

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Senzory a měření

Jiří Keprt, Roman Vala (National Instruments) 12. 2. 2010

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Agenda

- Components of a DAQ system
- Sensors
- Signal conditioning
- Measurements

12.2.2010

PC-Based Data Logging System

Thermocouple Operation

- Due to the "Seebeck Effect," dissimilar metals in contact produce a voltage proportional to the temperature difference between the hot and cold junctions (mV)
- Voltage is added to the thermocouple at the cold junction
- CJC (Cold Junction Compensation) accounts and corrects for this added voltage

Thermocouple Construction

- 2 wires twisted and bonded together made of *dissimilar metals*
 - J1: "hot" junction, T_{HJ}
 - J2 & J3: "cold" junctions, T_{CJ}

Thermocouple Output

- Voltage signal of a thermocouple is proportional to
- temperature at the hot junction
- The voltage vs. temperature relationship is nonlinear over
- large temperature ranges

Thermocouple Color Codes

Туре	Material		Color Code			Overall Jacket		Range (°C)		
Thermocouple Grade	Positive Wire	Negative Wire	Positive Wire	Ne	Negative Wire		Extension	Overall Jacket	min	max
J	Iron	Constantan	White		Red		Black	Brown	0	750
К	Chromel	Alumel	Yellow		Red		Yellow	Brown	-200	1250
Т	Copper	Constantan	Blue		Red		Blue	Brown	-200	350
E	Chromel	Constantan	Purple		Red		Purple	Brown	-200	900

• Note: Unlike most leads, the red lead for thermocouples is negative

Accelerometers

- Measure
 - Acceleration

- Velocity and displacement (via integration versus time)
- Result is expressed in units of g or m/s²
 - 1 g = acceleration at the surface of Earth
 - $-1g = 9.81 \text{ m/s}^2$
- Construction
 - Stainless steel, welded, isolated, sealed
- Sensitivity ranges
 - 50 mV/g, 100 mV/g, 200 mV/g, 500 mV/g

Accelerometer Operation – IEPE, ICP...

- When exposed to vibration, the accelerometer generates an analog output signal, which is proportional to the acceleration of the applied vibration
- Excitation: 2 to 20 mA constant current; 18 to 30 VDC

Proximity Probe

- Measure
 - Distance or displacement
- Result is expressed in *mils* or *mm*
 - 1 mil = 0.001 in.
- Uses
 - Journal bearing vibration, imbalance, misalignment
- Sensitivity ranges
 - 50 mV/mil, 200 mV/mil

Tachometers

- Measure
- Angular position and speed (rpm)
- Output
- Square wave/pulse train (analog tachometer)
- Used for
- Order analysis
- Order tracking
- Angular averaging

Resistance

- Resistance measurements are used for the following measurements:
 - DMM
 - RTD
 - Thermistor
 - Potentiometer

- By using Ohms Law Voltage = Current * Resistance
- find
- Resistance = Voltage / Current
- Apply a known current (typically 20ma) across an unknown resistance and measure the resultant voltage.

12.2.2010

Strain

- Strain is the amount of deformation of a body due to an applied force
- Strain (ϵ) is defined as the fractional change in length as shown below

12.2.2010

Strain Gage Construction

• Thin wire or metal foil in a zigzag pattern is fastened to a "carrier"

Strain

- Fundamental parameter of the strain gage is its sensitivity to strain
- Expressed as the gage factor (GF)
- Gage factor is defined as the ratio of fractional change in electrical resistance to the fractional change in length (strain)

$$GF = \frac{\Delta R / R}{\Delta L / L} = \frac{\Delta R / R}{\varepsilon}$$

12.2.2010

The voltage drop across the resistor is equal to the sourced voltage (5V)

If $R_1 = R_2$ then voltage is dropped equally across the resistors (2.5V across each)

If all resistors are equal then voltage is dropped equally across them (2.50 V across each)

Voltage Dividers in Parallel

12.2.2010

Wheatstone Bridge

If all resistors are equal then no voltage is read.

If one or more resistors change, voltage is returned.

• Wheatstone Bridge measures small changes in resistance

• If you replace a resistor with an active strain gage in the Wheatstone Bridge, any changes in the strain gage resistance will unbalance the Bridge

Quarter Bridge Strain Gage

Bridge Terminology

- Three types of Bridge Configurations
 - Quarter
 - Half
 - Full

Configuration	# of Active Elements	# of Active Elements outside Terminal Block		
Quarter-bridge	1	1		
Half-bridge	2	2		
Full-bridge	4	4		

• Alignment and wiring of active elements can enhance or minimize certain strains

Quarter Bridge I

12.2.2010

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

22

Quarter Bridge II

 R4 is mounted in the direction of axial strain – measures tensile strain (+ε)

 R3 (dummy) is mounted in close thermal contact with strain specimen, but not bonded to it – compensates for temperature

12.2.2010

Half Bridge I

- $V_{EX}^{+} = \underbrace{\begin{array}{c} R_{1} \\ R_{1} \\ R_{2} \end{array}}^{+} \underbrace{\left[\begin{array}{c} R_{1} \\ R_{1} \\ R_{2} \end{array}\right]}^{+} \\ R_{2} \\$
- R4 is mounted in the direction of axial strain – measures tensile strain (+ε)
- R3 measures compression from Poisson effect (-υε)

12.2.2010

Half Bridge II

- R4 is mounted on top – measures tensile strain (+ ϵ)
- R3 is mounted on bottom - measures compressive strain (- ϵ)

 V_{EX}

Full Bridge I

12.2.2010

Full Bridge II

- R1 measures compressive Poisson effect (-υε)
- R2 measures tensile Poisson effect (-υε)
- R3 measures compressive strain (-ε)
- R4 measures tensile strain $(+\varepsilon)$

12.2.2010

12.2.2010

Full Bridge III

- R1 measures compressive Poisson effect (-υε)
- R2 measures tensile strain $(+\varepsilon)$
- R3 measures compressive Poisson effect (-υε)
- R4 measures tensile strain (+ ε)

Null Compensation

- Essentially an offset calibration
- Ensures that ~zero volts are produced at rest
- Can be performed in HW or SW
- Compensates for inherent bridge imbalance
- Coarse and fine potentiometers are used to perform nulling in hardware

Shunt Calibration

- Essentially a gain calibration
- Known resistance is introduced to the circuit and the measured strain is compared to the expected value
- Correction factor is applied to all subsequent readings
- Strain gage virtual channel only supports one shunt circuit

Shunt Calibration Circuit

- Shunt resistor is in parallel to one of the bridge resistors
- The shunt circuit is engaged when the switch is closed (done programmatically)

12.2.2010

Strain - Strain Gage Construction

• Strain is the amount of deformation of a body due to an applied force

• Thin wire or metal foil in a zigzag pattern is fastened to a "carrier"

12.2.2010

Bridge Terminology – Configurationexample

• Quarter-bridge:

Quarter Bridge I Quarter Bridge II

• Half-bridge:

Half Bridge I Half Bridge II

• Full-bridge:

Full Bridge I Full Bridge II Full Bridge III

Half Bridge I

- R4 is mounted in the direction of axial strain measures tensile strain (+ε)
- R3 measures compression from Poisson effect (- ϵ)

12.2.2010

Data Acquisition System Components

12.2.2010

Analog Input – Signal Conditioning

High voltage signals and most sensors require signal conditioning to properly read the signal

12.2.2010

Signal Conditioning Hardware Options

Analog Input - Measuring Analog Input Signals

Important Factors to Consider

Architecture

- multiplexed
- simultaneous sampling
- Sampling rate
- Accuracy
 - Resolution
 - Absolute accuracy
 - Range and amplification
 - Noise and filtering
 - Dynamic range
- Sensors and high voltage measurements/Signal Conditioning

12.2.2010

Measurement Concepts – Grounded Signal Source

- Voltage signals are referenced to a system ground, such as the earth or a building ground
- Because such sources use the system ground, they share a common ground with the measurement device
- Common examples are devices that plug into a building ground through wall outlets, such as signal

generators and power supplies

- The grounds of two independently grounded signal sources generally are not at the same potential
- The difference in ground potential between two instruments connected to the same building ground system is typically 10–200 mV
- The difference can be higher if power distribution circuits are not properly connected

Measurement Concepts – Floating Signal Source

- In a floating signal source, the voltage signal is not referenced to any common ground, such as the earth or a building ground
- Some common examples of floating signal sources are batteries, thermocouples, transformers, and isolation amplifiers

 Neither terminal of the source is connected to the electrical outlet ground - each terminal is independent of the system ground

12.2.2010

Measurement Concepts – Measurement Systems

- Differential
- AIGND (analog input ground) pin is the measurement system ground
- Requires two channel pins to measurement a signal

12.2.2010

Measurement Concepts – Measurement Systems

- Referenced Single-Ended (RSE)
- AIGND is the measurement system ground
- Need only one channel to measure a signal

12.2.2010

Measurement Concepts – Measurement Systems

- Non-referenced
 Single-Ended
 (NRSE)
- AISENSE pin is the measurement system ground
- Need one channel and AISENSE to a measure a signal

12.2.2010

Analog Input - Sampling Rates

- Undersampling may result in the misrepresentation of the measured signal (aliasing).
- After a signal is aliased, it is impossible to reconstruct the original signal.
- For accurate frequency representation:
 - Sample at least 2x the highest frequency signal being measured.
- For accurate shape representation
 - Sample 5–10x the highest frequency signal being measured.

- A/D conversion is performed at the same instant from 2 to 5,000 channels
- No skew between channels to guarantee phase matching
- Required for
 - Orbit plots
 - Tacho
 - synchronization
 - Balancing
 - Order analysis

Analog Input - Resolution

- Number of bits analog-to-digital converter (ADC) uses to represent a signal
- Higher resolution detect smaller voltage changes

48

Achieving Smallest Detectable Change

• Range

12.2.2010

- Resolution
 - A property of the ADC
- Accuracy
 - A specification of the entire DAQ device or system
 - Includes many components and factors
 - ADC nonlinearities
 - Temperature
 - System noise
 - Amplifier gain and offset errors
- Higher resolution does not always equal more accurate!
 - Look for Absolute Accuracy specification

A/D Resolution and Dynamic Range

With high dynamic range, you can detect both strong and weak signal components at the same time.

12.2.2010

Achieving Smallest Detectable Change

• Amplification

12.2.2010

- Many transducers, such as thermocouples, have a nonlinear response to changes in the physical phenomena you measure
- LabVIEW can linearize the voltage levels from transducers so you can scale the voltages to the measured phenomena
- LabVIEW provides scaling functions to convert voltages from strain gages, RTDs, thermocouples, and thermistors

- Signal conditioning systems can generate excitation, which some transducers require for operation
- Strain gages and RTDs require external voltage and currents, respectively, to excite their circuitry into measuring physical phenomena
- This type of excitation is similar to a radio that needs power to receive and decode audio signals

Measurement Concepts – Isolation

- Isolates the transducer signals from the computer for safety purposes
- When the signal you monitor contains large voltage spikes that could damage the computer or harm the operator, do not connect the signal directly to a DAQ device without some type of isolation

12.2.2010

Measurement Concepts – Isolation

- You also can use isolation to ensure that differences in ground potentials do not affect measurements from the DAQ device
 - If the potential difference between the signal ground and the DAQ device ground is large, damage can occur to the measuring system
 - Isolating the signal eliminates the ground loop and ensures that the signals are measured accurately

Virtual Instrumentation Use in Industry

Consumer Electronics

Communications

Military and Aerospace

Semiconductor

Automotive

Medical

12.2.2010

Evolution of Data Logging Systems

12.2.2010

Advantages of PC Based Acquisition

- Integrate traditional logging tasks:
 - Acquisition
 - Logging
 - Display
- Provides new capabilities:
 - Multiple measurement types and locations
 - Custom analysis
 - Reporting
 - Network integration

- What types of sensors do you have?
- How many channels do you need?
- What accuracy and resolution are required?
- How fast do you need to log?
- Do you need end-to-end calibration?
- Will you need to expand in the future?
- Would you like to control any outputs?

DAQ Hardware Options

Distributed

Desktop

Rapid Contol Prototyping

Rugged and Modular Tes[®]

Control Design

Portable

12.2.2010

Multifunction DAQ

M, X Series – Multiplexed DAC Data Acquisition

- Configurable triggering, timing, and onboard decision making
- Up to 18-bit resolution and 2 MS/s

S, X Series Simultaneous-Sampling

- Simultaneous sampling with dedicated A/D converter per channel
- Up to 16-bit resolution and 60 MS/s

R Series Intelligent DAQ Devices

- Analog I/O with onboard digital signal processing for filter design and high-speed control
- User-configurable with the LabVIEW FPGA Module

NI Modular Instrumentation for Mixed Signal Testing

- Digital waveform generators/analyzers
- Voltage, Current, Resistance and LC
- Signal Generation
- Dynamic Signal Acquisition
- High Speed Digitizing/Oscilloscope
- Switching
- Programmable Power Supply

Over 1500 different modules from more than 70 manufacturers

12.2.2010

THD (%)

NI PXI-4110

Leverage of Commercial Technology

12.2.2010

Plug&Play DAQ Systems

• USB DAQ

- -Plug-and-play installation
- -Automatic driver association
- -No rebooting computer
- Sensors Plug&Play
 - -Based on TEDS-IEEE 1451.4
 - -Confirm sensor connection
 - -Eliminate paper data sheets
 - -Remove data entry errors

• Faster setup

Decrease setup steps by up to 50%

12.2.2010

Considerations for USB DAQ in Industrial Environments

Reliability of USB Bus

- Flimsy connectors
- Short cable length
- Low cost, high volume
- Consumer peripherals
- Noise Immunity
- Reliable Protocol

NI Signal Streaming technology: Sustaining High-Speed Data Streams on USB

stream·ing [*stree*-*ming*] – verb

1. The act of transferring data to or from an instrument at a rate high enough to sustain continuous acquisition or generation.

12.2.2010

PCI/PXI Express

- Continual extension of the PXI platform
- Improves PXI platform performance
 - Increased throughput
 - Improved latency and synchronization
 - Backward compatibility
- Solves new applications
 - High frequency, resolution IF / RF systems
 - High throughput, channel count
 - High Speed Imaging

NI PCIe-6251/6259 NI PXIe-6251/6259

- Up to 32 channels, 16-bit, 1.25 MS/s analog inputs
- Dedicated bandwidth per device
- Backward software compatibility

12.2.2010

Traditional USB DAQ Transfer Architecture

NI Signal Streaming Technology

NI Signal Streaming

12.2.2010

USB Data Acquisition Platforms

12.2.2010

NI CompactDAQ – Simple, Complete, USB Data Acquisition

Analog I/O, Digital I/O and Sensors

12.2.2010

Industrial Measurements

 ✓ Accelerometer
 ✓ Strain Gauge
 ✓ Load Cells
 ✓ Digital I/O (TTL-250V)

- \checkmark Thermocouples
- ✓ 4 to 20mA
- ✓ High Voltage (300V)
- ✓ High Current (10Amp)✓ RTD (Pt100...)

12.2.2010

PXI (PCI eXtensions for Instrumentation)

At The Forefront of Virtual Instrumentation

Peripheral Slots

12.2.2010

PXI Chassis

- 3U, 6U, and 3U/6U combo
- 4 through 26 slots
- Portable, benchtop, and rack mount
- AC and DC power options
- Application specific
 - Ultra rugged, integrated signal conditioning, integrated LCD, etc.

12.2.2010

Embedded PXI System Controllers

General Purpose OSs

- Windows, Linux, etc.
- High performance
- Integrated peripherals
 - Gigabit Ethernet, USB 2.0, ExpressCard, etc.
- Ethernet / LAN control of PXI

Real-Time OSs

- LabVIEW Real-Time, VxWorks, etc.
- Determinism and reliability
- Headless operation

12.2.2010

Remote PXI System Controllers

PC Control of PXI

- Use latest high-performance PCs
- Build multichassis PXI systems

Laptop Control of PXI

- Control portable applications
- Use with DC-powered chassis for mobile systems

12.2.2010

PXI Products. . .Over 1,500 and Counting

Data Acquisition and Control Multifunction I/O Analog Input/Output **Digital I/O** Counter/Timer FPGA/Reconfigurable I/O Machine Vision Motion Control Signal Conditioning Temperature Strain/Pressure/Force/Load Synchro/Resolver LVDT/RVDT Many More. . .

Modular Instrumentation **Digital Waveform Generator Digital Waveform Analyzer Digital Multimeter** LCR Meter Oscilloscope/Digitizer Source/Signal Generator Switching **RF Signal Generator RF Signal Analyzer RF** Power Meter **Frequency Counter Programmable Power Supply** Many More...

Bus Interfaces Ethernet, USB, FireWire SATA, ATA/IDE, SCSI **GPIB** CAN, DeviceNet Serial RS-232, RS-485 VXI/VMF **Boundary Scan/JTAG** MIL-STD-1553, ARINC PCMCIA/CardBus PMC Profibus LIN Many More. . .

Others IRIG-B, GPS Direct-to-Disk Reflective Memory DSP Optical Resistance Simulator Fault Insertion Prototyping/Breadboard Graphics Audio Many More...

12.2.2010

Timing and Synchronization Features of PXI

- PXI Trigger Bus
 - 8 TTL
 - Trigger, Clock, and Handshaking Signals
- System Reference Clock
 - 10 MHz TTL or 100 MHz Differential
 - Phase Lock Looping
 - Equal-Length Traces
 (< 200 ps skew)
- Star Trigger
 - Differential
 - Equal-Length Traces
 (< 150 ps Skew)

12.2.2010

PXI – The Fastest Growing Standard in Test

Source: Frost & Sullivan, World PXI and VXI Test Equipment Markets, April 2005, P)

12.2.2010

NI 3110 Industrial Controller

Provide Connectivity to NI Test and Measurement Platforms

- The NI 3110 features an Intel SL9JT L2400
 1.66 GHz Core Duo Processor
- The NI 3100 features an Intel 1.06 GHz Celeron M 423 processor
- Both controllers are configured with the Windows XP operating system
- Controllers can be used as an interface to control remote I/O with hardware such as NI CompactDAQ, NI PXI, and NI plug-andplay PCI and PCI Express devices

12.2.2010

PAC Platform for Control – CompactRIO

Real-Time OS

400 MHz PowerPC Reliable embedded control, analysis, and logging

Networked

Ethernet 10/100 BaseT. embedded Web and file servers; connectivity to modems

Extreme Durability

-40 to 70 C temperature range 50 G shock, Industrial certifications

Small Size, Low Power Consumption

179.6 x 88.1 mm (7.07 x 3.47 in) 11 to 30 VDC power, 17 W max (7-10 W typ.)

Reconfigurable FPGA Circuitry

Custom hardware reliability; flexible timing, triggering, synchronization

Measurement I/O Modules

Isolated, industrial and high-precision options

Industrial Measurement&Control

- ✓ Accelerometer
 ✓ Strain Gauge
 ✓ Load Cells
- ✓ Digital I/O
- ✓ Thermocouples
- ✓ 4 to 20mA
- ✓ RTD

- ✓ High Voltage (+/-400V or 300Vrms)
- ✓ High Current (10Amps)
- ✓ Brushed DC drive
- \checkmark CAN communication
- ✓ Relay
- ✓ Pulse genaration
- \checkmark Programmable Sinking Digital Output
- ✓ TEDS

12.2.2010

NI Wireless Sensor Networks

- 24-bit thermocouple node
- Up to 3-year battery life
- 2.4 GHz, IEEE 802.15.4 radio (ZigBee)
- Data Rate: 250 kbits/s
- Range: 300 m
- Typical battery life: 2-3 years
- RF Channels: 14 Channels (11-24)

Structure of Data Logging Systems

12.2.2010

