

Robustné PID-regulátory s obmedzeniami Robust Constrained PID Control DC0: Robust Design of PI₀ Controllers

prof. Ing. Mikuláš Huba, Ph.D. Ing. Peter Ťapák, Ph.D.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Pl₀ controllers

- Generic and equivalent structures for static feedforward control with reconstruction and compensation input/output disturbances
- Fundamental properties
- Performance Portrait
- Optimal and robust tuning
- Robustness Charakteristics
- Nonmodelled dynamics influence
- Disturbance compensation

Dynamical Class 0 (DC0)

- DC0 includes all controllers that ideally have monotonic setpoint step responses both at the plant and at the controller outputs
- By speeding up dynamics of these transients they converge up to rectangular steps
- PI₀ controllers belong to the simplest controllers of DC0
- They are fundamental controllers: it means that in the nominal case (without nonmodelled dynamics) their output may be arbitrarily speeded up (up to rectangular steps at the controller, or plant outputs), i.e. they fulfill conditions:

• For the closed loop poles

$$-\infty < \alpha_2 < \alpha_1 < 0$$

the normalised setpoint responses corresponding to zero initial conditions and to a step w(t)

$$\overline{y}(\alpha_i,t) = y(\alpha_i,t)/w(t)$$

• satisfiy conditions

$$1 > \overline{y}(\alpha_2, t) > \overline{y}(\alpha_1, t) > 0; \quad \forall t > 0;$$

$$\lim_{t \to \infty} \overline{y}(\alpha_i, t) = 1; i = 1 \text{ or } 2$$

11.3.2011

Fundamental Controllers of DC0

- Similar importance as the Mendelejev Periodic Table of elements in chemistry
- DC0 represents the first row of the Table of fundamental PID controllers and includes controllers that are fully linear

					Dominant dynamics				
Dynamic class	l- action	K	Ke^{-T}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$
0	N	FF	FF	FF	FF	FF	FF	FF	FF
	Y		Pri	PI	PrPi	PID	PrPiD	PID	PrPID
1	Ν	-	-	Р	PrP	P-P	PrP-P	PD	PrPD
	Υ	-	-	PI	PrPI	P-PI	PrP-PI	PID	PrPID
2	N	-	-	-	-	-	-	PD	PrPD
	Y	-	-	-	_	-	-	PID	PrPID

- FF = static feedforward control
- Pr = predictive (dead time) controllers

• The core structure for the setpoint following in DC0 is known as:

Static feedforward control

11.3.2011

Fundamental Controllers of DC0

• A measurable input disturbance can be compensated by a counteracting signal at the controller output

Static feedforward control with compensation of the input disturbance

11.3.2011

I₀-controller - generic structure

• A nonmeasurable input disturbance can be reconstructed by a **Disturbance Observer**

Static feedforward control with reconstruction and compensation of the input v disturbance

11.3.2011

• The generic structure with the Disturbance Observer may be transformed to an equivalent structure with *explicit I-controller* & *ideal prefilter*

Omitting prefilter = filtered response continuous for t = 0

It will be denoted as FI₀ controller = I controller

11.3.2011

PI₀ and PrI₀ Controllers

- I₀ controllers are based on the *simplest* plant approximation by a gain (memoryless plant)
- By approximating the plant dynamics by a time constant, or by a dead time it is possible to derive Pl₀ and Predictive I₀ (PrI₀) controllers
- Both approximations corresponds to evaluating the Average Residence Time by measuring e.g. the integral area over the setpoint step response

- Static feedforward control
- Extended possibly by prefilter (time constant T_p) to achieve continuous control changes after setpoint steps (increased robustness)
- Two different generic schemes for reconstruction and compensation of input, or output disturbances with disturbance filter T_f
- Compensation of dominant loop time constant
- Use of the parralel plant model (IMC like structure), or of the inverse plant model (Disturbance Observer structure)
- Monotonic signals at the plant input and output

PI₀-IM controller (with inverse model) generic fundamental structure

Static feedforward control +

+reconstruction & compensation of input disturbance +
compensation of dominant time constant

PI₀-IM regulátor (s inverzným modelom) východzia fundamentálna štruktúra

Static feedforward control +

+reconstruction & compensation of input disturbance +
compensation of dominant time constant

11.3.2011

PI₀-IM : Equivalent structure with prefilter

 $\textcircled{}$

- the most frequently used structure in literature

- $T_p = T_f$ => filtered control continuous for t = 0 - controller with error acting on I only

PI₀-IM : Equivalent structure with prefilter

– ommitting prefilter numerator = use of prefilter with $T_p = T_f$ in the generic structure

11.3.2011

PI₀-IM controller with prefilter generic fundamental structure

Static feedforward control +

+reconstruction & compensation of input disturbance +
compensation of dominant time constant

PI₀-IM controller: Output *y*₀ (+prefilter)

ROZVOJE

DO

VZDELAVAN

PI_0 -IM controller: Output y_1 (+prefilter)

Prefilter
$$T_p = T_f$$
 $F_{w1}(s) = \frac{Y_1(s)}{W(s)} = \frac{K(1+T_f s)}{(1+T_p s)[K_0 T_f T_1 s^2 + (K_0 T_f + KT_{10})s + K]} \Rightarrow$

$$F_{w1}(p) = \frac{1}{\kappa \tau_f \tau_1 p^2 + (\kappa \tau_f + 1)p + 1}; \quad p = T_{10}s; \quad \tau_1 = \frac{T_1}{T_{10}}; \quad \tau_f = \frac{T_f}{T_{10}}; \quad \kappa = \frac{K_0}{K}$$

$$\underbrace{\frac{1}{K_0}}_{V_f} \underbrace{\frac{1}{T_f s + 1}}_{V_f} \underbrace{\frac{1}{T_f s + 1}}_{V_f} \underbrace{\frac{1}{T_f s + 1}}_{V_g} \underbrace{\frac{1}{K_0} \underbrace{\frac{T_{10} s + 1}{T_f s + 1}}_{V_g} \underbrace{\frac{1}{K_0} \underbrace{\frac{1}{K_0}$$

PI₀ -PM controller (with paralel model)

Static feedforward control+ +reconstruction+compenzation of output disturbance -2DOF IMC structure with T_p and T_f

11.3.2011

Pl₀-PM : Equivalen structure

Controller with equivalent prefilter

- structure most frequently used in literature

- $T_p = T_f$ => filtered control continuous for t = 0 - controller with error acting on I only

PI₀ controllers

- Generic and equivalent structures for static feedforward control with reconstruction and compensation input/output disturbances
- Fundamental properties
- Performance Portrait
- Optimal and robust tuning
- Robustness Charakteristics
- Nonmodelled dynamics influence
- Disturbance compensation

PP of the PI₀-IM controller (+prefilter):

PP of the PI₀-IM controller (+prefilter):

Analytical tuning - aperiodicity border

PP of the PI₀-IM controller (+prefilter):

Generating Performance Portrait – first two steps:

1. Mapping properties in 3D with variables (κ, τ_1, τ_f) – over grid of defined points

- 2. Visualisation of observed properties:
 - TV or TV₀ values for plant input and output,
 - maximal overshooting for outputs y_0 and y_1 ,
 - deviations from monoticity for input u and outputs y_0 , y_1 ,
 - IAE values for outputs y_0 and y_1 etc.

Colors used for denoting areas with amplitude deviations not exceeding defined values, integral deviations shown by contours in 2D planes, e.g. for τ_f =const.

Performance Portrait, $T_f = 2T_{10}$

Performance Portrait, $T_f = T_{10}/2$

11.3.2011

Pl₀ controllers

- Generic and equivalent structures for static feedforward control with reconstruction and compensation input/output disturbances
- Fundamental properties
- Performance Portrait
- Optimal and robust tuning
- Robustness Charakteristics
- Nonmodelled dynamics influence
- Disturbance compensation

Order Uncertainty sets of the Pl₀ controller

Interval loop parameters

 $K \in \langle K_{\min}, K_{\max} \rangle$; $c_K = K_{\max} / K_{\min} \ge 1$; $T_1 \in \langle T_{1\min}, T_{1\max} \rangle$; $c_T = T_{1\max} / T_{1\min} \ge 1$;

Uncertainty box UB in the plane of interval parameters (κ, τ_1) in a section through the 3D space (κ, τ_1, τ_f) for τ_f =const

$$UB = \begin{bmatrix} \kappa_{\min} \tau_{1\max} & \kappa_{\max} \tau_{1\max} \\ \kappa_{\min}, \tau_{1\min} & \kappa_{\max} \tau_{1\min} \end{bmatrix}; \quad \kappa = \frac{K_0}{K}; \quad \tau_1 = \frac{T_1}{T_{10}}; \quad \tau_f = \frac{T_f}{T_{10}}$$

For one interval parameter we get horizontal or vertical uncertainty line segment in the plane of parameters (κ , τ_1) in a section through the 3D space (κ , τ_1 , τ_f) for τ_f =const

Uncertainty sets of the Pl₀ controller

Sweeping the parameter space for minimal mean IAE, ϵ =0.02 Sweeping in 3D space of parameters (κ , τ_1 , τ_f)

Illustration of possible sequence of found values for T_f =const

 K_0 =2.108; T_{10} =1.819; IAE_{0min}=0.027; IAE_{0mean}=1.764; IAE_{0max}=5.04 K₀=2.461; T_{10} =1.897; IAE_{0min}=0.084; IAE_{0mean}=0.643; IAE_{0max}=1.22

Verification of found optimal responses

11.3.2011

PI₀ controllers

- Generic and equivalent structures for static feedforward control with reconstruction and compensation input/output disturbances
- Fundamental properties
- Performance Portrait
- Optimal and robust tuning
- Robustness Charakteristics
- Nonmodelled dynamics influence
- Disturbance compensation

$\bigcirc \qquad \bigcirc \qquad \mathsf{Pl}_0 - \mathsf{output} \ \mathbf{y}_0, \ \mathsf{2D} \ \mathsf{portrait}, \ K_0 = K_{max}$

The fastest transients correspond to $T_f/T_{10} \rightarrow 0$ and $T_1/T_{10} \rightarrow 1$ Optimal tuning for $\epsilon=0$: $T_f/T_{10} \rightarrow 0$ a $T_1=T_{1max}$

Min value of *T_f* depends on the disturbance response

11.3.2011

$\bigcirc \qquad \bigcirc \qquad PI_0 - controller \\ influence of uncertainty in T_1$

 $K=K_0$, parameter T_f and different tolerated deviations

Sensitivity may be decreased by working with lower T_f and by accepting larger deviations (increasing ε)

11.3.2011

Pl₀ versus l₀ controller influence of the uncertainty in T₁

Decreased sensitivity on the uncertainty in determining the dominant time constant T_1 (for the I₀ denoted as T_a) is for the PI₀ controller well to see for MO transients (ϵ =10⁻⁵) Sensitivity decrease by decreasing T_f – always restricted due to non-modelled dynamics

11.3.2011

 \bigcirc

PI₀ or **I**₀ controller?

Influence of the uncertainty in T_1

Sensitivity on uncertainty may be decreased by increasing tolerated deviations (ϵ =0.1)

11.3.2011

$PI_0 - output y_1$, 2D portrait, $K_0 = K_{max}$

The fastest transients correspond to $T_f/T_{10} \rightarrow 0$, not strongly depending on T_1/T_{10} Optimal tuning for $\epsilon=0$: $T_f/T_{10} \rightarrow 0$ and $T_1=T_{1max}$

Min value of T_f depends on the disturbance response

 $\textcircled{}$

11.3.2011

Pl₀ controllers

- Generic and equivalent structures for static feedforward control with reconstruction and compensation input/output disturbances
- Fundamental properties
- Performance Portrait
- Optimal and robust tuning
- Robustness Charakteristics
- Nonmodelled dynamics influence
- Disturbance compensation

PI₀ – controller + FOPDT plant

Nominal for $T_1/T_{10} = 1$ a $K_0 = K_{max} T_f$ is tuned as for I-controller

Optimal tuning for interval parameter T_1 and output y_0 is solved in 4D (or in 3D for $K_0 = K_{max}$?) space

$$F_{w0}(s) = \frac{Y_0(s)}{W(s)} = \frac{K(1+T_1s)e^{-T_ds}}{K_0T_fT_1s^2 + (K_0T_f + Ke^{-T_ds}T_{10})s + Ke^{-T_ds}} \Rightarrow$$

$$F_{w0}(p) = \frac{(1 + \tau_1 p)}{\kappa \tau_f \tau_1 p^2 e^{\tau_d p} + (\kappa \tau_f e^{\tau_d p} + 1)p + 1}$$

$$\tau_1 = \frac{T_1}{T_{10}} ; \ \tau_f = \frac{T_f}{T_{10}} ; \ \tau_d = \frac{T_d}{T_{10}} ; \ p = T_{10}s ; \ \kappa = \kappa_{\min} = \frac{K_0}{K_{\max}} ;$$

11.3.2011

 \bigcirc

PIO – controller + FOPDT plant

Nominal for $T_1/T_{10} = 1$ a $K_0 = K_{max} T_f$ is tuned as for I-controller Optimal tuning for interval parameter T_1 and output y_0 is solved in 4D (or in 3D for $K_0 = K_{max}$?) space $F_{w1}(s) = \frac{Y_1(s)}{W(s)} = \frac{Ke^{-T_d s}}{K_0 T_f T_1 s^2 + (K_0 T_f + Ke^{-T_d s} T_{10})s + Ke^{-T_d s}}$ $F_{w1}(p) = \frac{1}{\kappa \tau_{f} \tau_{1} p^{2} e^{\tau_{d} p} + (\kappa \tau_{f} e^{\tau_{d} p} + 1)p + 1}$ $\tau_1 = \frac{T_1}{T_{10}} ; \quad \tau_f = \frac{T_f}{T_{10}} ; \quad \tau_d = \frac{T_d}{T_{10}} ; \quad p = T_{10}s ; \quad \kappa = \kappa_{\min} = \frac{K_0}{K}$

Shift to larger values K_0^{-} and T_{10}^{-}

PI₀ controllers

- Generic and equivalent structures for static feedforward control with reconstruction and compensation input/output disturbances
- Fundamental properties
- Performance Portrait
- Optimal and robust tuning
- Robustness Charakteristics
- Nonmodelled dynamics influence
- Disturbance compensation

PI₀ – control: disturbance compensation

11.3.2011

PI₀ – control: disturbance compensation

11.3.2011

- There exist two types of PI₀ controllers guaranteeing monotonic transients at the plant input and output – these correspond to reconstruction & compensation of input and output disturbances
- Both may be derived from the static feedforward control extended by a prefilter and by observer based on the paralel model for output disturbances (IMC like structure) or inverse model for input disturbances

- Both structures show some important differences, e.g. for the IMC structure the DO time constant may be chosen as $T_f=0$, for the inverse model it must be $T_f>0$ (realization condition).
- Both structures may be studied by the Performance Portrait method.
- This may be used for optimal controller tuning both in the nominal as well as robust case

- It is to remember that different optimal tuning corresponds to the setpoint step and to the disturbance step
- The resulting tuning must balance these mostly contradictive requirements
- Setpoint steps may be modified by using prefilter mostly with tuning $T_p = T_f$

- Higher quality requirements (lower tollerated deviations from ideal shapes) increase the sensitivity on parameter uncertainty
- Well tuned Pl₀ controller guarantees lower sensitivity to parameter uncertainty than the simpler I₀!!!
- However, remember increased noise sensitivity that represents the main limitation in using PI control

