

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Testování dynamických vlastností digitalizátorů spojitých signálů

Prof.Ing.Vladimír Haasz, CSc. Doc.Ing. Jaroslav Roztočil, CSc. Doc.Ing. Josef Vedral, CSc.

Elektrotechnická fakulta, ČVUT v Praha

21. září 2012

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

- 1. Parametry digitalizátorů (Vedral)
- 2. Klasické metody testování digitalizátorů (Vedral)
- 3. Testování digitalizátorů polyharmonickými, impulsními a šumovými signály (Vedral)
- 4. Generace harmonických signálů s vysokou spektrální čistotou (Roztočil)
- Metody následné korekce nelinearit digitalizátorů (Haasz)

Doc.Ing. Josef Vedral, CSc.

1. PARAMETRY DIGITALIZÁTORŮ

21.9.2012

1. Parametry digitalizátorů

- 1.1 Digitalizace spojitého signálu
- 1.2 Parametry vzorkovacích obvodů
- 1.3 Parametry kvantovacích obvodů
- 1.4 Šumové vlastnosti digitalizátorů
- 1.5 Kritické parametry digitalizátorů

1.1 Digitalizace spojitého signálu

Procesy:

- kmitočtová filtrace (dolní propust, pásmová propust)
- vzorkování signálu (v reálném čase, ekvivalentní, náhodné)
- kvantování (rovnoměrné, nerovnoměrné, adaptivní)
- kódování (binární, BCD)

1.1 Vzorkování v reálném čase

Časově ekvidistatní vzorkování – vhodné pro neperiodické signály

21.9.2012

Není splněn vzorkovací teorém

 $f_s \prec 2f_a$

vznik záznějových signálů $f_a \pm k f_s$, k = 1, 2, ... (Aliasing)

21.9.2012

1.1 Vzorkování signálu s omezeným kmitočtovým rozsahem

 \bigcirc

Časově neekvidistatní vzorkování – vhodné pro periodické signály

Ekvivalentní vzorkovací kmitočet

$$f_{se} = \frac{1}{\Delta T_s}$$

Ekvivalentní kmitočtový rozsah

$$EFB = \frac{f_{se}}{2}$$

21.9.2012

1.1 Pseudonáhodné a adaptivní vzorkování

Pseudonáhodné vzorkování potlačuje vznik záznějových signálů

Adaptivní vzorkování mění rychlost vzorkování podle časové změny signálu

21.9.2012

1.2 Parametry vzorkovacích obvodů

 u_2 1/2 u_2 $du_2/dt = \pi f_p$ t t $du_2/dt = \pi f_p$

- f_m mezní kmitočet (- 3dB) *(Frequency Band)*
- f_p mezní výkonový kmitočet *(Full Power Band)*
- SR rychlost přeběhu (Slew Rate)
- T_u doba ustálení (Settling Time)

FD signálový průnik (Feedthrough)
CT průnik řídícího signálu (Charge Transfer)
D změna výstupního napětí (Droop)

21.9.2012

1.2 Parametry vzorkovacích obvodů

Přechodové stavy

- T_a doba odběru vzorku (*Aperture Time*)
- ΔT_{a} nejistota doby odběru vzorku (*Aperture Jitter*)
- T_s sběrná doba (Acqusition Time)

1.3 Parametry kvantovacích obvodů

21.9.2012

 (\bullet)

Chyba nuly (Offset Error)

Chyba zesílení (Gain Error)

21.9.2012

1.3 Integrální a diferenciální nelinearita

Nemonotónost a chybějící kódové slovo

21.9.2012

1.3 Určení chyb lineární regresí

21.9.2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

17

1.4 Odstup signál šum a zkreslení

 \bigcirc

Dynamický rozsah bez rušivých složek

$$SFDR = \frac{U_1}{max(U_i, i = 2, 3, ...)}$$

Zkreslení vyššími harmonickými

Odstup signál šum bez harmonických složek

$$SNHR = \frac{U_1}{\sqrt{\sum_{i=1}^{l} U_{ni}^2 - \sum_{i=2}^{l} U_i^2}}, \quad l = \frac{f_s}{2k}$$

Odstup signál šum a zkreslení

$$SINAD = \frac{1}{\sqrt{THD^2 + \frac{1}{SNHR^2}}}$$

21.9.2012

1.4 Intermodulační zkreslení

f

Buzení převodníků dvěma sinusovými signály s nesoudělnými kmitočty

Dvoutónové intermodulační zkreslení

$$IMD_{2T} = \sqrt{\frac{\sum_{k,l=1,2,\dots,k\neq l} U_{kf_1 \pm lf_2}^2 - U_{f_1}^2 - U_{f_2}^2}{U_{f_1}^2 + U_{f_2}^2}}$$

Podmínka plného vybuzení digitalizátoru

$$U_{FS} = \sqrt{2} \sqrt{U_{f_1}^2 + U_{f_2}^2}$$

21.9.2012

1.4 Efektivní počet bitů, efektivní rozlišitelnost

Efektivní počet bitů (šumový parametr při střídavém buzení)

Efektivní rozlišitelnost (šumový parametr při ss. buzení)

Reálný digitalizátor: n > ER > ENOB

1.5 Kritické parametry digitalizátorů

využití	rozlišitení	vzorkovací kmitočet	parametry
Audio	16 - 24	48 kS/s – 96 kS/s	SINAD, ER, CT, FD, IMD
Automatizace	8 - 16	10 MS/s - 100 kS/s	SINAD, SNHR, INL, DNL, SR
Systémy sběru dat	12 - 24	100 MS/S – 1 kS/s	SINAD, SFDR, SNHR, IMD
Osciloskopy	8 - 12	20 GS/s – 1 GS/s	BW, SINAD, THD, SFDR
Spektrální analýza	16 - 24	10 Ms/s – 2,5 MS/s	SINAD, SFDR, IMD
Přenos dat	12 - 16	500 MS/s – 10 MS/s	SFDR, BW, SINAD, DR, INL, DNL, SNHR
Mobilní komunikace	12 - 16	500 MS/s – 4 GS/s	SINAD, SFDR, THD, IMD, ENOB,
Geofyzika	16 - 24	100 kS/s – 1 kS/s	THD, SINAD, DR, ER
Medicína	16 - 24	10 MS/s - 100 kS/s	SFDR, BW, INL, DR, SNHR
Radary a sonary	8 - 16	10 GS/s – 10 MS/s	SINAD, SFDR, INL, BW
RF, Video, televize	8 - 12	10 MS/s – 50 MS/s	INL, DNL, SNHR, SFDR, BW, THD, SINAD, DG, DF

21.9.2012

[1] IEEE Std 1057-1994 Standard for Digitizing Waveform Recorder, New York 2000.

- [2] IEEEStd 1241-2000 Standard for Terminology and Test Methods for Analog-to-Digital Converters, New York 2000.
- [3] IEEE Std 1658 Standard for Terminology and Test Methods for Digital-to-Analog Converters. New York 2010.
- [4] DYNAD Project, methods and draft standard for the dynamic characterization and testing of analogue to digital converters. Project SMT4-CT98-2214, Version 3.4, July 2001.
- [5] J.J.Blair: A Method for Characterizing Waveform Recorder Errors Using the Power Spectral Distribution, IEEE Transactions on Instrumentation and Measurement, vol. 43, mo.5, October 1992.
- [6] B.E.Peetz: Dynamic Testing of Waveform Recorders. IEEE Transactions on Instrumentation and Measurement, vol. 32, pp. 12-17, March 1983.
- [7] D.Dallet, J.Machado da Silva: Dynamic Characterization of Analogue-to-Digital

Converters. Springer Verlag 2005, ISBN-10-0-387-25902-3

Doc.Ing. Josef Vedral,CSc.

2. KLASICKÉ METODY TESTOVÁNÍ DIGITALIZÁTORŮ

21.9.2012

2.1 Metoda nejlépe proložené sinusovky

- 2.1.1 Tříparametrová metoda
- 2.1.2 Čtyřparametrová metoda
- 2.2 Metoda spektrální analýzy
- 2.1.1 Koherentní vzorkování
- 2.1.2 Nekoherentní vzorkování
- 2.3 Metoda měření četnosti výskytu kódových slov
- 2.3.1 Buzení trojúhelníkovým signálem
- 2.3.2 Buzení sinusovým signálem

2.1.1 Tříparametrová metoda

Střední kvadratická chyba rekonstrukce

$$\varepsilon = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (u(i) - u_{REC}(i))^2}$$

Digitalizátor je buzen sinusovým signálem, z jehož vzorků u(i) jsou metodou nejmenších čtverců určena amplituda U_m , fázový posuv ϕ a ss. složka U_o rekonstruovaného signálu $u_r(i)$.

$$u_{REC}(i) = U_m(\cos \omega t_i + \varphi) + U_0 = U_A(\cos \omega t_i) + U_B(\sin \omega t_i) + U_0$$

$$U_m = \sqrt{U_A^2 + U_B^2}, \quad \varphi = acrtg\left(-\frac{U_{mB}}{U_{mA}}\right)$$

Efektivní počet bitů

M počet vzorků

$$ENOB = n - \log_2 \frac{\varepsilon}{2^{-n} / \sqrt{12}}$$

Derivováním chyby rekonstrukce $d\epsilon^2/dU_A = 0$, $d\epsilon^2/dU_B = 0$, $d\epsilon^2/dU_0 = 0$ se určí matice

$$\mathbf{D} = \begin{pmatrix} \cos(\omega_f \ t_1) & \sin(\omega_f \ t_1) & 1\\ \cos(\omega_f \ t_2) & \sin(\omega_f \ t_2) & 1\\ \cdots & \cdots & \cdots\\ \cdots & \cdots & \cdots\\ \cos(\omega_f \ t_n) & \sin(\omega_f \ t_n) & 1 \end{pmatrix} \qquad \mathbf{u}_{REC} = \begin{pmatrix} u_{REC}(t_1) \\ u_{REC}(t_2) \\ \cdots \\ u_{REC}(t_n) \end{pmatrix} \qquad \mathbf{U} = \begin{bmatrix} U_A \\ U_B \\ U_0 \end{bmatrix}$$

Parametry rekonstruované sinusovky se určí inverzním maticovým součinem matice **D** a transponované matice **D**^T

$$\begin{bmatrix} \boldsymbol{U}_{A} \\ \boldsymbol{U}_{B} \\ \boldsymbol{U}_{0} \end{bmatrix} = \left(\mathbf{D}^{\mathrm{T}} \mathbf{D} \right)^{-1} \mathbf{D}^{\mathrm{T}} \mathbf{u}_{REC}$$

Vlastnosti metody: rychlý neiterativní algoritmus, vyžaduje malý počet vzorků, vhodný pro stabilní poměr f_s a f_{ln}

2.1.2 Čtyřparametrová metoda

lterační metoda, optimalizující *amplitudu* U_m , *kmitočet f, fázový posuv* ϕ a *stejnosměrnou hodnotu* U_0 rekonstruovaného signálu.

1. První odhad kmitočtu (průchod signálu 0 nebo pomocí DFT) a výpočet parametrů – porovnání se zadanou chybou aproximace ϵ

2.Inkrementace kmitočtu a následný výpočet parametrů - porovnání se zadanou chybou aproximace

Výpočet parametrů se určí podobně jako u 3 parametrové metody

Efektivní počet bitů
$$ENOB = n - \log_2 \frac{\varepsilon}{2^{-n} / \sqrt{12}}$$

Vlastnosti metody: iterativní algoritmus, vyžaduje větší počet vzorků, vhodná pro nestabilní poměr f_s a f_{in} eliminuje fázový šum

21.9.2012

21.9.2012

Časová závislost odchylky mezi naměřenou a proloženou sinusoidou v rámci jedné periody

Průměrný efektivní počet bitů

$$ENOB_{M} = \frac{\sum_{i=1}^{k} ENOB(f_{i})}{k}$$

21.9.2012

2.2 Metoda spektrální analýzy – (DFT Test)

Koherentní vzorkování $f_s/f_{f1} = k/l$

$$NF(dB) = 6,02n+1,76+10\log\frac{M}{2}$$

Digitalizátor je buzen sinusovým napětím, jehož vzorky *u*(i) jsou diskrétní Fourierovou transformací DFT převedeny do frekvenční oblasti

$$X(k) = \sum_{i=0}^{M-1} u(i) e^{-j2\pi i k/M}$$

7

M počet vzorků

$$\Delta f = \frac{f_s}{2M}$$
 frekvenční rozlišitelnost
(*frequency bin*)

$$THD_{1T} = \frac{U_{f_1}}{\sqrt{\sum_{i=2}^{M/2} U_{f_i}^2}} \qquad SINAD_{1T} = \frac{U_{f_1}}{\sqrt{U_n^2 - \sum_{i=2}^{M/2} U_{f_i}^2}}$$
$$ENOB_{1T} = \frac{SINAD_{1T}(dB) - 1.76}{6.02}$$

21.9.2012

2.2 Metoda spektrální analýzy okénkování

Nekohorentní vzorkování $f_s/f_{f1} \neq k/l$ rozmazávání spektra (*leakage*)

Nutnost užití amplitudových okének (*Windowing*)

$$NF(dB) = 6,02n+1,76+10\log\left(\frac{M}{2ENBW}\right)$$

Ekvivalentní šumová šířka pásma okénka (Equivalent Noise Bandwidth)

$$ENBW = \frac{M \sum_{n=0}^{M-1} w^{2}[n]}{\left[\sum_{n=0}^{M-1} w[n]\right]^{2}}.$$

Používaná okénka

Typ okénka	lalok	ENBW
Von Hann	- 32 dB	1,5
Hamming	- 43 dB	1,37
Blackmann	- 58 dB	1,73
Flat top	-96 dB	3,77

Volba okénka:

postraní laloky mají být minimálně - 10dB vůči předpokládanému šumu digitalizátoru

21.9.2012

normalized frequency

21.9.2012

Kmitočtové spektrum 16 bitového ADC signálu $f_i = 50,333 \text{ kHz}, f_s = 200 \text{ kSa/s}, 64 \text{ kB}$

21.9.2012

2.3 Metoda měření četnosti kódových slov

Metoda určuje četnost výskytu kódových P_i slov, z nichž rekonstruuje jejich histogram.

Poměrná četnost výskytu *i* - tého kódového slova

$$p_i = \frac{P_i}{\frac{1}{2^{n-2}} \sum_{i=2}^{2^{n-2}} P_i}$$

Lineárně proměnný budící signál - shodné četnosti výskytu kódových slov ideálního kvantizátoru

Diferenciální nelinearita

$$DNL_i = p_i - 1$$

Integrální nelinearita

$$INL_j = -\sum_{i=2}^j DNL_i$$

2.3 Metoda měření četnosti kódových slov

Sinusový budící signál

Poměrné četnosti výskytu kódových slov

$$u(t) = U_m \sin 2\pi f t \qquad p_i = \frac{1}{2\pi} \left[\arcsin \frac{U_{i+1}}{U_m} - \arcsin \frac{U_i}{U_m} \right] \approx \frac{U_{i+1} - U_i}{2\pi} \arcsin \frac{U_{i+1} - U_i}{U_m}$$

Předpoklad věrohodností výsledků: odebrání velkého počtu *nekorelovaných* vzorků (náhodné vzorkování)

Minimální počet vzorků

$$M_{min} \approx 2^n \frac{k^2}{\epsilon^2}$$

 $n = 8, \varepsilon = 3\%, k = 2$ (96%), $M = 10^{6}$

 $n = 16, \varepsilon = 3\%, k = 2$ (96%), $M = 2,6.10^8$

21.9.2012

2.4 Porovnání metod a přepočet parametrů

metoda	primární parametry	odvozené parametry	minimální počet vzorků 16 bitů <i>, ∆SINAD</i> = 0,1LSB
Proložená sinusovka	ovka ENOB SINAD, SNHI THD		64 k
Spektrální analýza	THD, SNHR, SFDR	SINAD, ENOB	16 M
Histogramová metoda	DNL	INL, SINAD, ENOB	256 M

SINAD(dB) = 6,02 *ENOB*+1,76

$$SINAD = \frac{1}{\sqrt{THD^2 + SNHR^{-2}}}$$

$$INL_{j} = -\sum_{i=2}^{j} DNL_{i}$$

$$ENOB = \log_{2} \frac{2^{n}}{\sqrt{1 + \frac{12}{2^{n} - 2} \sum_{i=2}^{2^{n} - 2} INL_{i}^{2}}}$$

21.9.2012

- [1] IEEE Std. 1241-2000 Standard for Terminology and Test Methods for Analog-to-Digital Converters, New York 2000.
- [2] IEEE Std. 1658 Standard for Terminology and Test Methods for Digital-to-Analog Converters. New York 2010.
- [3] DYNAD Project, methods and draft standard for the dynamic characterization and testing of analogue to digital converters. Project SMT4-CT98-2214, Version 3.4, July 2001.
- [4] Vedral, J.: Testování dynamických vlastností A/Č převodníků. Habilitační práce, ČVUT FEL, katdra měření, Praha 1990.
- [5] Plassche, R.: CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. Kluwer Academic Publishers, 2003. 588 stran. ISBN 1-4020-7500-6.
- [6] Andrle, M.: Testing of ADCs with deterministic and Stochastic Signals. Ph.D. Thesis, Prague 2003.
- [7] Fexa, P.: Určení nejistot měření při testování dynamických vlastností A/Č systémů. Diplomová práce, ČVUT FEL, katdra měření, Praha 2008.

Doc.Ing. Josef Vedral, CSc.

3. TESTOVÁNÍ DIGITALIZÁTORŮ POLYHARMONICKÝMI, IMPULSNÍMI A ŠUMOVÝMI SIGNÁLY

21.9.2012

3. Testování digitalizátorů polyharmonickými, impulsními a šumovými signály

Testovací signály:

- 3.1 Jedno, dvou a multitónové signály
- 3.2 Modulované signály (AM, FM)
- 3.3 Rozmítaný sinusový signál
- 3.4 Impulsní signály (tlumená sinusovka, sinx/x)
- 3.5 Šumové signály

3.1 Testování jednotónovým signálem

Digitalizátor je buzen sinusovým signálem, jehož vzorky *x*(i) jsou diskrétní Fourierovou transformací převedeny do frekvenční oblasti

$$X(k) = \sum_{i=0}^{M-1} u(i) e^{-j2\pi i k/M}$$

 $\Delta f = \frac{I_s}{2M}$

M počet vzorků

frekvenční rozlišitelnost

$$ENOB_{1T} = \frac{SINAD_{1T}(dB) - 1,76}{6,02}$$

21.9.2012

3.1 Testování dvoutónovým signálem

Digitalizátor je buzen dvěma sinusovými signály o nesoudělných kmitočtech

$$u(t) = U_{f_1} \sin \omega_1 t + U_{f_2} \sin \omega_2 t$$

$$THD_{2T} = \sqrt{\frac{\sum_{k=2,3..} U_{kf_1}^2 + \sum_{l=2,3,..} U_{lf_2}^2}{U_{f_1}^2 + U_{f_2}^2}}$$

$$SINAD_{2T} = \sqrt{\frac{U_{f_1}^2 + U_{f_2}^2}{U_n^2 + \sum_{k=2,3..} U_{kf_1}^2 + \sum_{l=2,3,..} U_{lf_2}^2}}$$

 $SINAD_{2T}(dB) = 6,02 ENOB_{2T} + 4,77 - 20 \log CF$

 $SINAD_{2T}(dB) = 6,02ENOB_{2T} + 1,25$

3.1 Výsledky testování 1 a 2 tónovým signálem

EVROPSKÁ U

21.9.2012

3.1 Testování multitónovým signálem

m _{MT}	1	2	4	8
CF _{MT}	$\sqrt{2}$	2	$2\sqrt{2}$	4
$\Delta SINAD$	0	- 3dB	- 6dB	- 12dB
$\Delta ENOB$	0	- 0,5	- 1	- 1,5

Digitalizátor je buzen více sinusovými signály o nesoudělných kmitočtech

$$u_{\rm MH} = \sum_{i=1}^{m} U_{f_i} \sin(\omega_i t)$$

$$SINAD_{MT} = \sqrt{\frac{\sum_{i=1}^{m} U^{2}(f_{i})}{U_{n}^{2} + \sum_{i=1}^{m} \sum_{k=1,2,..} U^{2}(kf_{i})}}$$

$$ENOB_{MT} = \frac{SINAD_{MT}(dB) - 1,76 + 10 \log m}{6,02}$$
$$U_{f_i} = 1/2m \qquad CT_{MH} = \sqrt{2m}$$
$$MTD = \sqrt{\sum_{i=1}^{m} \sum_{k=1,2,..} U^2(kf_i) / \sum_{i=1}^{m} U^2(f_i)}$$

21.9.2012

3.1 Výsledky testování 3 a 4 tónovým signálem

21.9.2012

3.2 Testování AM signálem

Digitalizátor je buzen AM signálem s hloubkou modulace $m_{\rm AM}$ = $U_{\rm m}/U_{\rm n}$

$$u_{AM} = (U_{n} + U_{m} \cos \omega_{m} t) \cdot \sin \omega_{n} t = U_{n} \sin \omega_{n} t + \frac{U_{m}}{2} [\sin(\omega_{n} - \omega_{m}) \cdot t + \sin(\omega_{n} + \omega_{m}) \cdot t]$$

$$SINAD_{AM} = U_n \sqrt{\frac{1 + 2m_{AM}^2}{\sum_{i=kM/2, k=1, 2, \dots}^m U_{f_i}^2 - 2m_{AM}^2}}$$

$$ENOB_{AM} = \frac{SINAD_{AM} - 4,74 + 20 \log CF_{AM}}{6,02} (bit)$$
$$CF_{AM} = \frac{2(1 + m_{AM})}{\sqrt{2 + m_{AM}^2}}$$

21.9.2012

3.2 Výsledky testování AM signálem

3.2 Testování FM signálem

Digitalizátor je buzen FM signálem modulačním indexem $m_{\rm FM}$ = $\Delta \omega / \omega_{\rm m}$

$$u_{\rm FM} = U_{\rm n} \sin \left(\omega_{\rm n} t + \frac{\Delta \omega}{\omega_{\rm m}} \sin \omega_{\rm m} t \right)$$
$$\omega_{\rm n}(t) = \omega_{\rm n0} + \Delta \omega . \cos \omega_{\rm m} t$$

$$u_{FM}(t) = U_n \begin{bmatrix} \sin \omega_n(t) \cdot \cos(m_{FM} \sin \omega_m t) + \\ \cos \omega_n(t) \cdot \sin(m_{FM} \sin \omega_m t) \end{bmatrix}$$

$$ENOB_{\rm FM} = \frac{SINAD_{\rm FM}(dB) - 4,77}{6,02}$$

 $CF_{FM} = 1$

21.9.2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

S

3.2 Výsledky testování FM signálem

21.9.2012

3.3 Testování rozmítaným signálem

Digitalizátor je buzen lineárně rozmítaným sinusovým signálem s konstantní amplitudou v kmitočtovém rozsahu f_1 až f_2

$$u(t) = U_m \cdot \sin\left[2\pi t \left(\frac{t-t_0}{\Delta t} \left(f_1 - f_2\right) + f_2\right) + \varphi\right]$$

Metodou nejmenších čtverců se určí chyba aproximace, která se ztotožní s *RMS*_{FIT}

$$S_{Fit} = \sqrt{\frac{1}{M} \sum_{k=1}^{M} \left[X_k - U_m \cdot \sin\left[2\pi t \left(\frac{t - t_k}{\Delta t} (f_1 - f_2) + f_2 \right) + \varphi \right] \right]^2}$$
$$ENOB = n - \log_2 \frac{RMS_{Fit}}{2^{-n} / \sqrt{12}}$$

21.9.2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

 f_2 f_3

3.4 Testování tlumenou sinusovkou

$f_1(kHz)$	$f_2(kHz)$	d	CF _{DSW}	
5	1	0,016	1,74	
5	1	0,032	2,05	
5	1	0,064	2,59	
5	1	0,127	3,33	
5	1	0,255	4,04	

Digitalizátor je buzen tlumenou sinusovkou s činitelem útlumu *d*

$$u(t) = e^{-2 \cdot \pi \cdot f_1 \cdot d \cdot t} \sin\left(2 \cdot \pi \cdot f_1 \cdot t\right)$$

$$ENOB_{\rm DSW} = \frac{SINAD_{\rm DSW}(dB) - 4,77}{6,02}$$

Změnou *d* lze měnit činitel výkyvu *CF*_{DSW} a tím i obsah harmonických složek v testovacím signálu

3.4 Výsledky testování tlumenou sinusovkou

3.5 Testování signálem sinx/x

Digitalizátor je buzen impulsním signálem sinx/x se střídavou polaritou impulsů

$$u(t) = H\left(t + \frac{T_1}{2}\right) \left(\frac{\sin(2\pi t/T_2)}{2\pi t/T_2}\right) - H\left(t - \frac{T_1}{2}\right) \left(\frac{\sin(2\pi t/T_2)}{2\pi t/T_2}\right)$$

T_{1}/T_{2}	počet tónů <i>m</i>	CF _{SINC}
15	17	5,5
30	31	7,8
150	143	17,3

21.9.2012

21.9.2012

3.6 Testování exponenciálním signálem

Digitalizátor je buzen exponenciálním signálem s kmitočtovou charakteristikou

$$u_{\rm C}(t) = 1 - e^{-\frac{t}{\tau}} \qquad A(\omega) = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}, \quad \omega_0 = 1/\tau$$

Tříparametrovou metodou nejmenších čtverců se určí chyba aproximace, která se ztotožní s *RMS*_{FIT}

$$ENOB = n - \log_2 \frac{RMS_{Fit}}{2^{-n} / \sqrt{12}}$$

$$RMS_{Fit} = \sqrt{\frac{1}{M}\sum_{k=1}^{M} \left[u_k - Ae^{B\tau} - C\right]^2}$$

21.9.2012

Testovací systém

Devices under test DAQ NI PXIe 6251-E 16 analog inputs, 16-bit ADC, 1.25 MS/s, 2 analog outputs, 16-bit, 1.25 MS/s Memory Depth: 256 MByte NI PXI-1033 5-Slot PXI Chassis with Integrated MXI-Express Controller

PXI-5422 16-bit, 200 MS/s Arbitray Waveform Generator THD 120dB SFDR 130dB

Controller Devices Digitizer NI PXI 5922 24 bit, 500 kS/s SFDR 114 dBc RMS Noise -120 dBFS Depth memory - 8 MB/ch

Porovnání výsledků testování

signál	Činitel výkyvu	SINAD (dB)	ENOB (bit)
1 tónový, 15987.41 kHz	1.4	86,6	14,1
2 tónový, 3357.87 kHz, 7359.87 kHz	2.0	86,0	14.0
4 tónové, 3357.87 kHz, 7359.87 kHz, 9784.52 kHz, 15987.41 kHz	2.8	85,4	13.9
AM signál <i>f</i> c = 7.78 kHz	1.7 – 2,3	86,6	14,1
FM signál <i>, f</i> c = 10 kHz	1.0	85 <i>,</i> 4	13.9
Rozmítaný signál, 1 kHz – 16 kHz	1,4	89,0	14.5
Tlumená sinusovka, 1 kHz – 16 kHz	1,7 - 4	86,6	14.1
Sinx/x, 170 Hz – 17kHz	5,6 – 17,4	84,8	13,8

Vstup digitalizátoru je buzen šumovým signálem u_n o rozkmitu větším, než je rozsah digitalizátoru.

Metodou měření četnosti výskytu kódových slov p_i se určí diferenciální nelinearity jeho převodní charakteristiky

21.9.2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

 $\frac{2}{\sqrt{1 + \frac{12}{2^n - 2} \sum_{i=2}^{2^n - 2} INL_i^2}}$

3.5 Testování šumovým signálem s ss. složkou

 Δ krok posuvu signálu

σ směrodatná odchylka normálního rozložení šumu

Vstup digitalizátoru je buzen šumovým signálem s proměnnou ss. složkou.

Metodou měření četnosti výskytu kódových slov kumulovaného histogramu se určí diferenciální nelinearity převodní charakteristiky testovaného digitalizátoru.

Zvlnění *R* průběhu signálu dosahuje při *P* = 1 je *R* =5,3.10⁻⁹, což umožňuje testovat až 24 bitové digitalizátory

Р	0,8	0,9	1	1,1	1,2	1,3
R	8,00	5,30	5,30	1,70	2,20	1,70
	E-14	E-11	E-09	E-07	E-06	E-05

3.5 Určení efektivního počtu bitů

Přeladitelná dolní propust

$$ENOB_{LP}(f_j) = \frac{1}{f_j} \sum_{i=1}^{j} \Delta f_i ENOB(f_i)$$
$$\Delta f_i = f_i - f_{i-1}$$

Spektrum pseudonáhodného signálu s normálním rozdělením

21.9.2012

HP33120A Generátor pseudonáhodného signálu

HPE3631A Regulovatelný ss. zdroj napětí

KH3490 Přeladitelný filtr - dolní propust 2. řádu Butterworth

HP34401A číslicový multimetr

3.5 Výsledky testování šumovým signálem

Předpoklady:

- nekoherentnost vzorkovacího a vzorkovaného signálu, zamezení vzniku záznějů
- nutnost zpracování velkého počtu vzorků

Minimální počet vzorků

$$N_{min} = \approx 2^n \frac{k^2}{\epsilon^2}.$$

n počet bitů, k intervalový odhad, ε nejistota určení DNL

$$n = 8, k = 1,96(95\%), \varepsilon = 3\%,$$

 $N_{\min} = 10^{6}$

21.9.2012

3.5 Výsledky testování šumovým signálem

AD14: 14 bit, 250kS/s, *ENOB*(1kHz) = 11,6 bit

21.9.2012

- [1] D.Belega: "Testing of ADCs by frequency domain analysis in multi-tone". *Proceedings of Romanian Academy*, Series A, Volume 5, No.2/2004.
- [2] P.Ramos, M.Silva, A.Serra: "Simulation and Experimental Results of Multiharmonic Least-Squares Fitting Algorithms Applied to Periodic Signals", IEEE Transaction on Instrumentation and Measurement, Vol. 55, No. 2, pp. 646.
- [3] P. Ramos, A. Serra: "Least Squares Multiharmonic Fitting: Convergence Improvements", *IEEE Transaction on Instrumentation and Measurement* 56 (4) 2007.
- [4] C. Luque, N. Bjorsell: "Improved dynamic range for multitone signal using model-based pre-distortion". *Metrology and Measurement Systems*, vol. XVI (2009), No. 1, pp. 129-141. ISBN 0860-8229.
- [5] Vedral, J., Fexa, P.: ADC and DAC Testing Using Impulse Signals. International Mixed Signals, Sensors and Systems Test Workshop 2011 [CD-ROM]. Santa Barbara: University of California, Santa Barbara, 2011, vol. 1, p. 5-8. ISBN 978-0-7695-4479-3.

Doc.Ing. Jaroslav Roztočil, CSc.

4. GENEROVÁNÍ HARMONICKÝCH SIGNÁLŮ S VYSOKOU SPEKTRÁLNÍ ČISTOTOU

21.9.2012

4. Generování harmonických signálů s vysokou spektrální čistotou

- 4.1. Požadavky na sinusový signál pro dynamické testování A/Č převodníků
- 4.2 Sinusové signální generátory
- 4.3 Generátory s vysokou spektrální čistotou
- 4.4 Sestava filtrů pro testování A/Č převodníků

4.1. Požadavky na sinusový signál pro dynamické testování A/Č převodníků

Kvalitu testovacího signálu lze charakterizovat pomocí parametru SINAD (Signal to Noise and Distortion Ratio):

$$SINAD = 10\log \frac{P_1}{P_{All} - P_0 - P_1}$$

kde

P_{All} - výkon všech složek signálu,

P₀ - výkon stejnosměrné složky,

P₁ - výkon základní harmonické

4.1 SINAD testovacího signálu

Obecně platí:

testovací signál musí mít odstup rušivých signálů výrazně vyšší než nejvyšší dosažitelný dynamický rozsah testovaného zařízení (= SNR ideálního AČ převodníku).

Při testování n-bitového AČ převodníku:

 $SNR_{id} = 6,02n + 1,76 [dB]$

Požadovaný SINAD testovacího signálu:

 $SINAD = SNR_{id} + PR [dB]$ kde PR – ochranný odstup [dB], zpravidla 10 dB

4.2 Komerční generátory sinusového průběhu

Zpravidla kmitočtové syntezátory na principu přímé (DDS) nebo nepřímé (PLL) syntézy.

Použitelnost: pro max. 12-bitové AČP

Omezující parametry:

- vysoká hodnota THD (>-70 dBc)
- vysoká úroveň fázového šumu
- nezanedbatelná úroveň neharmonických složek (u DDS generátorů)

4.2 Typické spektrum generátoru

Generátor Agilent 33120A (+10 dBm, 1,053 MHz)

4.2 Spektrum generátoru v okolí základní harmonické

SINAD = 85 dB pro šířku pásma 200 kHz

Generátor Agilent 33120A (+10 dBm, 1,053 MHz)

21.9.2012

SINAD = 95 dB pro šířku pásma 200 kHz

Generátor Agilent 33120A (+10 dBm, 1,053 MHz)

Na FEL ČVUT byly navrženy sinusové generátory na frekvencích 441,176 kHz, 1,053 MHz, 2,407 MHz, 4,415 MHz, 9,484 MHz, 19,507 MHz a 36,757 MHz optimalizované na nízký fázový šum.

Výkon: 30 dBm (= 20 Vpp).

4.3. Schéma generátoru s vysokou spektrální čistotou

21.9.2012

SINAD až 130 dB pro šířku pásma 200 kHz

Fázový šum realizovaného generátoru

21.9.2012

Sestava filtrů typu PP, PZ a úzkopásmová PZ navržena pro potřeby pracoviště pro testování A/Č převodníků na FEL ČVUT.

Filtry konstruovány jako pasivní, použity součástky s vysokou linearitou.

Induktory - vzduchové cívky bez feromagnetického jádra. Vinutí je provedeno jako jednovrstvové, pro frekvence vyšší než 1 MHz z kruhového vodiče, s mezerami mezi závity, délka cívky nejlépe menší než průměr.

4.4 Sestava filtrů pro testování AČP

Ladicí kondenzátory - vakuové KP1-8 nebo kvalitní vzduchové.

Vazební kondenzátory - keramické vysokonapěťové K15U nebo slídové.

Filtry - vestavěny v masivních měděných krytech s boxy pro jednotlivé obvody, vnitřní rozměry krytů jsou zhruba 2x větší, než rozměry použitých cívek

4.3 Sestava filtrů pro testování AČP

Detail jedné sekce realizovaného filtru typu PP.

21.9.2012

4.4.1 Filtry typu PP pro zlepšení spektrální kvality signálu

Frekvenční charakteristika realizovaného filtru pro f = 1,053 MHz

21.9.2012

4.4.2 Filtry typu PZ pro měření zkreslení

Frekvenční charakteristika realizovaného filtru pro f = 1,053 MHz

21.9.2012

4.4.2 Filtry pro měření fázového šumu

Schéma úzkopásmového filtru typu PZ

4.4.2 Filtry pro měření fázového šumu

Frekvenční charakteristiky realizovaného filtru pro f = 1,053 MHz

Měření dynamických parametrů A/Č převodníku – základní uspořádání pro nekoherentní vzorkování.

21.9.2012

Měření parametrů signálu filtrovaného pásmovou propustí

21.9.2012

Měření parametrů signálu na výstupu generátoru

21.9.2012

Komárek, M. - Roztočil, J.: Frequency Selection of Sine Wave for Dynamic ADC Test. *Measurement Science Review*. 2010, vol. 10, no. 6, p. 205-208.

Komárek, M. - Papež, V. - Roztočil, J. - Varga, D.: Harmonic Signal Generation with a High Spectral Purity for High Speed ADC Testing. In *Proceedings of the 9th Biennial Baltic Electronics Conference*. Tallinn: Tallinn Technical University, 2004, p. 247-250.

Komárek, M. - Papež, V. - Roztočil, J.: Sine-Wave Signal Distortion Measurement at Higher Frequencies. In *19th International Metrology Symposium IMEKO TC11*. Opatija: IMEKO International Measurement Confederation TC11, 2005.

Komárek, M. - Papež, V. - Roztočil, J. - Suchánek, P.: Sine-Wave Signal Sources for Dynamic Testing High-Resolution High-Speed ADCs. In *IMEKO - XVIII World Congress and IV Brazilian Congress of Metrology*. Rio de Janeiro: IMEKO, 2006.

Haasz, V. - Komárek, M. - Roztočil, J. - Slepička, D. - Suchánek, P.: System for Testing Middle-Resolution Digitizers Using Test Signal up to 20 MHz. In *IMTC/06 Proceedings of the 23rd IEEE Instrumentation and Measurement Technology Conference*. Sorrento: IEEE, 2006, p. 266-270.

Papež, V. - Roztočil, J.: Zdroje sinusových signálů pro testování rychlých analogově-číslicových převodníků s vysokým rozlišením. *Metrologie*. 2008, roč. 17, č. 3, s. 24-27.

Prof.Ing.Vladimír Haasz, CSc.

5. METODY NÁSLEDNÉ KOREKCE NELINEARIT DIGITALIZÁTORŮ

21.9.2012

- 5.1 Možnosti korekce
- 5.2 Aproximace průběhu *INL(n*)
- 5.3 Porovnání uvedených metod aproximace
- 5.4 Korekce výstupních dat s použitím aproximovaného průběhu *INL(n*)
- 5.5 Závěr

21.9.2012

5.1 Možnosti korekce

Důležitý parametr digitalizátorů - odchylka od linearity - INL(n)

Když ostatní vlivy zanedbáme, pak pro výstupní signál obecně platí:

y(n) = x(n) + INL(n).

INL(n) - rozdíl mezi ideální a skutečnou převodní charakteristikou (většina výrobců udává v rámci technických parametrů pouze mezní hodnotu *INL*)

Nelinearitu je možné částečně potlačit korekcí výstupních dat (digitalizovaného signálu) pokud je vhodným způsobem popsána.

Decimal Code

Možnosti určení INL(n)

- 1. Měřením četnosti výskytu kódových slov (histogramová metoda):
 - umožňuje výpočet obou složek *INL(n*),
 - vyžaduje záznam velkého počtu vzorků a je tedy i časově náročná
- 2. Z frekvenčního spektra digitalizovaného signálu (z amplitudy a fáze jednotlivých harmonických)
 - lze získat aproximaci průběhu INL(n), postačí řádově nižší počet vzorků
 - jedná se o aproximaci analytickou funkcí \rightarrow nepřesnost určení *INL(n*),

Možnosti korekce INL(n)

- 1. Použitím korekční tabulky získané:
 - přímo z výsledku histogramové metody
 - z aproximovaného průběhu integrální nelinearity
- 2. Přímou aplikací inverzní převodní charakteristiky získané z aproximovaného průběhu integrální nelinearity

Aproximace obecným polynomem

V případě obecných polynomů je *INL(n)* aproximována vztahem

$$INL(n) = \sum_{h=0}^{H_{\text{max}}} a_h x^h(n) = \sum_{h=0}^{H_{\text{max}}} a_h X_1^h \cos^h(nT)$$

kde a_h - koeficienty nelinearity až do řádu H_{max} ,

H_{max} - nejvyšší harmonická složka výstupního digitalizovaného signálu

 X_1 – amplituda vstupního signálu

Vztah mezi koeficienty a_k a amplitudami jednotlivých harmonických Y_h ve frekvenčním spektru výstupního signálu lze vyjýdřit vztahem

$$Y_{h} = \sum_{n=0}^{s} \frac{(2n+h)!}{2^{2n+h-1}n!(n+h)!} a_{2n+h} X_{1}^{2n+h}$$

kde $s = (H_{max}-h)/2$ pro $H_{max}-h$ sudé a $s = (H_{max}-h-1)/2$ pro $H_{max}-h$ liché

Aproximace obecným polynomem

V maticovém tvaru

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{a}$$

např. pro 3. řád aproximace

$$\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & X_1^2 & 0 \\ 0 & X_1 & 0 & \frac{3}{4}X_1^3 \\ 0 & 0 & \frac{1}{2}X_1^2 & 0 \\ 0 & 0 & 0 & \frac{1}{4}X_1^3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

a koeficienty aproximačního polynomu lze po inverzi matice X určit z

$$\mathbf{a} = \mathbf{X}^{-1}\mathbf{Y}$$

Aproximace Čebyševovým polynomem

V případě Čebyševových polynomů prvního druhu, $(T_h(\cos(x)) = \cos(hx))$

$$INL(n) = \frac{c_0}{2} + \sum_{h=2}^{H_{\text{max}}} c_h T_h(n)$$

 c_h jsou koeficienty nelinearity do řádu H_{max} , součet od h = 2 díky orthogonalitě na interval [1; 1]

Tedy
$$\mathbf{Y} = \mathbf{T} \cdot \mathbf{c}$$
 a např. pro 3. řád $\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & T_1 & 0 & 0 \\ 0 & 0 & T_2 & 0 \\ 0 & 0 & 0 & T_3 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$

Diagonální matice \rightarrow zjednodušení inverze a tedy i výpočtu koeficientů c_h

Aproximace Fourierovými řadami

V případě použití Fourierových řad

$$INL(n) = \frac{a_0}{2} + \sum_{k=0}^{2^N - 1} \left[a_k \cos(\frac{2\pi}{2^N} nk) + b_k \sin(\frac{2\pi}{2^N} nk) \right]$$

přičemž a_k a b_k pro známou INL(n) lze nalézt s použitím výrazů

$$a_{k} = \frac{1}{2^{B}} \sum_{n=0}^{2^{B}-1} INL(n) \cos(\frac{2\pi}{B}nk), k \in \{0, 1, ..., 2^{B}-1\}$$
$$b_{k} = \frac{1}{2^{B}} \sum_{n=0}^{2^{B}-1} INL(n) \sin(\frac{2\pi}{B}nk), k \in \{1, ..., 2^{B}-1\}$$

kde 2^{B-1} je počet kvantovacích úrovní *B*-bitového digitalizátoru. Dále se předpokládá, že průběh *INL*(*n*), z kterého jsou a_k a b_k počítány, je periodický.

21.9.2012

Aproximace Fourierovými řadami

Nechť je vstupní normalizovaný signál definován vztahem

$$x(m) = \frac{2^{B}}{X_{FS}} \left(X_{1} \cos(\theta_{m}) + X_{0} \right)$$

kde X_{FS} je vstupní rozsah převodníku, X_0 jeho offset, X_1 amplituda vstup. signálu a $\Theta_m = f_1 / f_S$ Pak platí:

$$y(m) = x(m) + \frac{a_0}{2} + \sum_{k=1}^{2^{B}-1} a_k \cos\left[\frac{2\pi k}{X_{FS}} \left(X_1 \cos \theta_m + X_0\right)\right] + \sum_{k=1}^{2^{B}-1} b_k \sin\left[\frac{2\pi k}{X_{FS}} \left(X_1 \cos \theta_m + X_0\right)\right]$$

Aproximace Fourierovými řadami

Po zjednodušení:

$$y(m) = x(m) + \sum_{h=0}^{H_{\max}} Y_h \cos(h\theta_m)$$

kde Y_h representuje *h.* harmonickou výstupního signálu, kterou lze vyjádřit pomocí Besselových funkcí 1. druhu $J_h()$ řádu *h*, a to různým způsobem pro sudé a liché harmonické složky:

$$Y_{2h} = 2(-1)^{h} \sum_{k=1}^{2^{B}-1} \left(a_{k} \cos \frac{2\pi kX_{0}}{X_{FS}} + b_{k} \sin \frac{2\pi kX_{0}}{X_{FS}} \right) J_{2h} \left(\frac{2\pi kX_{1}}{X_{FS}} \right) \quad h \ge 1$$
$$Y_{2h+1} = 2(-1)^{h} \sum_{k=1}^{2^{B}-1} \left(b_{k} \cos \frac{2\pi kX_{0}}{X_{FS}} - a_{k} \sin \frac{2\pi kX_{0}}{X_{FS}} \right) J_{2h+1} \left(\frac{2\pi kX_{1}}{X_{FS}} \right) \quad h \ge 0$$

kde J_{2h} a J_{2h+1} jsou Besselovy funkce.

Z této soustavy rovnic pak lze určit koeficienty a_k a b_k .

21.9.2012

Použitelnost uvedených metod aproximace průběhu *INL(n)* pro korekci výstupních dat z digitalizátorů závisí na:

- složitosti výpočtu
- přesnosti aproximace
- odolnosti proti šumu, který je v digitalizovaném signálu přítomen.

Za předpokladu ideálního sinusového vstupního signálu $x_{id}(n)$ pro výstupní signál y(n) platí

$$y(n) = x_{\rm id}(n) + INL^{real}(n),$$

kde hodnoty *INL^{real}(n)* byly určeny histogramovou metodou.

Pro odhad *INL^{approx}(n)* byly příslušné koeficienty u všech typů aproximací vypočteny z frekvenčního spektra výstupního signálu.

Porovnání složitosti výpočtu:

1. Obecné polynomy

Počet parametrů a_h použitých při aproximaci obecným polynomem (H_{max}) odpovídá nejvyšší harmonické výstupního signálu, kterou je třeba vzít v úvahu. Je tedy třeba řešit inverzi matice o rozměrech $H_{max} \times 2H_{max}$.

2. Čebyševovy polynomy

Počet parametrů *c_h* použitých v aproximaci je stejný jako v předchozím případě, výpočet inverzní matice je však jednodušší (diagonální matice).

3. Fourierovy řady

Počet parametrů a_k a b_k použitých v aproximaci Fourierovými řadami odpovídá dvojnásobku nejvyšší harmonické výstupního signálu, kterou je třeba vzít v úvahu, tedy 2 H_{max} .

Přesnost aproximace:

Aproximovaný průběh *INL*^{approx}(*n*) vypočtený ze spektra výstupního signálu *y*(*m*) se porovná se skutečným průběhem *INL*^{real}(*n*) změřeným histogramovou metodou (viz kap. 2.3). Přesnost aproximace lze vyhodnotit: - ze střední kvadratické hodnoty rozdílu

$$MSE = \frac{1}{N} \sum_{n=0}^{N-1} \left(INL^{real}(n) - INL^{approx}(n) \right)^2$$

- z jejich maximálního rozdílu
$$E_{\max} = \max \left| INL^{real}(n) - INL^{approx}(n) \right|$$

kde N je délka obou průběhů INL(n) určená jako $N = 2^{B-1}$, B je počet bitů digitalizátoru.

Výsledky simulací:

Pro nelinearity nižšího řádu (H_{max} < 100) je ve všech 3 případech přesnost aproximace srovnatelná (MSE < 0,1 LSB², E_{max} < 1,6 LSB).

Vliv šumu:

k výstupnímu signálu z digitalizátoru (modelovaný výstup) byl přidán další šum e(m) - bílý šum s normálním rozložením a rozptylem σ^2

Výsledky simulací:

Pro nelinearity nižšího řádu ($H_{max} < 100$) je vliv šumu až do hodnoty $\sigma^2 = 3 \text{ LSB}^2$ zanedbatelný.

Použití korekční tabulky

Data pro korekční tabulku lze získat: 1. Přímo histogramovou metodou.

Skutečná převodní charakteristika $z = TF(n) = k n + INL^{approx}(n)$.

Pokud *INL*^{approx}(*n*) - *INL*^{approx}(*n*+1) < 0,5 LSB pro jakékoli *n*, je funkce z = TF(n) monotonní a existuje i její inversní funkce $n = TF^{-1}(z)$.

^{2.} Z aproximovaného průběhu *INL(n*).

Použití korekční tabulky – experimentální ověření

Digitalizátor NI PXI 5122, vstupní sinusový signál s velmi nízkým zkreslením, Čebyševova aproximace

Obr. 5.4.1 Frekvenční spektrum výstupního signálu

21.9.2012

Analytický výpočet inversního průběhu převodní charakteristiky

Nechť je aproximován skutečný průběh INL(n) obecným polynomem

$$INL(n) = \sum_{h=0}^{H_{max}} a_h x^h(n), \quad n \in <-1; +1>$$

kde a_k jsou koeficienty nelinearity až do řádu H_{max} , (nejvyšší v úvahu vzatá harmonická), n normalizovaná hodnota výstupního kódu bipolárního digitalizátoru.

Pokud jsou koeficienty *a_k* známy, lze aproximovanou převodní charakteristiku vypočíst jako:

$$TF(n) = y = n + INL(n) = n + \sum_{h=+}^{n_{max}} a_h x^h$$

a je možné k ní nalézt inverzní funkci

$$TF^{-1}(y) = n = \sum_{k=1}^{K_{\text{max}}} b_k y^k$$

kde
$$K_{\text{max}} = H_{\text{max}}$$

21.9.2012

H

Analytický výpočet inversního průběhu – ověření simulacemi

Modelována nelinearita 3. řádu, vstupní sinusový signál, výstupní zkreslený signál, ostatní vlivy zanedbány:

Příliš optimistický výsledek vůči experimentům – důvod: zanedbání dalších vlivů

21.9.2012

Analytický výpočet inversního průběhu – ověření simulacemi

Modelována nelinearita 3. řádu, vstupní sinusový signál, výstupní zkreslený signál, bílý šum ($\sigma^2 = 60 \text{ LSB}^2$) :

a) Spektrum před korekcí

21.9.2012

Analytický výpočet inversního průběhu – ověření simulacemi

Modelována nelinearita 3. řádu, vstupní sinusový signál, výstupní zkreslený signál, bílý šum ($\sigma^2 = 60 \text{ LSB}^2$):

Analytický výpočet inversního průběhu – ověření simulacemi

Modelována nelinearita 3. řádu, vstupní sinusový signál, výstupní zkreslený signál, hystereze 40 LSB:

b) Spektrum po korekci

21.9.2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

a) Spektrum před korekcí

Analytický výpočet inversního průběhu – ověření simulacemi

Modelována nelinearita 3. řádu, vstupní sinusový signál, výstupní zkreslený signál, hystereze 40 LSB:

Analytický výpočet inversního průběhu – experimentální ověření

VXI HP E1430A, (10 MS/s, 23-bit), generátor SR DS360 + úzkopásmový filtr, Záznamy o délce 2x10⁶ vzorků rozděleny na 4 segmenty, 1 použit jako referenční pro vypočet koeficientů, na zbylé 3 byla aplikována korekce.

21.9.2012

Analytický výpočet inversního průběhu – experimentální ověření

NI PXI-5922 (24-bit do 500 kS/s, omezení na 16 bitů pro 15 MS/s), generátor SR DS360 + úzkopásmový filtr, f = 20,19 kHz.

c) Průběh INL(n) před korekcí

d) Průběh INL(n) po korekci

21.9.2012

Analytický výpočet inversního průběhu – experimentální ověření

NI PXI-5922 (24-bit do 500 kS/s, omezení na 16 bitů pro 15 MS/s), generátor SR DS360 + úzkopásmový filtr, f = 1053 kHz.

c) Průběh INL(n) před korekcí

d) Průběh INL(n) po korekci

Z výše uvedeného vyplývá:

- Průběh integrální nelinearity INL(n) lze z frekvenčního spektra digitalizovaného spektrálně čistého signálu aproximovat s dostatečnou přesností např. obecným či Čebyševovým polynomem.
- 2. Tuto aproximaci lze využít pro odhad inverzní převodní charakteristiky a následnou korekci výstupních dat.
- 3. Je nutno vzít v úvahu, že je korigována pouze "průměrná" integrální nelinearita *INLc*, nikoliv složky způsobené hysterezí, které mohou v některých případech převažovat, a to zejména při vyšším kmitočtu vstupního signálu.
- 4. Další značným problémem je i fakt, že průběh integrální nelinearity INL(n) je zejména v blízkosti mezní frekvence vstupního signálu značně frekvenčně závislý, takže v případě obecných širokopásmových signálů nepřipadá následná korekce výstupních dat prakticky v úvahu.

21.9.2012

- [1] IEEE Std 1241-2000 Standard for Terminology and Test Methods for Analog-to-Digital Converters, New York 2000.
- [2] Michaeli L., Michalko P., Saliga J.: "Fast Testing of ADC Using Unified Error Model", *Proceedings of the 17th IMEKO world congress*, pp. 534–537, Dubrovnik, Croatia, 2003.
- [3] Attivissimo F., Giaquinto N., Kale I.: "INL reconstruction of A/D converters via parametric spectral estimation", *Transactions on Instrumentation and Measurement*, vol. 53, No. 4, pp. 940-946, August 2004.
- [4] Janik J. M., Fresnaud V.: "A Spectral Approach to Estimate the INL of A/D Converter", to appear in *IEEE Transactions on Instrumentation and Measurement*.
- [5] Kouřil F., Vrba K.: *Non-linear and parametric circuits: principles, theory and applications*, Ellis Horwood Limited, Chicheste.
- [6] Björsell N., Händel P.: "Achievable ADC Performance by Postcorrection Utilizing Dynamic Modeling of the Integral Nonlinearity", EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 497187, 10 pages, 2008.
- [7] Suchanek P., Haasz V.: Approaches to the ADC transfer function modeling. *Proceedings of the 15th IMEKO TC4 Symposium*, Iasi, Romania, September, 2007.
- [8] Suchanek P., Slepicka D., Haasz V.: Models of the ADC transfer function—sensitivity to noise. Proceedings of the I²MTC 2008 – IEEE International Instrumentation and Measurement Technology Conference, Victoria, Canada, May 2008, pp. 583–587.

21.9.2012

