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Jǐŕı Cigler

20. 4. 2012



INVESTICE DO ROZVOJE VZDĚLÁVÁŃI
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■ Some aspects have been omitted in the last
presentation..

◆ Disturbances acting on the system are usually of
stochastic nature

■ Weather forecast
■ Occupancy

◆ The ISO norm specifying thermal conditions to be
satisfied in the buildings says that the temperature
range must be fulfilled in 95% of time instants.
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■ This can be formulated in a stochastic programming
framework as

P (f(x,w) ≤ 0) > 1− α

◆ P is a cumulative distribution function
◆ f(x,w) ≤ 0 is a constraint to be fulfilled
◆ α is a tuning parameter

■ But until now, we have had only deterministic model of
the system

■ w is the missing term..
■ Deterministic model is extended by a stochastic part

xk+1 = Axk +Buk + V vk + wk
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■ Assume that we have measurements and historical
weather forecast

■ Using regression analysis, the disturbance model can be
obtained

■ The actual disturbance acting on the system is
decomposed as

vk = vk + ṽk

■ The error of the weather forecast ṽk is colored noise, i.e.
it is a result of the filtration

ṽk+1 = F ṽk +Kwk

where wk follows Gaussian distribution with N (0, I)
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ṽk+1 = F ṽk +Kwk

■ Parameters F and K are to be identified using linear
regression

■ Stochastic model has following form:[
xk+1

ṽk+1

]
=

[
A V
0 F

]
+

[
B
0

]
uk +

[
V
0

]
vk +

[
0
F

]
wk

■ Hereafter, the model will be written as

xk+1 = Axk +Buk + V vk +Hwk
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■ Statistical nature of occupancy is usually neglected, but
■ it can be handled in a similar way
■ Occupancy and vacancy intervals follow the Poisson

distribution

f(y) =
1

β
e

−y
β
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Small modifications have to be done to our optimal control
problem

minE

{
Nu−1∑
k=0

|Rkuk|1
}

subject to:

Gkuk ≤ hk

xk+1 = Axk +Buk + V vk +Hwk k = 1 . . . Ny

yk = Cxk +Duk +Wvk k = 1 . . . Ny

x0 = xinit

P (rk ≤ yk ≤ rk) ≥ 1− α k = 1 . . . Ny
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J = E

{
lN(xN ) +

N−1∑
k=0

lk(xk, uk)

}

xk+1 = f(xk, uk, wk)

■ x0, w0, . . . , wN−1 are random variables
■ uk = φk(x0, w0, . . . , wk−1)
■ goal: minimize J over all admissible causal policies

φ0, . . . , φN−1.
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■ Ik := (x0, w0, . . . , wk−1, xk)
■ VN (IN) := lN(xN)

Vk(Ik) = min
uk

{lk(xk, uk)+E[Vk+1(Ik, wk, f(xk, uk, wk))|Ik]}

φ∗
k(Ik) = argmin

uk

{lk(xk, uk)+E[Vk+1(Ik, wk, f(xk, uk, wk))|Ik]}

■ with wk and x0 independent, optimal state feedback
φ∗
t (Ik) = ϕ∗

k(xk) exists
■ as a computational tool tractable for very small problems

only
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■ w0 . . . wN−1 replaced with estimates ŵ0 . . . ŵN−1

■ optimal for linear dynamics and quadratic cost functions.

■ suboptimal for constrained quadratic control even in a
receding horizon mode

■ widely, and often unwittingly, used because of simplicity
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■ finite basis Bk = (e1k, . . . , e
|Bk|
k ) chosen at each time step

to construct a policy

φk(w0, . . . , wk−1) =

|Bk|∑
k=0

αi
ke

i
k(w0, . . . , wk−1)

■ with the coefficients αi
k as optimization variables

■ convex if stage cost is convex and dynamics linear
■ tractable representation exists for quadratic cost and

linear dynamics
■ for affine-like policies approx. mnN2/2 variables (but

limited recourse can be used)
■ for quadratic-like policies ∼ mn2N3 variables
■ input constraints and unbounded disturbances → eik

bounded
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■ P (f(x,w) ≤ 0) > 1− α

◆ generally nonconvex

■ individual: P (aTi w ≤ bi) > 1− αi

◆ exact second order cone / affine representation for
affine DF / OL policies if w is Gaussian with
independent components and αi ≤ 0.5

◆ robust approximation – avoids solving an SOCP but
may be too conservative
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■ P (f(x,w) ≤ 0) > 1− α

◆ generally nonconvex

■ joint: P (Aw ≤ b) > 1− α

◆ no exact tractable representation (problematic
constraint evaluation)

◆ ellipsoidal approximation – usually very conservative
◆ approximation by individual constraints → risk

allocation

P

(⋃
i

P (aTi w > bi)

)
≤
∑
i

P (aTi w > bi) =
∑
i

αi ≤ α

◆ Can be optimized online in the OL setting (normal
cdf among constraints though)

◆ Can be too aggressive in receding horizon mode
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minimize
η,K

E

{
||QNxN ||1 +

N−1∑
k=0

||Qkxk||1 + ||Rkuk||1
}

subject to u = η +Ke(w)

xk+1 = Axk +Buk + wk

K is strictly block lower triangular

|ηi|+ ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN

■ e : RnN → R
nN , ||e(w)||∞ ≤ ε

■ stochastic optimization techniques needed to solve
“exactly” (e.g. stochastic subgradient) – slow
convergence, but can be used for arbitrary disturbance
distribution
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■ η+Ke(w) replaced with η+Kw when computing K, η
■ same constraints on η, K → input constraints will be

satisfied when the original policy u = η+Ke(w) is used
■ analytic expression for the cost can be derived if the

disturbances are jointly Gaussian
■ state and control are affine in w → cost can be written

as
∑

iE|μi(η,K) + cTi (η,K)w̃| for w̃ ∼ N (0, I) with μi

and ci affine in η, K
■ for X ∼ N (μ, σ) we have

E|X| = 1√
2π

(
2 σ e−

μ2

2σ2 + μ
√
2π erf

(
μ

σ
√
2

))

■ μ(η,K) = μi(η,K), σ(η,K) = ||ci(η,K)||2
■ smooth in μ for σ > 0
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■ for X ∼ N (μ(η,K), σ(η,K)) with μ = μ0 + bTη,
σ = ||a+ Ck||2, the Hessian of (E|X|)(η,K) is

Hess(f) =

√
2

π
e−

μ2

2σ2

(
1

σ

[
b

−q μ
σ

] [
b

−q μ
σ

]T
+ Jac(∇σ)

)
,

■ where

Jac(∇σ) =

[
0 0

0 1
||σ||2C

T
(
I − (a+Ck)(a+Ck)T

||σ||22

)
C

]
,

q =

[
0

CT a+Ck
σ

]
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■ assume w ∼ N (0, FF T )
■ for ||Qkxk||1 terms we have

σ(qTjkxk) = ||qTjk(Ck+BkKF )||2 = ||CT
k qjk+(F T⊗qTjkBk)Sk||2,

μ(qTjkxk) = qTjkA
kx0 + qTjkBkη,

■ where

Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0]F,

■ qjk is j-th row of Qk and S is a matrix of zeros and ones
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1-norm stochastic control problem
approximation

Stochastic Optimal
Control

1-norm stochastic
optimal control
1-norm stochastic
control problem
1-norm stochastic
control problem
approximation

Hessian
1-norm stochastic
control problem
approximation
1-norm stochastic
control problem
approximation
Bound on
suboptimality
Bound on
suboptimality
Bound on
suboptimality
Computational
issues

Example 1

Example 2

Conclusions

21 / 30

■ for ||Rkuk||1 we have

μ(rTjkuk) = rTjkvkη, σ(rTjkuk) = ||(F T ⊗ rTjkvk)Sk||2

■ rjk is j-th row of Rk and vk selects k-th block row of η
or K
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■ given (η, K), the difference between costs under the
policies ue = η +Ke(w) and uw = η +Kw can be
bounded

■ for ||Qxk||1 terms

|E(|qTj xe
k| − |qTj xw

k |)| ≤ E
∣∣|qTj xe

k| − |qTj xw
k |
∣∣

≤ E(|qTj xe
k − qTj x

w
k |) = E|qTj BkK(e(w)− w)|

≤ ||qTj Bk||∞||K||∞E||e(w)− w||∞
≤ ||Q||∞||BN ||∞||K||∞E||e(w)− w||∞
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■ given (η, K), the difference between costs under the
policies ue = η +Ke(w) and uw = η +Kw can be
bounded

■ similarly for ||Ruk||1 terms

|E(|rTj ue
k| − |rTj uw

k |)| ≤ ||R||∞||K||∞E||e(w)−w||∞

■ summing up all terms yields

|Je−Jw| ≤ (nq(N+1)||Q||∞||BN ||∞+nrN ||R||∞)E||e(w)−w||∞

■ where nq and nr are the numbers of rows of Q and R
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■ since ||K||∞ ≤ Umax/ε for any feasible K, a
suboptimality bound follows

J−J∗ ≤ 2(nq(N+1)||Q||∞||BN ||∞+nrN ||R||∞)E||e(w)−w||∞Umax

ε

■ can be improved by terminating earlier in the string of
inequalities

■ E||e(w) − w||∞ can be evaluated by Monte Carlo
■ the bound will be small if ||e(w)− w||∞ is large with

only low probability
■ viable choice for e(w) – componentwise saturation
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■ can be solved by smooth interior-point methods with
some additional care

■ the problem is nondifferentiable for σ = 0, which can
happen if

◆ part of the state is not affected by the disturbance
◆ Rk too large or control authority too small compared

to ||e(w)||∞ → zero variance of k-th input

■ remedy

◆ replace the || · ||2 in the expressions for σ by a
smoothed approximation, e.g.
||x||2 ≈

√
1/n+

∑
i x

2
i

◆ fix troublesome inputs during optimization when
arrived at nondifferentiability and reoptimize with
warm start
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■ finite optimization horizon T = 12

A =

[
1 −0.4
0.1 1

]
, B =

[
0.6
0.4

]
, Σ = I ⊗

[
8 5
5 6

]

■ Q = I, R = 0.1I
■ ε = ||e(w)||∞ = 4r = 13.92, r =

√
ρ(Σ) = 3.48

■ comparison of various control policies

Policy DF (SH) DF CE-MPC (SH) CE-MPC u = η CE-OL
J 86.8 92.1 98.3 119.2 140.4 143.9

■ DF – the disturbance feedback policy u = η +Ke(w)
■ the bound for different values of ε

ε 4r 3r 2.5r 2r 1r
Bound 4.69 · 10−4 0.187 2.51 24.1 677.2
J∗
w 93.06 90.22 88.94 87.8 86.6
Je 93.02 90.23 88.95 87.9 92.0
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■ receding horizon mode with N = 12, Nc = 1 for
CE-MPC and Nc = 2 for the disturbance feedback policy

A =

[
1 1

−0.5 0

]
, B =

[
0
1

]
, E{wiw

T
j } =

[
8 5
5 6

]
δij
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■ The proposed algorithm not yet implemented on the real
building – model of the disturbances is missing

■ It is a convex and not so conservative as the other
algorithms reported in literature

■ possible extension to the general p-norm – an expression
for E|X|p needed
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