}{s^{2}T_{I} + K_{P}K_{s}(T_{I}s+1)}$$

$$A(s) = s^{2}T_{I} + K_{P}K_{s}(T_{i}s+1) = T_{I}(s-s_{1})(s-s_{2})$$

In steady-states the disturbance is compensated

Roots of A(s) (for $T_d=0$) $A(s) = s^2 T_I + K_P K_s (T_i s + 1) = T_I (s - s_1)(s - s_2)$ $-K_P K_s \pm K_P K_s \sqrt{1 - \frac{4}{K_P K_s T_I}}$ $s_{1,2} = \frac{2}{2}$

Aperiodic transients (see e.g. Skogestad, 2003)

Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. *Journal of Process Control* 13, 2003, 291–309

11.3.2011

Overshooting and windup are casued by zero of the setpoint-to-output TF. This can be cancelled by prefilter numerator with time constant T_i

Transients may be speeded up by cancelling one pole of A(s) by prefilter numerator $1+bT_ls$

Vítečková, M., Víteček, A.: Two-degree of Freedom Controller Tuning for Integral Plus Time Delay Plants. ICIC Express Letters. An International Journal of Research and

Surveys. Volume 2, Number 3, September 2008, Japan , pp. 225-229

$$F_{w}(s) = \frac{Y(s)}{W(s)} = \frac{K_{s}K_{P}(T_{I}s+1)}{s^{2}T_{I} + K_{P}K_{s}(T_{I}s+1)}; -\frac{1}{bT_{I}} = s_{1} = -K_{P}K_{s}\left(1 + \sqrt{1 - 4[(K_{P}K_{s}T_{I})]}\right)$$

11.3.2011

Problem 1

Prefilter

- Denominator canceling zero of $F_w(s)$
- Numerator canceling slower real pole

Equivalent solution

$$F_p(s) = \frac{bT_is + 1}{T_is + 1}$$

Two-Degree-of-Freedom 2DOF PI Controller

$$U(s) = K_P[bW(s) - Y(s)] + \frac{K_P}{sT_i}[W(s) - Y(s)]$$

Optimal PI with prefilter (2DOF PI)

- Pole-zero cancellation
- Monotonic transients
- Low IAE values

Optimal PI – Tripple Real Dominant Pole TRDP (Vítečková &

Víteček, 2008

11.3.2011

Setpoint-to-Output Transfer Function for $T_d > 0$

$$F_{w}(s) = \frac{Y(s)}{W(s)} = \frac{K_{s}K_{P}(T_{i}s+1)}{s^{2}T_{i}e^{T_{d}s} + K_{P}K_{s}(T_{i}s+1)}$$
$$A(s) = s^{2}T_{i}e^{T_{d}s} + K_{P}K_{s}(T_{i}s+1)$$

Tripple Real Dominant Pole of A(s) corresponds to

$$A(s) = (s - s_0)^3$$

11.3.2011

TRDP fulfills conditions

$$A(s_{0}) = 0 ; \dot{A}(s_{0}) = 0 ; \ddot{A}(s_{0}) = 0$$
$$A(s) = s^{2}T_{i}e^{T_{d}s} + K_{p}K_{s}(T_{i}s + 1)$$
$$\dot{A}(s) = 2sT_{i}e^{T_{d}s} + s^{2}T_{d}T_{i}e^{T_{d}s} + K_{p}K_{s}T_{i}$$
$$\ddot{A}(s) = 2T_{i}e^{T_{d}s} + 4sT_{d}T_{i}e^{T_{d}s} + s^{2}T_{d}^{2}T_{i}e^{T_{d}s}$$

Solution gives

$$\begin{split} s_0 &= -\left(2 - \sqrt{2}\right) / T_d \\ K_P &= 2\left(\sqrt{2} - 1\right) e^{\sqrt{2} - 2} / \left(K_s T_d\right) \approx 0.461 / \left(K_s T_d\right) \\ T_i &= \left(2\sqrt{2} + 3\right) T_d \approx 5.828 T_d \end{split}$$

11.3.2011

Prefilter

- Denominator canceling zero of $F_w(s)$
- Numerator canceling one pole s_0

$$F_p(s) = \frac{bT_i s + 1}{T_i s + 1}$$
 $bT_i = -1/s_0 \implies b = \frac{2 - \sqrt{2}}{2} \approx 0.293$

Equivalent solution – 2DOF PI Controller

$$U(s) = K_P[bW(s) - Y(s)] + \frac{K_P}{sT_i}[W(s) - Y(s)]$$

Equivalent solution Monotonic transients Low IAE values

I action does not equal to negative disturbance!

Interval Plant Parameters

$$\begin{split} K_{s} &\in \left\langle K_{s\min}, K_{s\max} \right\rangle; \, K_{s\max} \geq K_{s\min} > 0 \\ T_{d} &\in \left\langle T_{d\min}, T_{d\max} \right\rangle; \, T_{d\max} \geq T_{d\min} > 0 \end{split}$$

Looking for PI controller tuning guaranteeing monotonic setpoint step responses with minimal mean IAE over uncertainty set

Closed loop transfer functions for normed variables

$$F_{w}(s) = \frac{Y(s)}{W(s)} = \frac{K_{s}K_{p}(1+bT_{i}s)}{s^{2}T_{i}e^{T_{d}s} + K_{p}K_{s}(T_{i}s+1)}$$

$$p = T_{d}s; \ \Omega_{c} = K_{s}K_{p}T_{d} \ ; \ \tau_{i} = T_{i}/T_{d} \ ; \ \Omega_{f} = 1/\tau_{i} = T_{d}/T_{i}$$

$$\bigcup$$

$$F_{w}(p) = \frac{\Omega_{c}(bp + \Omega_{f})}{p^{2}e^{p} + \Omega_{c}(p + \Omega_{f})} = \frac{B(p)}{A(p)}$$

11.3.2011

Conditions for triple real dominant pole

$$A(p_0) = \dot{A}(p_0) = \ddot{A}(p_0) = 0$$

$$A(p) = p^2 e^p + \Omega_c p + \Omega_c \Omega_f$$

$$\dot{A}(p) = (p^2 + 2p)e^p + \Omega_c$$

$$\ddot{A}(p) = (p^2 + 4p + 2)e^p = [(p+2)^2 - 2]e^p$$

$$\begin{aligned} \ddot{A}(p_0) &= 0 \Longrightarrow p_0 + 2 = \pm \sqrt{2} \Longrightarrow p_0 = \sqrt{2} - 2\\ \dot{A}(p_0) &= 0 \Longrightarrow \Omega_{c0} = -(p_0^2 + 2p_0)e^{p_0} = 2(\sqrt{2} - 1)e^{\sqrt{2} - 2}\\ A(p_0) &= 0 \Longrightarrow \Omega_{f0} = -\frac{p_0^2 e^{p_0}}{\Omega_{c0}} - p_0 = \frac{p_0}{(p_0 + 2)} - p_0 = \frac{\sqrt{2} - 2}{\sqrt{2}} - \sqrt{2} + 2 = 3 - 2\sqrt{2} \end{aligned}$$

11.3.2011

How to tune prefilter (coefficient *b*)? – iterative solution - real dominant pole (it exists at least one) – canceling with prefilter numerator!

Mapping the Performance Portrait in 2D (Ω_c, Ω_f) with chosen steps and limits for K_p and T_i

$$R(s) = K_p \left(1 + \frac{1}{T_i s} \right)$$

IAE values over region of y-MO & u-1P control

 $\Omega_c = K_P K_s T_d$ $\Omega_f = T_d / T_i$

11.3.2011

Setpoint Weighting b

 $\Omega_c = K_P K_s T_d$ $\Omega_f = T_d / T_i$

Robust monotonic responses => minimal *b* over US = slightly conservative

11.3.2011

US may not include optimal point and its neighbourhood

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

US may not include optimal point and its neighbourhood

11.3.2011

US may not include optimal point and its neighbourhood

INVESTICE DO ROZVOJE VZ<u>DĚLÁVÁNÍ</u>

Robust tuning gives much more conservative tuning than the nominal optimal one

11.3.2011

Corresponding Time Responses

Detail showing overshooting – one of the vertices of US was out of MO region

 $\textcircled{\bullet}$

- Traditional parallel PI controller is not able to guarantee monotonic setpoint step responses for integral plant
- Monotic responses require use of the 2DOF PI controller (setpoint weighting or prefilter)
- Both solutions are equivalent from the output point of view, not at the level of P and I-action

- When using setpoint weighting the value of I-action does not represent negative disturbance
- The excessive integration of I action is compensated by intentionally "distorted" P action
- Zero disturbance is compensated by the counteracting P and I action (too complicated P)

11.3.2011

- Performance Portrait represents interesting method for controller evaluation and tuning
- It enables both nominal and robust tuning of PI controllers guaranteeing specified performance given by tolerated deviations from ideal NO, MO & 1P responses with minimal IAE, TVO and TV1 values
- It also enables evaluation of constraints influence

- For parallel PI controller it is not possible to locate ULS or US into areas of y-MO & u-1P control close to the optimal working point with minimal IAE values – the corresponding areas are too narrow
- Due to this, robust transients are reasonably slower than the nominal ones
- It will be interesting to compare the above achieved results with other approaches based on disturbance observer.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

To explain:

- principle of robust tuning of the PI controller in 3D by using the performance portrait method,
- basic differences in tuning achieved with the PP method in comparing with the traditional methods of robust tuning

$$F(s) = \frac{K_s}{s} e^{-T_d s}$$

$$K_s \in \langle K_{s\min}, K_{s\max} \rangle; T_d \in \langle T_{d\min}, T_{d\max} \rangle$$

2DOF PI – Setpoint Weighting

Aim

- to achieve MOnotonic (MO) transients
- at the plant output
- to achieve 1P transients at the plant input
- with specified tolerable deviations and low IAE

2DOF PI – Prefilter

Aim

- to achieve MOnotonic (MO) transients
- at the plant output
- to achieve 1P transients at the plant input
- with specified tolerable deviations and low IAE

- Vítečková-Víteček, 2008 Tripple Real Dominant Pole (TRDP)
- Skogestad, 2003 Simple/Skogestad IMC (SIMC) modified by prefilter
- Hägglund-Åström, 2002 Approximative Msconstrained Integral Gain Op-timization (AMIGO) modified by prefilter
- Åström-Panagopoulos-Hägglund, 1998 Nonconvex Optimisation (NCON) – cannot be modified to give monotonic responses

Closed loop transfer functions for normed variables

$$F_{w}(s) = \frac{Y(s)}{W(s)} = \frac{K_{s}K_{c}(1+bT_{i}s)}{s^{2}T_{i}e^{T_{d}s} + K_{p}K_{s}(T_{i}s+1)}$$

$$p = T_{d}s; K = K_{s}K_{c}T_{d} ; \tau_{i} = T_{i}/T_{d} ; b$$

$$\Downarrow$$

$$F_{w}(p) = \frac{K(b\tau_{i}p+1)}{p^{2}e^{p} + K(\tau_{i}p+1)} = \frac{B(p)}{A(p)}$$

11.3.2011

3D performance portrait mapped for the setpoint step responses over 27x27x21 points

$$K \in \langle 0.1, 1.4 \rangle; \tau_i \in \langle 3.5, 15.5 \rangle; b \in \langle 0.1 \rangle$$
 Subsequently swept for:

- Min IAE
- Max $K_i = K_c / T_i$

and used for:

- Nominal tuning
- Robust tuning

Amplitude and integral measures give equivalent results -

just optimal layer shown

11.3.2011

Absolute minimum of IAE is out of MO and 1P area

Optimization tending to $T_i \rightarrow \infty, b \rightarrow 1$

Min IAE – Disturbance Steps

It has sense just for IAE composed from the setpoint as well as disturbance responses

11.3.2011

Amplitude and integral measures give equivalent results -

y1-MO , b=0, k=1 u-1P , b=0, k=1 optimal 15 15 τ_i=T/T_d 10 10 shown 5 5 1.2 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 1.2 y1-TV0, b=0, k=1 u-TV1, b=0, k=1 15 15 $\tau_i = T_i T_d$ 10 5 F 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 1.2 1 1.2 $K = K_c K_s T_d$ $K = K_c K_s T_d$

11.3.2011

just

layer

Minimum achieved for b=0; It is enough to continue in

2D

11.3.2011

Now, the PP method does not give the absolutely best setpoint response (this was not required)

11.3.2011

Max K_i - Disturbance Steps

But the disturbance response is clearly the best – although the design uses just PP derived from the setpoint steps – possibility for improvement

11.3.2011

Max K_i - Performance Portrait

11.3.2011

Minimum achieved for *b*=0; It is enough to continue in

11.3.2011

2D

Max K_i - Setpoint Steps

11.3.2011

Max K_i - Disturbance Steps

But the disturbance response is clearly the best – although the design uses just PP derived from the setpoint steps – possibility for improvement

11.3.2011

- All tested traditional methods give results that may be interesting for some applications
- But, depending on given uncertainty, for some applications the offered tuning may be too conservative
- For other ones too aggressive
- The PP method gives result exactly matching the plant uncertainty and given specifications

 Neither the anti-windup modification according to Åström-Hägglund, 1995 and use of prefilter guarantee monotonic responses in case of constraints

- Reason the pole-zero cancellation between prefilter and closed loop does not hold exactly in constrained case
- Despite we know to tune this controller, it is not appropriate for constrained control

