

Robustné PID-regulátory s obmedzeniami Robust Constrained PID Control DC2: Constrained PD, Controller

prof. Ing. Mikuláš Huba, Ph.D. Ing. Peter Ťapák, Ph.D.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

To explain:

- principle of relay minimum time control and its limitations,
- geometrical interpretation of the pole assignment control of 2nd order systems in the phase plane in the case of
 - real poles
 - complex poles
- influence of nonmodeled dynamics on choice of (equivalent) poles guaranteeing specified shape related requirements (output monotonicity, input 2P)

To explain:

- how the minimum time and pole assignment control principles may be combined to achieve monotonic responses at the plant output and 2P control at its input
- degrees of freedom in designing constrained pole assignment and hot to use them
- Use of the performance portrait method for different tasks
- how to apply PD₂ controller to a specific problem

Fundamental Solutions DC2

		Dominant dynamics								
Dynamic class	l- action	K	Ke^{-T_d}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$	
	N	FF	FF	FF	FF	FF	FF	FF	FF	
	Y	I	Prl	PI	PrPI	PID	PrPID	PID	PrPID	
	Ν	-	-	Ρ	PrP	P-P	PrP-P	PD	PrPD	
	Y	-	-	ΡI	PrPI	P-PI	PrP-PI	PID	PrPID	
2	Ν	-	-	-	-	-	-	PD	PrPD	
	Y	-	-	-	-	-	_	PID	PrPID	

11.3.2011

			Dominant dynamics									
Dynamic class	l- action	K	Ke^{-T_d}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$			
0	Ν	FF	FF	FF	FF	FF	FF	FF	FF			
0	Y	I	Prl	PI	PrPI	PID	PrPID	PID	PrPID			
1	Ν	-	-	Р	PrP	P-P	PrP-P	PD	PrPD			
	Y	-	-	PI	PrPI	P-PI	PrP-PI	PID	PrPID			
2	N	-	-	-	-	-	-	PD	PrPD			
	Y	-	-	-	-	-	-	PID	PrPID			

			Dominant dynamics									
Dynamic class	l- action	K	Ke^{-T_d}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$			
0	N	FF	FF	FF	FF	FF	FF	FF	FF			
0	Y	I	Prl	ΡI	PrPI	PID	PrPID	PID	PrPID			
1	Ν	-	-	Ρ	PrP	P-P	PrP-P	PD	PrPD			
	Y	-	-	ΡI	PrPI	P-PI	PrP-PI	PID	PrPID			
2	N	-	-	-	-	-	-	PD	PrPD			
	Y	-	-	-	-	-	-	PID	PrPID			

		Dominant dynamics								
Dynamic class	l- action	K	Ke^{-T_d}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$	
0	Ν	FF	FF	FF	FF	FF	FF	FF	FF	
0	Y	Ι	Prl	ΡI	PrPI	PID	PrPID	PID	PrPID	
1	Ν	-	-	Ρ	PrP	P-P	PrP-P	PD	PrPD	
	Y	-	-	ΡI	PrPI	P-PI	PrP-PI	PID	PrPID	
2	N	-	-	-	-	-	-	PD	PrPD	
	Y	-	-	-	-	-	-	PID	PrPID	

			Dominant dynamics									
Dynamic class	l- action	K	Ke^{-T_d}	$\frac{K_s}{s+a}$	$\frac{K_s e^{-T_d s}}{s+a}$	$\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}$	$\left[\frac{K_{s1}}{s+a_1} + \frac{K_{s2}}{s+a_2}\right]e^{-T_d s}$	$\frac{K_s}{s^2 + a_1 s + a_0}$	$\frac{K_s e^{-T_d s}}{s^2 + a_1 s + a_0}$			
	Ν	FF	FF	FF	FF	FF	FF	FF	FF			
0	Y	I	Prl	PI	PrPI	PID	PrPID	PID	PrPID			
1	Ν	-	-	Р	PrP	P-P	PrP-P	PD	PrPD			
	Y	-	-	PI	PrPI	P-PI	PrP-PI	PID	PrPID			
2	N	-	-	-	-	-	-	PD	PrPD			
	Y	-	-	-	-	-	-	PID	PrPID			

- Minimum Time Control (MTC, late 1940s)
- Athans & Falb, Flüge-Lotz, Feldbaum, Pontrjagin et al., Ryan, Smith, Zeitz, etc.

- High sensitivity to noise, parameter variations (relay chattering, overshoot), time delays
- Oscillations around origin

- What does it mean Constrained Pole Assignment Control (CPAC), or Minimum Time Pole Assignment Control (MTPAC)?
- What does it mean Linear Pole Assignment Control (LPAC)?

LPAC – Linear 2nd Order Systems

- Regular Decrease of the Distance from Origin Along Line *L*, Pole 11
- Eigenvectors

LPAC – Linear 2nd Order Systems

- Regular Decrease of the Distance from Origin Along Line *L*, Pole 11
- Eigenvectors

• Regular Decrease of the Distance from L, Pole I_2

11.3.2011

• Regular Decrease of the Distance from L, Pole λ_2

11.3.2011

Invariant Sets (La Salle)

- A generalization of the concept of equilibrium point
- Every system trajectory starting from a point in IS remains in IS for all future times
- An equilibrium point is an IS
- The domain of attraction of an equilibrium point, limit cycles, etc.

Pole Assignment Control

 A regular decrease of the representative point from the next invariant set of a lower dimension

$$\frac{\frac{d\rho_i}{dt}}{\rho} = \alpha_i$$

$$\frac{\rho_i(n+1)}{\rho_i(n)} = \lambda_i ; \ \lambda_i > 0$$

LPAC: Phase-Plane Interpretation

Influence of Nonmodelled Dynamics

Restriction on closed loop poles admissible for output-monotonic and input-2P transients

Analytical derivation – Tripple Real Dominant Pole TRDP

Controller tuning

$$r_0 = -0.079 / K_s T_d^2$$
; $r_1 = -0.461 / K_s T_d$

Equivalent poles

$$\alpha_{1,2} = -(0.231 \pm j0.161)/T_d$$

Approximations by real poles

Performace Portrait with tolerated deviations from ideal shapes at the plant input and output & IAE

Corresponding setpoint steps

• Equivalent poles for tolerated deviations from ideal shapes at the plant input and output

11.3.2011

 Equivalent poles for tolerated deviations from ideal shapes at the plant input and output

11.3.2011

Example: I₂T_d - Approximation

Generalization of the approximation by Zielger and Nichols (1942) to double integrator + dead time

11.3.2011

Saturating PD Controller

- Overshooting, instability
- No optimal tuning of linear PD controller with output saturation!
- New definition of invariant sets to consider constraints

11.3.2011

Overshooting, instability due to the constraints

Invariant Set of Linear Control

11.3.2011

CPAC - General Definition

 The fastest possible decrease of the distance between the representative point and the invariant set with a next lower dimension satisfying inequations:

$$\frac{\rho_i(n+1)}{\rho_i(n)} \leq \lambda_i \; ; \; \lambda_i > 0$$
$$-\frac{\rho_i(n+1) - \rho_i(n)}{\rho_i(n)} \leq 1 - \lambda_i$$

CPAC: Constrained I2 System

CPAC: Constrained I2 System

-3

EVBOPSKÁ I

$$\rho = x - x_b$$

$$\frac{d\rho}{dt} = \alpha_2 \rho = \alpha_2 (x - x_b)$$

11.3.2011

-3

EVROPSKÁ U

$$\rho = x - x_b$$

$$\frac{d\rho}{dt} = \alpha_2 \rho = \alpha_2 (x - x_b)$$

$$x_b = \frac{\dot{x}^2 + \left(\frac{U_j}{\alpha_1}\right)^2}{2U_j}$$

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial x}\dot{x} + \frac{\partial\rho}{\partial \dot{x}}\ddot{x}$$

CPAC: Constrained I2 System

- Saturation Limit for Braking if x < 0 then $U_j = U_1$ else $U_j = U_2$
- Choice Between the Linear and Nonlinear Algorithm

$$if \left(y < 0 \text{ AND } \dot{x} > \frac{K_s U_j}{\gamma} \right) OR \left(x > 0 \text{ AND } \dot{x} < \frac{K_s U_j}{\gamma} \right) then$$
$$u = \left[1 - \alpha_2 \frac{x - \frac{1}{2} \left(\frac{\dot{x}^2}{K_s U_j} + \frac{K_s U_j}{\alpha_1^2} \right)}{\dot{x}} \right] U_j \text{ else } u = r_0 x + r_1 \dot{x}$$

Final Control Saturation

if
$$u < U_1$$
 then $u = U_1$ if $u > U_2$ then $u = U_2$

EVROPSKÁ

11.3.2011

CPAC: Constrained I2 System

Oriented Vector of Poles

- 1) (-2, -20)
- 2) (-20, -2)

Changed dynamics of braking and acceleration

11.3.2011

Different distance definition

-3

- Different Proportional Band
- Different transients

-2

11.3.2011

X

 Proportional Band and Transients for Different Distance definitions

11.3.2011

- Modified shape of invariant sets
- Non-unique distance definition = many solutions

$$\rho = \inf_{\mathbf{x}_b \in RBC} \|\mathbf{x} - \mathbf{x}_b\|$$

• Distance measured along a given vector

11.3.2011

2nd Basic Question

- How to define distance of the representative point to the next Invariant Set Reference Braking Curve?
- Several possible solutions
- Simplicity of control algorithm!!!

11.3.2011

11.3.2011

11.3.2011

 $\textcircled{\bullet}$

11.3.2011

$$\begin{aligned} \mathbf{x}_{0} &= \mathbf{x}_{01} + \mathbf{x}_{02} \\ \mathbf{x}_{01} &= \left[\Phi(-t_{1})\mathbf{v}_{1} + \Gamma(-t_{1}) \right] u_{1} \; ; \; u_{1} = \left\langle \begin{pmatrix} \langle 0, U_{j} \rangle, t_{1} = 0 \\ U_{j}, t_{1} > 0 \end{pmatrix} \right. \\ \mathbf{x}_{02} &= \left[\Phi(-t_{2})\mathbf{v}_{2} + \Gamma(-t_{2}) \right] u_{2} \; ; u_{2} = \left\langle \begin{pmatrix} \langle U_{3-j} - U_{j} \rangle, t_{2} = 0 \\ U_{3-j} - U_{j}, t_{2} > 0 \end{pmatrix} \right. \\ t_{1} &\geq t_{2} \geq 0 \; ; \; j = 1, \; or \; 2 \; ; \; u = u_{1} + u_{2} \in \left\langle U_{1}, U_{2} \right\rangle \\ \Phi(t) &= e^{\mathbf{A}t} \; ; \; \Gamma(t) = \int_{0}^{t} \Phi(\vartheta) \mathbf{b} d\vartheta \end{aligned}$$

11.3.2011

11.3.2011

 $\textcircled{}$

- New solutions for simple and advanced problems
- Many solutions of the constrained pole assignment problem - distance definition – ordered n-tuples of poles
- Simplicity of the control algorithms
 CPU Time ≈ 0.1ms new opportunities for practice
- Nonsymetrical amplitude and rate constraints

- Dynamics decomposition into saturating 1st order ones – limited to real closed loop poles
- What about the extension of the pole assignment control to constrained systems with complex closed loop poles?

11.3.2011

Rotation, radius decreas

Single decrease parameter!!!

 $\underline{d} \mathbf{X}^{\prime} \mathbf{X}$ $=-2\zeta(\mathbf{x}^{t}\mathbf{x})$ $d\tau$

11.3.2011

What should be like the constrained PAC with complex poles?

11.3.2011

Position based reference shaping Limit linear trajectory – Points P₀^j - RBC

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

55

 $u = U_2$

W

Х

Position based reference shaping Limit linear trajectory – Points P₀^j - RBC

Constant width of the proportional band!

Problems with time delays!

11.3.2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

 $u = U_1$

X

u = 0

x

 P_b

 B_i

*x*₀₀

11.3.2011

2 Increasing with of the proportional band to B_{2} keep constant crossing time X x_{00}

11.3.2011

 I_2 system with time delay (T_d =0.2s) • y y 10 10 W W *w*, y *w*, *y* U 0 0 U U 0 -2` 0 -2₀ -'-1 20 5 15 10 15 5 10 t t y y 5000 5000 W W *w*, y 0.5 ^{*u*} *w*, y 0 и U -0.5 0 -2000 <u>–</u>0 --' -1 500 - 2000 200 300 400 100 100 200 300 400 0 t

11.3.2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

U

0

-'-1 20

0.5 *u*

0

__' _1 500

-0.5

Complex Poles – Perf. Portrait

$T_{d}=0.1; \ \varepsilon=10^{-5} \ (red \ pole-pair)$ $\varepsilon = \varepsilon_{u} = \varepsilon_{y} = \left\{ 0.1, 0.05, 0.02, 0.01, 10^{-3}, 10^{-4}, 10^{-5} \right\}_{y_{2}-MO}$

0.5

0.5

1

1.5

2

1

1.5

2

0.5

0.5

Td=0.1; ϵ =10⁻⁵ (red pole-pair)

11.3.2011

Complex Poles – Perf. Portrait

 $\varepsilon = \varepsilon_u = \varepsilon_v = \{0.1, 0.05, 0.02, 0.01, 10^{-3}, 10^{-4}, 10^{-5}\}$

Td=0.2; ε=10⁻⁵ (red pole-pair)

Complex Poles – Setpoint Steps

- Td=0.2; ε=10⁻⁵ (red pole-pair)
- Diverging for abs(U_{max}/U_{min})>20

11.3.2011

Complex Poles – P. Portrait

 $\varepsilon = \varepsilon_u = \varepsilon_y = \{0.1, 0.05, 0.02, 0.01, 10^{-3}, 10^{-4}, 10^{-5}\}$ • Td=0.5; ε =10⁻⁵ (red pole-pair)

Complex Poles – Step responses

- Td=0.5; ε=10-5 (red pole-pair)
- Diverging for abs(Umax/Umin)>10

11.3.2011

11.3.2011

Example: Controller Tuning

EVROPSK/

11.3.2011

Example: Controller Tuning

EVROPSKÁ

11.3.2011

Constrained Linear Control

Real versus Complex Poles

 $\textcircled{\bullet}$

Real versus Complex Poles

11.3.2011

11.3.2011

Identification – stability border

11.3.2011

 \bigcirc

PWM Pole Assignment Controller

- Analogous approach to the PAM case
- Simpler actuator construction
- Higher steady state precision

11.3.2011

PWM Pole Assignment Controller

11.3.2011

11.3.2011

Pendulum identification & control

Reduction of the relative degree

Analytical tuning

 $T_1 = T_2 = 3T_0$

Experimental tuning

$$T_1 = T_2 = T_0/2$$

11.3.2011

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Aproximation by transfer

function

$$F(s) = \frac{K_s}{T_0^2 \cdot s^2 + 2 \cdot b_t \cdot T_0 \cdot s + 1}$$

Pendulum Identification & Control

Approximations of the step response , Sampling period T=0.5 ms

- 1. Ks=0.5 , Td=1 ms
- 2. Ks=0.1 , Td=1 ms

Pole used for control : α =-3

11.3.2011

Pendulum identification & control

- Generalization of the method by Ziegler and Nichols (single integrator + dead time)
- Simple process approximation (double integrator + dead time) gives excellent results
- Simple and reliable controller tuning analysis of system nonlinearity
- Suboptimal gain scheduling solutions for the case of complex poles / time delayed systems

- New solutions for simple and advanced problems
- Many solutions of the constrained pole assignment problem - distance definition, ordered n-tuples of poles
- Simplicity of the control algorithms CPU Time ≈ 0.1 ms
- Simple and Reliable controller tuning
- New opportunities for practice
- Nonsymetrical amplitude and rate constraints
- Extension for nonlinear systems
- Windupless I-action

11.3.2011

