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Motivation

m  Some aspects have been omitted in the last
presentation..

[ Disturbances acting on the system are usually of
stochastic nature

= Weather forecast
= Occupancy

[ 1The ISO norm specifying thermal conditions to be
satisfied in the buildings says that the temperature
range must be fulfilled in 95% of time instants.
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Probability of comfort range violation

m This can be formulated in a stochastic programming

framework as

P(f(x,w) <0)>1-—«

[ 1P is a cumulative distribution function
[ 1f(x,w) < 0is a constraint to be fulfilled

[y is a tuning parameter

m But until now, we have had only deterministic model of

the system
w is the missing term..

m Deterministic model is extended by a stochastic part

Thtl = Axp + Buyg, + Vo, + wy,
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Description of the additive noise: weather

m  Assume that we have measurements and historical
weather forecast
m Using regression analysis, the disturbance model can be
obtained
m [he actual disturbance acting on the system is
decomposed as
Vp = VU + ’l?k

m [he error of the weather forecast v is colored noise, i.e.
it Is a result of the filtration

Up+1 = Fop, + Kwy,

where wy, follows Gaussian distribution with A (0, I)
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Description of the additive noise: weather

Vp+1 = Lo + Kwy,

m Parameters I’ and K are to be identified using linear
regression
m Stochastic model has following form:

el = 1o #] (o) [o] e [

m Hereafter, the model will be written as

Thy1 = Az + Bui + Vo, + Hwy,
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Description of the additive noise: occupancy

Statistical nature of occupancy is usually neglected, but
it can be handled in a similar way
Occupancy and vacancy intervals follow the Poisson

distribution

f(y)
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Moaodifications to the OCP

Small modifications have to be done to our optimal control
problem

N, —1

k=0
subject to:
Grug < hy
Tpt1 = Az, + Bug + Vo, + Hw, k=1...N,
yr = Cx + Dup + Wo, k=1...N,
Lo = Linit
Plry <ys <) >1—a k=1...N,
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Stochastic optimal control problem

N-1

J — E ZN(ZCN) -+ Z lk(a:k,uk)

k=0

Tir1 = f(Zh, Uk, W)

g, Wp, . .., WN_1 are random variables

U = ¢k(llf0, Wo, - - - 7w/€—1)
m goal: minimize J over all admissible causal policies
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Stochastic Dynamic Programming

m [ = (wo,wo, ..., Wk_1,Tp)

V(Iy) = In(zN)

Vk([k) — I%}cn{lk(xhuk)_'_E[Vk—i-l([k?wkﬁ? f(xka Ug, wk))’[k]}

o1 (1) = arg T%iﬂ{lk(xk, ug) FEVig1 (I, wr, f(zk, uk, wi))|1x] }

with wy and xy independent, optimal state feedback

of (1) = pi(xy) exists
as a computational tool tractable for very small problems
only
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Wy ... wx_1 replaced with estimates wy ... wn_
S | | . . . . .
e o m optimal for linear dynamics and quadratic cost functions.

Stochastic Dynamic
Programming

m suboptimal for constrained quadratic control even in a

Disturbance

feedback policies reced|ng hOI’IZOﬂ mOde
Ch traint . . . . .
Chamee o m widely, and often unwittingly, used because of simplicity
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optimal control

Conclusions
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Disturbance feedback policies

finite basis By = (e}, .. ., elkB’fl) chosen at each time step
to construct a policy

¢/€(’UJ0, s 7wk—1) — Z &ZGZ(UJO? e

’ wk—l)

with the coefficients o as optimization variables
convex if stage cost is convex and dynamics linear
tractable representation exists for quadratic cost and
linear dynamics

for affine-like policies approx. mnN?/2 variables (but
limited recourse can be used)

for quadratic-like policies ~ mn?N? variables

input constraints and unbounded disturbances — e
bounded
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Chance constraints

m P(f(r,w)<0)>1—-a
[_Benerally nonconvex

m individual: P(alw <b;) >1— o

[Exact second order cone / affine representation for

affine DF / OL policies if w is Gaussian with
independent components and «; < 0.5

[ Tobust approximation — avoids solving an SOCP but

may be too conservative
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Chance constraints

m P(f(r,w)<0)>1—-a
[_Benerally nonconvex

m joint: P(Aw <b) >1—«

[ ho exact tractable representation (problematic
constraint evaluation)

[_Ellipsoidal approximation — usually very conservative
[_hpproximation by individual constraints — risk
allocation

P UP(aZ-Tw >b;) | < ZP(CL?@U > b;) :Zozi <«

[ Tan be optimized online in the OL setting (normal
cdf among constraints though)
[ Tan be too aggressive in receding horizon mode
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1-norm stochastic control problem

N—-1
minimize E [Qnanlls + Y Qx| + || Riurl
’ k=0

subject to u =1+ Ke(w)
Tpy1 = Az + Buy + wy,
K 1s strictly block lower triangular
7| + €l| Kil|oo < Unax, 1 =1,...,mN

e: R™W — R™ |le(w)]]s < €

stochastic optimization techniques needed to solve
“exactly” (e.g. stochastic subgradient) — slow
convergence, but can be used for arbitrary disturbance

distribution
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1-norm stochastic control problem

approximation
m 7+ Ke(w) replaced with n+ Kw when computing K, n
m same constraints on 1, i — input constraints will be
satisfied when the original policy u =+ Ke(w) is used
m analytic expression for the cost can be derived if the
disturbances are jointly Gaussian
m state and control are affine in w — cost can be written
as > . E|u;(n, K) + ¢! (n, K)w| for w ~ N (0, ) with p;
and c¢; affine in n, K
m for X ~ N(u,o0) we have
1
E|X 20 e 202 + erf( >)
= 2 et (L
m u(n, K) = pi(n, K), o(n, K) = ||e;(n, K)||2
m smooth in y for o > 0
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Hessian

m for X ~ N(u(n, K),o(n, K)) with u = po + 0",

o = ||la + Ckl|s, the Hessian of (E|X]|)(n, K) is

T
Hess(f) =/ —€e 22 | — u

m o |=e5] 145

+ Jac(Vo) |,

m where

0 0
1T ( 7 (a+Ck)(a+Ck)T) cl
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1-norm stochastic control problem
approximation

m assume w ~ N (0, FF')
m for ||Qrxk||1 terms we have

o (@) = |G (Cot-BeK F)||2 = [ICk aju+(F" @45, Br) Skl |2,

u(gjprr) = @A w0 + 5. B,

B, =[A"'B, ... B,0,...,0], C.=[A*" ...,1,0,... 0]F,

m q,; Is j-th row of Q); and S is a matrix of zeros and ones
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1-norm stochastic control problem

approximation

m for ||Rrug||1 we have

i(

T

) — T_,—]Z;{'Ukn7

a(rﬁuk) = |[(F' ® Tﬁvk)SM P

m 7, 1s j-th row of Ry and vy selects k-th block row of 7

or K
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Bound on suboptimality

given (n, K), the difference between costs under the

policies u¢ = n + Ke(w) and u" = n + Kw can be

bounded

| <|QJ xk

for ||Qxk||1 terms

|C_Ij

— |q;

< E(|Qj Ty — T

< ||qf8k||oo||K||ooE||e(w)
< [|Qlloo||Bx oo [ K[| oo Ele(w)

" [ ]
* ¥ % e
* * .‘
£ 7 ‘
*  * °
EVROPSKA UNIE ¥

w

k) =

E|qj By K (e(w) — w)

{IHIIHIJ}]

N

=

_w||oo

— W||oo

22 / 30



° 8

Stochastic Optimal
Control

1-norm stochastic
optimal control
1-norm stochastic
control problem
1-norm stochastic
control problem
approximation
Hessian

1-norm stochastic
control problem
approximation
1-norm stochastic
control problem
approximation
Bound on
suboptimality

Bound on
suboptimality
Computational
issues

Example 1
Example 2

Conclusions

Bound on suboptimality

m given (1, K), the difference between costs under the
policies u® = n + Ke(w) and u” =1+ Kw can be
bounded

m similarly for ||Rul||, terms

E(rj ug] = Irj D < [[R]| | IK [ Elle(w) — w]|

m summing up all terms yields

[ Je=Juw| < (ng(N+D)[[Qloc||By oo 7 N|| Bl |0 ) Ele(w) —w][o

m where n, and n, are the numbers of rows of () and R
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Bound on suboptimality

m since || K| < Upax/€ for any feasible K, a
suboptimality bound follows

Umax

J=J" < 2(ng(N+1)[|Qoo | BN |[oo +7r N[ Bl |0 ) E|e(w) —w][ o

m can be improved by terminating earlier in the string of

inequalities

E||e(w) — w||s can be evaluated by Monte Carlo

m the bound will be small if ||e(w) — w]|| is large with
only low probability

m viable choice for e(w) — componentwise saturation
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Computational issues

can be solved by smooth interior-point methods with
some additional care

the problem is nondifferentiable for 0 = 0, which can
happen if

[ bart of the state is not affected by the disturbance
[ 1R, too large or control authority too small compared
to ||e(w)||s — zero variance of k-th input

remedy

[teplace the || - || in the expressions for o by a
smoothed approximation e.g.

[z]]2 & \/1/n+ 32, 27
[_Tix troublesome inputs during optimization when
arrived at nondifferentiability and reoptimize with

warm start
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EVRSKUNIE gf ) }\\.j 25 / 30




? B

Stochastic Optimal
Control

1-norm stochastic
optimal control
1-norm stochastic
control problem
1-norm stochastic
control problem
approximation
Hessian

1-norm stochastic
control problem
approximation
1-norm stochastic
control problem
approximation
Bound on
suboptimality
Bound on
suboptimality
Bound on
suboptimality
Computational
issues

Example 2

Conclusions

Example 1

finite optimization horizon T = 12

1 —-04 0.6 8 5
A=lor 1 |" BT |oa| 27195
Q=1  R=0.11
e = |le(w)]]|oo = 4r = 13.92, r = /p(X) = 3.48
comparison of various control policies
Policy || DF (SH) | DF | CE-MPC (SH) | CE-MPC | w =7 | CE-OL
J 86.8 | 92.1 983 1192 | 1404 | 143.9

DF — the disturbance feedback policy u =71 + Ke(w)

the bound for different values of ¢

5 4r 3r 2.5r 2r 1r
Bound || 4.69-10~% | 0.187 | 2.51 | 24.1 | 677.2
J{; 03.06 00.22 38.94 87.8 36.6
Je 03.02 00.23 88.95 87.9 02.0
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m receding horizon mode with N =12, N, =1 for
CE-MPC and N, = 2 for the disturbance feedback policy

I 1 0
A= —0.9 O’B_ 1

8 D

, E{ww] } = -

1000 90

900 - / 80 |
800 | / /

700 |- / / ol
600 | / / N
500 | / o = 01
= A
200 |- / 20 1

Cost

100 / — n+ Ke(w) 10 — 1+ Ke(w)
t — CE-MPC — CE-MPC
0 I I O I I
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Time Time

LI

o = ..-° J[mumy
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Conclusions

m [he proposed algorithm not yet implemented on the real
building — model of the disturbances is missing

m |t is a convex and not so conservative as the other
algorithms reported in literature

m possible extension to the general p-norm — an expression
for E| X |P needed

N
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